linux交叉編譯工具鏈
『壹』 怎樣檢查linux交叉工具鏈 安裝成功

配置好PATH環境變數(加入你交叉編譯工具鏈的目錄),比如你arm交叉工具鏈,可能名字叫arm-linux-gcc。執行arm-linux-gcc -v,如果看到如上圖所示提示版本信息,基本上就算安裝成功了吧。GOOD LUCK~
『貳』 一 . 樹莓派A20 基本環境搭建 1
我的實驗環境:
1.交叉編譯工具鏈:gcc-linaro-arm-linux-gnueabihf-4.8-2014.04_linux(4.8.2).tar.xz
2.SDK文件:MarsBoard-A20-Linux-SDK-V1.1.tar.bz2
在安裝gcc-arm-linux-gnueabi的時候,會自動安裝上gcc-4.6-arm-linux-gnueabi,如下圖所示:
第二個文件的安裝很重要,盡管後面提示的編譯錯誤,缺少的是arm-linux-...,但是安裝這個文件還是挺好用的。
根據前面安裝的一些安裝包,其實本節的交叉編譯工具鏈可以不用操作。因為已經包含了本節所做的了。
我得先將vim改一下,否則按住上下左右,會出現A,B,C,D。
再/etc/profile最後一行添加內容:
然後:
這里做一些簡要的說明,在網址: 鏈接 上有一些說明,從說明中,我們可以看到我們用的sdk的架構。
pack文件夾
選擇2,server版本。
之後:
能找到的livesuit_marsboard_a20_debian.img就是生成的鏡像文件。如果要修改名字,可以:
這裡面就包含了image.cfg,找到裡面的一項:
修改為其他的名字即可。
選擇2,server版本。
1.若出現如下報錯:
可以:
如果出現:
但是其實這些文件都是有的,可以不妨:
再次編譯,則問題如下:
仔細找編譯的shell輸出文件,發現是rootfs/下的gz文件找不到,這是因為我做前面的操作的時候,希望生成自己的rootfs_my.tar.gz文件。現在我重新將該文件放到rootfs/下,再次編譯,我將最後的結果放在下面:
這樣表示成功了。
下面列入生成的鏡像:
livesuit_superpi3.img即是。
1.我在做上面的操作的時候,夾雜的使用了兩個開發板,一個是marsboard出品的a20開發板,另外一個是風火輪出品的a20樹莓派3卡片電腦,說實在的,看起來風火輪附帶板子資料挺多,但是其真正寫的資料可沒用心做,實在不是一個榜樣,在該開發板上做非核心開發,是可以的,但是做研發,還是需要做考量。
燒寫成功後,列印的內容如下,作為日誌信息,留作以後分析:
『叄』 「干貨」嵌入式Linux系統移植的四大步驟(上)
在學習系統移植的相關知識,在學習和調試過程中,發現了很多問題,也解決了很多問題,但總是對於我們的開發結果有一種莫名其妙的感覺,糾其原因,主要對於我們的開發環境沒有一個深刻的認識,有時候幾個簡單的命令就可以完成非常復雜的功能,可是我們有沒有想過,為什麼會有這樣的效果?
如果沒有去追問,只是機械地完成,並且看到實驗效果,這樣做其實並沒有真正的掌握系統移植的本質。
在做每一個步驟的時候, 首先問問自己,為什麼要這樣做,然後再問問自己正在做什麼? 搞明白這幾個問題,我覺得就差不多了,以後不管更換什麼平台,什麼晶元,什麼開發環境,你都不會迷糊,很快就會上手。對於嵌入式的學習方法,我個人方法就是:從宏觀上把握(解決為什麼的問題),微觀上研究(解決正在做什麼的問題),下面以自己學習的arm-cortex_a8開發板為目標,介紹下自己的學習方法和經驗。
嵌入式Linux系統移植主要由四大部分組成:
一、搭建交叉開發環境
二、bootloader的選擇和移植
三、kernel的配置、編譯、和移植
四、根文件系統的製作
第一部分:搭建交叉開發環境
先介紹第一分部的內容:搭建交叉開發環境,首先必須得思考兩個問題,什麼是交叉環境? 為什麼需要搭建交叉環境?
