量化用什麼編程
❶ 期貨量化交易編程怎麼弄
方法:1、前提是你必須有自己的期貨交易賬戶,每個期貨公司都可以開,現在不用出門就可以用手機在線開戶。
2、其次,要選擇合適的交易軟體。其中交易開拓者的軟體是最好編程的,很多交易團隊基本都在用這個軟體。確定賬戶和交易軟體。
3、剩下的就是如何用編程語言編寫策略,並將其輸入交易軟體。編程其實並不難。在程序化交易中,程序化只佔程序化交易的30%。好的編程可以簡化代碼,提高運行速度,增加交易策略的多樣性和完整性,實現一些復雜的策略。
4、如果沒有這方面的編程能力,可以參加期貨交易的相關培訓課程。另外70%主要是策略、倉位設置、交易品種選擇、程序化交易心態控制、網路設置等的組合管理。
拓展資料:
1、 戰略的確定。一個成功的量化交易系統的開發過程必須是恰當的。如何找到一個成功的量化交易策略,是構建量化交易體系的基礎。無論是基本面還是技術面,都可以用量化的方法進行分析,進而得出量化的交易策略。比如,從根本上說,GDP的增長和貨幣流通量的增加可以用定量的方法來分析和描述。技術上,移動平均線和指數smma是物理和化學策略思想的來源。
2、 經典理論。很多量化投資策略思路來源於傳統經典投資理論,比如經典商品期貨技術分析主要包括技術分析的理論基礎、道指理論、圖表介紹、趨勢基本概念、主要反轉形態、持續形態、交易量和倉位興趣、長期圖表和商品指數、移動平均線、擺動指數和相反意見、盤中點圖、三點轉向和優化點圖、艾略特波浪理論、時間周期等等。這些經典理論有的有具體的指標和具體的應用理論,有的只有理論,需要根據理論生成具體的應用指標來完成策略的測試。因此,經典投資理論可以通過量化思維將理論中的具體邏輯量化為指標或事件形成交易信號,通過信號優化檢驗實現經典理論的投資思路。這種方式可以有效實現經典理論,同時也可以從原有的經典理論中衍生出周邊的投資方法,是量化策略發展初期的主流模式。
3、 邏輯推理。邏輯學的戰略思維大多來源於宏觀基礎信息,其量化戰略思維是通過對宏觀信息的量化處理,梳理出符合宏觀基礎信息的量化模型。典型的量化策略包括行業輪動量化策略、市場情緒輪動量化策略、上下游供需量化策略等。這種策略思路來源非常廣泛,數據一般不規范,很難形成標准。目前,許多對沖基金都有類似的想法來生成量化策略產品。
4、 總結經驗。經驗總結是量化戰略思想的另一個主要來源。在使用量化策略交易之前,市場上有大量經驗豐富的投資者,其中許多人在長期穩定回報方面表現突出。因此,他們對市場的看法和交易思路成為了量化策略開發者的模仿對象,有經驗的交易者也願意量化一些他們覺得相對固化、能夠獲得穩定回報的交易策略,最終可以用機器自動交易,只監控交易。這可以大大減少交易中消耗的能量。在這個前提下,出現了一個與經驗豐富的交易者合作的量化策略團隊。
操作環境:iPad第九代15.1 交易開拓者4.5.2
❷ 想用python量化金融,需要掌握python哪些
urllib, urllib2, urlparse, BeautifulSoup, mechanize, cookielib 等等啦這些庫的掌握並不難,網路爬蟲難的是你要自己設計壓力控制演算法,還有你的解析演算法,還有圖的遍歷演算法等。
❸ 金融工程,量化投資學什麼軟體好Python還是Matlab
個人覺得還是都會比較好。技多不壓身。量化投資用Matlab 和 C++,一個建模一個執行,足夠了。實在不愛用Matlab的話,R和Python也行。
選擇python推薦可以閱讀:《量化投資:以python為工具》主要講解量化投資的思想和策略,並藉助Python 語言進行實戰。《量化投資:以Python為工具》一共分為5 部分,第1 部分是Python 入門,第2 部分是統計學基礎,第3 部分是金融理論、投資組合與量化選股,第4 部分是時間序列簡介與配對交易,第5 部分是技術指標與量化投資。《量化投資:以Python為工具》首先對Python 編程語言進行介紹,通過學習,讀者可以迅速掌握用Python 語言處理數據的方法,並靈活運用Python 解決實際金融問題;其次,向讀者介紹量化投資的理論知識,主要講解量化投資所需的數量基礎和類型等方面;最後講述如何在Python 語言中構建量化投資策略。
選擇MATLAB推薦閱讀:《問道量化投資:用MATLAB來敲門》主要講述以MATLAB為分析工具的量化投資,由「MATLAB入門」、「MATLAB量化投資基礎」和「MATLAB量化投資相關函數詳解」3篇組成。入門篇讓零編程基礎的讀者快速掌握強大的數值計算和模擬分析工具MATLAB;量化投資基礎篇簡要介紹相關的投資策略及模型,重點講述MATLAB中的模型實現及應用;函數詳解篇對MATLAB的金融工具箱、衍生品工具箱和固定收益工具箱中的全部函數一一進行詳解,以幫助讀者快速掌握這些函數。
