當前位置:首頁 » 編程軟體 » 刪除可執行程序的符號表編譯選項

刪除可執行程序的符號表編譯選項

發布時間: 2023-02-23 09:56:22

編譯原理

C語言編譯過程詳解
C語言的編譯鏈接過程是要把我們編寫的一個C程序(源代碼)轉換成可以在硬體上運行的程序(可執行代碼),需要進行編譯和鏈接。編譯就是把文本形式源代碼翻譯為機器語言形式的目標文件的過程。鏈接是把目標文件、操作系統的啟動代碼和用到的庫文件進行組織形成最終生成可執行代碼的過程。過程圖解如下:

從圖上可以看到,整個代碼的編譯過程分為編譯和鏈接兩個過程,編譯對應圖中的大括弧括起的部分,其餘則為鏈接過程。
一、編譯過程
編譯過程又可以分成兩個階段:編譯和匯編。
1、編譯
編譯是讀取源程序(字元流),對之進行詞法和語法的分析,將高級語言指令轉換為功能等效的匯編代碼,源文件的編譯過程包含兩個主要階段:
第一個階段是預處理階段,在正式的編譯階段之前進行。預處理階段將根據已放置在文件中的預處理指令來修改源文件的內容。如#include指令就是一個預處理指令,它把頭文件的內容添加到.cpp文件中。這個在編譯之前修改源文件的方式提供了很大的靈活性,以適應不同的計算機和操作系統環境的限制。一個環境需要的代碼跟另一個環境所需的代碼可能有所不同,因為可用的硬體或操作系統是不同的。在許多情況下,可以把用於不同環境的代碼放在同一個文件中,再在預處理階段修改代碼,使之適應當前的環境。
主要是以下幾方面的處理:
(1)宏定義指令,如 #define a b。
對於這種偽指令,預編譯所要做的是將程序中的所有a用b替換,但作為字元串常量的 a則不被替換。還有 #undef,則將取消對某個宏的定義,使以後該串的出現不再被替換。
(2)條件編譯指令,如#ifdef,#ifndef,#else,#elif,#endif等。
這些偽指令的引入使得程序員可以通過定義不同的宏來決定編譯程序對哪些代碼進行處理。預編譯程序將根據有關的文件,將那些不必要的代碼過濾掉
(3) 頭文件包含指令,如#include "FileName"或者#include <FileName>等。
在頭文件中一般用偽指令#define定義了大量的宏(最常見的是字元常量),同時包含有各種外部符號的聲明。採用頭文件的目的主要是為了使某些定義可以供多個不同的C源程序使用。因為在需要用到這些定義的C源程序中,只需加上一條#include語句即可,而不必再在此文件中將這些定義重復一遍。預編譯程序將把頭文件中的定義統統都加入到它所產生的輸出文件中,以供編譯程序對之進行處理。包含到C源程序中的頭文件可以是系統提供的,這些頭文件一般被放在/usr/include目錄下。在程序中#include它們要使用尖括弧(<>)。另外開發人員也可以定義自己的頭文件,這些文件一般與C源程序放在同一目錄下,此時在#include中要用雙引號("")。
(4)特殊符號,預編譯程序可以識別一些特殊的符號。
例如在源程序中出現的LINE標識將被解釋為當前行號(十進制數),FILE則被解釋為當前被編譯的C源程序的名稱。預編譯程序對於在源程序中出現的這些串將用合適的值進行替換。
預編譯程序所完成的基本上是對源程序的「替代」工作。經過此種替代,生成一個沒有宏定義、沒有條件編譯指令、沒有特殊符號的輸出文件。這個文件的含義同沒有經過預處理的源文件是相同的,但內容有所不同。下一步,此輸出文件將作為編譯程序的輸出而被翻譯成為機器指令。
第二個階段編譯、優化階段。經過預編譯得到的輸出文件中,只有常量;如數字、字元串、變數的定義,以及C語言的關鍵字,如main,if,else,for,while,{,}, +,-,*,\等等。
編譯程序所要作得工作就是通過詞法分析和語法分析,在確認所有的指令都符合語法規則之後,將其翻譯成等價的中間代碼表示或匯編代碼。
優化處理是編譯系統中一項比較艱深的技術。它涉及到的問題不僅同編譯技術本身有關,而且同機器的硬體環境也有很大的關系。優化一部分是對中間代碼的優化。這種優化不依賴於具體的計算機。另一種優化則主要針對目標代碼的生成而進行的。
對於前一種優化,主要的工作是刪除公共表達式、循環優化(代碼外提、強度削弱、變換循環控制條件、已知量的合並等)、復寫傳播,以及無用賦值的刪除,等等。
後一種類型的優化同機器的硬體結構密切相關,最主要的是考慮是如何充分利用機器的各個硬體寄存器存放的有關變數的值,以減少對於內存的訪問次數。另外,如何根據機器硬體執行指令的特點(如流水線、RISC、CISC、VLIW等)而對指令進行一些調整使目標代碼比較短,執行的效率比較高,也是一個重要的研究課題。
2、匯編
匯編實際上指把匯編語言代碼翻譯成目標機器指令的過程。對於被翻譯系統處理的每一個C語言源程序,都將最終經過這一處理而得到相應的目標文件。目標文件中所存放的也就是與源程序等效的目標的機器語言代碼。目標文件由段組成。通常一個目標文件中至少有兩個段:
代碼段:該段中所包含的主要是程序的指令。該段一般是可讀和可執行的,但一般卻不可寫。
數據段:主要存放程序中要用到的各種全局變數或靜態的數據。一般數據段都是可讀,可寫,可執行的。
UNIX環境下主要有三種類型的目標文件:
(1)可重定位文件
其中包含有適合於其它目標文件鏈接來創建一個可執行的或者共享的目標文件的代碼和數據。
(2)共享的目標文件
這種文件存放了適合於在兩種上下文里鏈接的代碼和數據。
第一種是鏈接程序可把它與其它可重定位文件及共享的目標文件一起處理來創建另一個 目標文件;
第二種是動態鏈接程序將它與另一個可執行文件及其它的共享目標文件結合到一起,創建一個進程映象。
(3)可執行文件
它包含了一個可以被操作系統創建一個進程來執行之的文件。匯編程序生成的實際上是第一種類型的目標文件。對於後兩種還需要其他的一些處理方能得到,這個就是鏈接程序的工作了。
二、鏈接過程
由匯編程序生成的目標文件並不能立即就被執行,其中可能還有許多沒有解決的問題。
例如,某個源文件中的函數可能引用了另一個源文件中定義的某個符號(如變數或者函數調用等);在程序中可能調用了某個庫文件中的函數,等等。所有的這些問題,都需要經鏈接程序的處理方能得以解決。
鏈接程序的主要工作就是將有關的目標文件彼此相連接,也即將在一個文件中引用的符號同該符號在另外一個文件中的定義連接起來,使得所有的這些目標文件成為一個能夠被操作系統裝入執行的統一整體。
根據開發人員指定的同庫函數的鏈接方式的不同,鏈接處理可分為兩種:
(1)靜態鏈接
在這種鏈接方式下,函數的代碼將從其所在地靜態鏈接庫中被拷貝到最終的可執行程序中。這樣該程序在被執行時這些代碼將被裝入到該進程的虛擬地址空間中。靜態鏈接庫實際上是一個目標文件的集合,其中的每個文件含有庫中的一個或者一組相關函數的代碼。
(2) 動態鏈接
在此種方式下,函數的代碼被放到稱作是動態鏈接庫或共享對象的某個目標文件中。鏈接程序此時所作的只是在最終的可執行程序中記錄下共享對象的名字以及其它少量的登記信息。在此可執行文件被執行時,動態鏈接庫的全部內容將被映射到運行時相應進程的虛地址空間。動態鏈接程序將根據可執行程序中記錄的信息找到相應的函數代碼。
對於可執行文件中的函數調用,可分別採用動態鏈接或靜態鏈接的方法。使用動態鏈接能夠使最終的可執行文件比較短小,並且當共享對象被多個進程使用時能節約一些內存,因為在內存中只需要保存一份此共享對象的代碼。但並不是使用動態鏈接就一定比使用靜態鏈接要優越。在某些情況下動態鏈接可能帶來一些性能上損害。
我們在linux使用的gcc編譯器便是把以上的幾個過程進行捆綁,使用戶只使用一次命令就把編譯工作完成,這的確方便了編譯工作,但對於初學者了解編譯過程就很不利了,下圖便是gcc代理的編譯過程:

從上圖可以看到:
預編譯
將.c 文件轉化成 .i文件
使用的gcc命令是:gcc –E
對應於預處理命令cpp
編譯
將.c/.h文件轉換成.s文件
使用的gcc命令是:gcc –S
對應於編譯命令 cc –S
匯編
將.s 文件轉化成 .o文件
使用的gcc 命令是:gcc –c
對應於匯編命令是 as
鏈接
將.o文件轉化成可執行程序
使用的gcc 命令是: gcc
對應於鏈接命令是 ld
總結起來編譯過程就上面的四個過程:預編譯、編譯、匯編、鏈接。了解這四個過程中所做的工作,對我們理解頭文件、庫等的工作過程是有幫助的,而且清楚的了解編譯鏈接過程還對我們在編程時定位錯誤,以及編程時盡量調動編譯器的檢測錯誤會有很大的幫助的。
是否可以解決您的問題?

② linux 下面怎麼用gdb調試多個.c文件

Linux 下調試匯編代碼既可以用 GDB、DDD 這類通用的調試器,也可以使用專門用來調試匯編代碼的 ALD(Assembly Language Debugger)。
從調試的角度來看,使用 GAS 的好處是可以在生成的目標代碼中包含符號表(symbol table),這樣就可以使用 GDB 和 DDD 來進行源碼級的調試了。要在生成的可執行程序中包含符號表,可以採用下面的方式進行編譯和鏈接:

[xiaowp@gary code]$ as --gstabs -o hello.o hello.s
[xiaowp@gary code]$ ld -o hello hello.o

執行 as 命令時帶上參數 --gstabs 可以告訴匯編器在生成的目標代碼中加上符號表,同時需要注意的是,在用 ld 命令進行鏈接時不要加上 -s 參數,否則目標代碼中的符號表在鏈接時將被刪去。
匯編程序員通常面對的都是一些比較苛刻的軟硬體環境,短小精悍的ALD可能更能符合實際的需要,因此下面主要介紹一下如何用ALD來調試匯編程序。首先在命令行方式下執行ald命令來啟動調試器,該命令的參數是將要被調試的可執行程序:

[xiaowp@gary doc]$ ald hello
Assembly Language Debugger 0.1.3Copyright (C) 2000-2002 Patrick Alken
hell ELF Intel 80386 (32 bit), LSB, Executable, Version 1 (current)
Loading debugging symbols...(15 symbols loaded)
ald>

當 ALD 的提示符出現之後,用 disassemble 命令對代碼段進行反匯編:

ald> disassemble -s .text
Disassembling section .text (0x08048074 - 0x08048096)
08048074 BA0F000000 mov edx, 0xf
08048079 B998900408 mov ecx, 0x8049098
0804807E BB01000000 mov ebx, 0x1
08048083 B804000000 mov eax, 0x4
08048088 CD80 int 0x80
0804808A BB00000000 mov ebx, 0x0
0804808F B801000000 mov eax, 0x1
08048094 CD80 int 0x80