❹ python量化投資是什麼
量化投資是指通過數量化方式及計算機程序化發出買賣指令,以獲取穩定收益為目的的交易方式。在海外的發展已有30多年的歷史,其投資業績穩定,市場規模和份額不斷擴大、得到了越來越多投資者認可。從全球市場的參與主體來看,按照管理資產的規模,全球排名前四以及前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,由量化及程序化交易所管理的資金規模在不斷擴大。
python是一種編程語言,python量化投資也就是通過使用Python編寫能夠發出買賣指令的程序來交易。
❺ 量化投資用什麼編程語言研發策略好呢
么以下我就以程序語言的角度來回答
當然如果已經會了某些語言,那你可以使用熟悉的語言去找網上的學習資源會比較快
如果沒有特別熟悉的語言,或者是願意多學一種非常好用的語言
我的建議是學習Python
我從以下幾點來分別說明
平台資源
國內外使用Python做雲端回測以及運算的免費平台相當的多,例如有 寬客在線,發明者量化,優礦, 等等不勝枚舉,可以使用平台的支持以及社區的互相幫助來學習
容易學習
綜合以上所說,"目前的環境底下" 我推薦Python.(推薦直接下載 Anaconda的集成開發環境)
❻ 學習量化選擇Python還是R比較好
python對於新手來說較容易入門,而且python目前國內多家量化交易平台都支持,比如優礦、掘金量化、米筐、聚寬等,反而支持R語言的平台很少,所以說python語言做量化才是主流。
❼ 做量化交易選擇什麼語言好呢
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
應答時間:2021-12-02,最新業務變化請以平安銀行官網公布為准。
❽ 招銀網路量化部門用什麼軟體
雷爾、掘金、博爾、聚寬等軟體。
根據最新的量化交易軟體排名,相應的分析如下:
1、雷爾。雷爾量化交易軟體提供海量金融數據,回測速度較快,還能保持回測的有效性,專業性和交易的真實性都較好,交易環境的體驗也是數一數二的。目前,雷爾的交易系統分為量化智能系統和量化簡易系統,目的在於為不同需求的投資者提供最高效、易用的量化交易系統。
2、掘金。掘金是比較開放的量化交易系統,提供的金融數據同樣十分豐富,策略覆蓋C++、Python等主流編程語言,支持策略研發與策略回測,回測的速度較快,具有一定的有效性,只是數據的質量和研發環境的體驗還有待提升。
3、博爾。博爾的數據量有限,不過質量也屬於較好的行列,通過對數據的追蹤為投資者展示真實的市場情況,也讓投資者能從獨有的角度去利用一整套的科學依據,實現高效率的交易。
4、聚寬。聚寬擁有海量高質的金融數據,只是回測速度與回測的嚴謹性有待提升,在研發環境上體驗感較好,同時依託於模擬交易系統,專業性也較強。
❾ 用python做量化交易要學多久
5個月。
python憑借其突出的語言優勢與特性,已經融入到各行各業的每個領域。一般來說,python培訓需要脫產學習5個月左右,這樣的時長才能夠讓學員既掌握工作所需的技能,還能夠積累一定的項目經驗。當然如果你想要在人工智慧的路上越走越遠,則需要不斷的積累和學習。
python培訓的5個月時間里,有相當大一部分時間是在實戰做項目,第一階段是為期一個月學習python的核心編程,主要是python的語言基礎和高級應用,幫助學員獲得初步軟體工程知識並樹立模塊化編程思想。學完這一階段的內容,學員已經能夠勝任python初級開發工程師的職位。

(9)量化用什麼編程擴展閱讀:
Python開發基礎課程內容包括:計算機硬體、操作系統原理、安裝linux操作系統、linux操作系統維護常用命令、Python語言介紹、環境安裝、基本語法、基本數據類型、二進制運算、流程式控制制、字元編碼、文件處理、數據類型、用戶認證、三級菜單程序、購物車程序開發、函數、內置方法、遞歸、迭代器、裝飾器、內置方法、員工信息表開發、模塊的跨目錄導入、常用標准庫學習,b加密 e正則logging日誌模塊等,軟體開發規范學習,計算器程序、ATM程序開發等。
❿ 為什麼希施瑪量化終端是用代碼編輯新策略時它不自動填充
首先可能是因為希施瑪量化終端是用代碼編輯新策略的時候,是沒有進行這種自動填充設置的,因為在使用這種功能的時候,是需要提前自行設置自動填充功能,這樣在進行操作的時候,才能更加的方便快捷發揮它的作用,因此這種情況下是不自動填充的。