上述輸出信息的第一列是指令對應的地址碼,利用它可以設置在程序執行時的斷點:

ald> break 0x08048088
Breakpoint 1 set for 0x08048088

斷點設置好後,使用 run 命令開始執行程序。ALD 在遇到斷點時將自動暫停程序的運行,同時會顯示所有寄存器的當前值:

ald> run
Starting program: hello
Breakpoint 1 encountered at 0x08048088
eax = 0x00000004 ebx = 0x00000001 ecx = 0x08049098 edx = 0x0000000Fesp = 0xBFFFF6C0 ebp = 0x00000000 esi = 0x00000000 edi = 0x00000000
ds = 0x0000002B es = 0x0000002B fs = 0x00000000 gs = 0x00000000
ss = 0x0000002B cs = 0x00000023 eip = 0x08048088 eflags = 0x00000246
Flags: PF ZF IF
08048088 CD80 int 0x80

如果需要對匯編代碼進行單步調試,可以使用 next 命令:

ald> next
Hello, world!
eax = 0x0000000F ebx = 0x00000000 ecx = 0x08049098 edx = 0x0000000Fesp = 0xBFFFF6C0 ebp = 0x00000000 esi = 0x00000000 edi = 0x00000000
ds = 0x0000002B es = 0x0000002B fs = 0x00000000 gs = 0x00000000
ss = 0x0000002B cs = 0x00000023 eip = 0x0804808F eflags = 0x00000346
Flags: PF ZF TF IF
0804808F B801000000 mov eax, 0x1

若想獲得 ALD 支持的所有調試命令的詳細列表,可以使用 help 命令:

ald> help
Commands may be abbreviated.
If a blank command is entered, the last command is repeated.
Type `help <command>'' for more specific information on <command>.
General commands
attach clear continue detach disassemble
enter examine file help load
next quit register run set
step unload window write
Breakpoint related commands
break delete disable enable ignore
lbreak tbreak

③ step7如何檢查程序錯誤

1、找到我們注冊表裡的一個文件刪除就可以,按win+R打開運行,輸入regedit。

④ gcc -s(注意是小寫的s)命令是什麼意思

這個參數會把符號表從最終的可執行文件中刪除。沒有符號表,你就不能用gdb調試了。常見的用法是:
比方說你的程序由
1.c
2.c
3.c
組成,那麼你編譯的時候應該是這樣的
gcc
-g
-c
1.c
gcc
-g
-c
2.c
gcc
-g
-c
3.c
然後鏈接成可執行文件
gcc
-o
test
1.o
2.o
3.o
此時生成的
test
是可以用gdb來調試的,因為它包括了符號表等調試信息。
但是如果你用
gcc
-s
-o
test_s
1.o
2.o
3.o
生成的
test_s
就不能調試了,因為-s參數把符號表等信息都從可執行文件中去除了。
此時你比較一下
test

test_s
,雖然功能是完全一樣的,但是
test_s
的尺寸要小很多,就是因為符號表被去除的原因。

⑤ vs2019不小心把兩個程序弄了一個解決方案

想要解決可以根據
1.庫的分類

根據鏈接時期的不同,庫又有靜態庫和動態庫之分。

靜態庫是在鏈接階段被鏈接的(好像是廢話,但事實就是這樣),所以生成的可執行文件就不受庫的影響了,即使庫被刪除了,程序依然可以成功運行。

有別於靜態庫,動態庫的鏈接是在程序執行的時候被鏈接的。所以,即使程序編譯完,庫仍須保留在系統上,以供程序運行時調用。(TODO:鏈接動態庫時鏈接階段到底做了什麼)

2 靜態庫和動態庫的比較

鏈接靜態庫其實從某種意義上來說也是一種粘貼復制,只不過它操作的對象是目標代碼而不是源碼而已。因為靜態庫被鏈接後庫就直接嵌入可執行文件中了,這樣就帶來了兩個問題。

首先就是系統空間被浪費了。這是顯而易見的,想像一下,如果多個程序鏈接了同一個庫,則每一個生成的可執行文件就都會有一個庫的副本,必然會浪費系統空間。

再者,人非聖賢,即使是精心調試的庫,也難免會有錯。一旦發現了庫中有bug,挽救起來就比較麻煩了。必須一一把鏈接該庫的程序找出來,然後重新編譯。

而動態庫的出現正彌補了靜態庫的以上弊端。因為動態庫是在程序運行時被鏈接的,所以磁碟上只須保留一份副本,因此節約了磁碟空間。如果發現了bug或要升級也很簡單,只要用新的庫把原來的替換掉就行了。

那麼,是不是靜態庫就一無是處了呢?

答曰:非也非也。不是有句話么:存在即是合理。靜態庫既然沒有湮沒在滔滔的歷史長河中,就必然有它的用武之地。想像一下這樣的情況:如果你用libpcap庫編了一個程序,要給被人運行,而他的系統上沒有裝pcap庫,該怎麼解決呢?最簡單的辦法就是編譯該程序時把所有要鏈接的庫都鏈接它們的靜態庫,這樣,就可以在別人的系統上直接運行該程序了。

所謂有得必有失,正因為動態庫在程序運行時被鏈接,故程序的運行速度和鏈接靜態庫的版本相比必然會打折扣。然而瑕不掩瑜,動態庫的不足相對於它帶來的好處在現今硬體下簡直是微不足道的,所以鏈接程序在鏈接時一般是優先鏈接動態庫的,除非用-static參數指定鏈接靜態庫。

gcc作為編譯工具,用在Linux操作系統中,可以編譯C、C++、Object-C、JAVA等語言。編譯過程中可以帶編譯選項,選擇編譯過程。

一、GCC編譯流程

1)預處理 Pre-Processing

2)編譯 Compiling

3)匯編 Assembling

4)鏈接 Linking

二、GCC編譯選項

1、gcc總體選項列表

1) -c :指編譯,不鏈接,生成目標文件「.o」。

2) -S :只編譯,不匯編,生成匯編代碼「.S」。

3) -E :只進行預編譯/預處理,不做其他處理。

4) -o file:把輸出文件輸出到file里。

5) -g :在可執行程序中包含標准調試信息。

6) -v :列印出編譯器內部編譯各過程的命令行信息和編譯器的版本。

7) -I dir :在頭文件的搜索路徑列表中添加dir目錄

8) -L dir :在庫文件的搜索路徑列表中添加dir目錄

9) -static :連接靜態庫(靜態庫也可以用動態庫鏈接方式鏈接)

10) -llibrary :連接名為library的庫文件(顯示指定需要鏈接的動態庫文件)

2、gcc告警和出錯選項

1) -ansi :支持符合ANSI標準的C程序

2) -pedantic :允許發出ANSI C標准所列出的全部警告信息

3) -pedantic-error :允許發出ANSI C標准所列出的全部錯誤信息

4) -w :關閉所有警告

5) -Wall :允許發出gcc提供的所有有用的報警信息

6) -werror :把所有的告警信息轉化為錯誤信息,並在告警發生時終止編譯過程

3、gcc優化選項

gcc可以對代碼進行優化,它通過編譯選項「-On」來控制優化代碼的生成,其中n是一個代表優化級別的整數。對於不同版本的gcc,

n的取值范圍不一致,比較典型的范圍為0變化到2或者3。

雖然優化選項可以加速代碼的運行速度,但對於調試而言將是一個很大的挑戰。因為代碼在經過優化之後,原先在源程序中聲明和使用

的變數很可能不再使用,控制流也可能會突然跳轉到意外的地方,循環語句也可能因為循環展開而變得到處都有。

三、GCC生成動態庫和靜態庫

1)動態庫生成

1.單個源文件/目標直接生成動態庫

a. gcc -fPIC -shared xxx.c -o libxxx.sob.gcc -fPIC -shared xxx.o -o libxxx.so
2.多個源文件/目標生成動態庫

a.gcc -fPIC -shared xxx1.c xxx2.c xxx3.c -o libxxx.so b.gcc -fPIC -shared xxx1.o xxx2.o xxx3.o -o libxxx.so
2)靜態庫生成

1.單個源文件/目標直接生成靜態庫

a.ar -rc libxxx.a xxx.o(正確方法)b. ar -rc libxxx.a xxx.c (靜態庫可以生成;當運行連接了該靜態庫的可執行程序會報錯:could not read symbols:Archive has no index;run ranlib to add one)
2.多個源文件/目標生成靜態庫

a.ar -rc libxxx.a xxx1.o xxx2.o xxx3.o (正確方法)b.ar -rc libxxx.a xxx1.c xxx2.c xxx3.c (靜態庫可以生成;當運行連接了該靜態庫的可執行程序會報錯:could not read symbols:Archive has no index;run ranlib to add one)
四、多個源文件生成一個可執行文件

⑥ gcc-c和-o有什麼區別

-c和-o都是gcc編譯器的可選參數。

-c表示只編譯(compile)源文件但不鏈接,會把.c或.cc的c源程序編譯成目標文件,一般是.o文件。-o用於指定輸出(out)文件名。不用-o的話,一般會在當前文件夾下生成默認的a.out文件作為可執行程序。

例如:

gcc -c test.c將生成test.o的目標文件

gcc -o app test.c將生成可執行程序app

gcc -c a.c -o a.o表示把源文件a.c編譯成指定文件名a.o的中間目標文件(其實在這里,把-o a.o省掉,效果是一樣的,因為中間文件默認與源文件同名,只是後綴變化)。

1、如果GCC不帶-C參數,編譯一個源代碼文件(test.c)。那麼會自動將編譯和鏈接一步完成,並生成可執行文件。可執行文件可以有-o參數指定(test.o)

2、如果是多個文件,則需要先編譯成中間目標文件(一般是.o文件),在鏈接成可執行文件,一般習慣目標文件都是以.o後綴,也沒有硬性規定可執行文件不能用.o文件。

(6)刪除可執行程序的符號表編譯選項擴展閱讀:

gcc:GNU編譯器套件(GNU Compiler Collection)包括C、C++、Objective-C、Fortran、Java、Ada和Go語言的前端,也包括了這些語言的庫(如libstdc++、libgcj等等)。GCC的初衷是為GNU操作系統專門編寫的一款編譯器。GNU系統是徹底的自由軟體。此處,「自由」的含義是它尊重用戶的自由。

基本用法:

-o output_filename,確定輸出文件的名稱為output_filename,同時這個名稱不能和源文件同名。如果不給出這個選項,gcc就給出預設的可執行文件a.out。

-O,對程序進行優化編譯、鏈接,採用這個選項,整個源代碼會在編譯、鏈接過程中進行優化處理,這樣產生的可執行文件的執行效率可以提高,但是,編譯、鏈接的速度就相應地要慢一些。

熱點內容
java返回this 發布:2025-10-20 08:28:16 瀏覽:746
製作腳本網站 發布:2025-10-20 08:17:34 瀏覽:1009
python中的init方法 發布:2025-10-20 08:17:33 瀏覽:715
圖案密碼什麼意思 發布:2025-10-20 08:16:56 瀏覽:876
怎麼清理微信視頻緩存 發布:2025-10-20 08:12:37 瀏覽:774
c語言編譯器怎麼看執行過程 發布:2025-10-20 08:00:32 瀏覽:1124
郵箱如何填寫發信伺服器 發布:2025-10-20 07:45:27 瀏覽:349
shell腳本入門案例 發布:2025-10-20 07:44:45 瀏覽:227
怎麼上傳照片瀏覽上傳 發布:2025-10-20 07:44:03 瀏覽:911
python股票數據獲取 發布:2025-10-20 07:39:44 瀏覽:873