先回答第一個問題,在嵌入式開發中,交叉開發是很重要的一個概念,開發的第一個環節就是搭建環境,第一步不能完成,後面的步驟從無談起,這里所說的交叉開發環境主要指的是:在開發主機上(通常是我的pc機)開發出能夠在目標機(通常是我們的開發板)上運行的程序。嵌入式比較特殊的是不能在目標機上開發程序(狹義上來說),因為對於一個原始的開發板,在沒有任何程序的情況下它根本都跑不起來,為了讓它能夠跑起來,我們還必須要藉助pc機進行燒錄程序等相關工作,開發板才能跑起來,這里的pc機就是我們說的開發主機,想想如果沒有開發主機,我們的目標機基本上就是無法開發,這也就是電子行業的一句名言:搞電子,說白了,就是玩電腦!
然後回答第二個問題,為什麼需要交叉開發環境?主要原因有以下幾點:
原因 1: 嵌入式系統的硬體資源有很多限制,比如cpu主頻相對較低,內存容量較小等,想想讓幾百MHZ主頻的MCU去編譯一個Linux kernel會讓我們等的不耐煩,相對來說,pc機的速度更快,硬體資源更加豐富,因此利用pc機進行開發會提高開發效率。
原因2: 嵌入式系統MCU體系結構和指令集不同,因此需要安裝交叉編譯工具進行編譯,這樣編譯的目標程序才能夠在相應的平台上比如:ARM、MIPS、 POWEPC上正常運行。
交叉開發環境的硬體組成主要由以下幾大部分 :
1.開發主機
2.目標機(開發板)
3.二者的鏈接介質,常用的主要有3種方式:(1)串口線 (2)USB線 (3)網線
對應的硬體介質,還必須要有相應的軟體「介質」支持:
1.對於串口,通常用的有串口調試助手,putty工具等,工具很多,功能都差不多,會用一兩款就可以;
2.對於USB線,當然必須要有USB的驅動才可以,一般晶元公司會提供,比如對於三星的晶元,USB下載主要由DNW軟體來完成;
3.對於網線,則必須要有網路協議支持才可以, 常用的服務主要兩個
第一:tftp服務:
主要用於實現文件的下載,比如開發調試的過程中,主要用tftp把要測試的bootloader、kernel和文件系統直接下載到內存中運行,而不需要預先燒錄到Flash晶元中,一方面,在測試的過程中,往往需要頻繁的下載,如果每次把這些要測試的文件都燒錄到Flash中然後再運行也可以,但是缺點是:過程比較麻煩,而且Flash的擦寫次數是有限的;另外一方面:測試的目的就是把這些目標文件載入到內存中直接運行就可以了,而tftp就剛好能夠實現這樣的功能,因此,更沒有必要把這些文件都燒錄到Flash中去。
第二: nfs服務:
主要用於實現網路文件的掛載,實際上是實現網路文件的共享,在開發的過程中,通常在系統移植的最後一步會製作文件系統,那麼這是可以把製作好的文件系統放置在我們開發主機PC的相應位置,開發板通過nfs服務進行掛載,從而測試我們製作的文件系統是否正確,在整個過程中並不需要把文件系統燒錄到Flash中去,而且掛載是自動進行掛載的,bootload啟動後,kernel運行起來後會根據我們設置的啟動參數進行自動掛載,因此,對於開發測試來講,這種方式非常的方便,能夠提高開發效率。
另外,還有一個名字叫 samba 的服務也比較重要,主要用於文件的共享,這里說的共享和nfs的文件共享不是同一個概念,nfs的共享是實現網路文件的共享,而samba實現的是開發主機上 Windows主機和Linux虛擬機之間的文件共享,是一種跨平台的文件共享 ,方便的實現文件的傳輸。
以上這幾種開發的工具在嵌入式開發中是必備的工具,對於嵌入式開發的效率提高做出了偉大的貢獻,因此,要對這幾個工具熟練使用,這樣你的開發效率會提高很多。等測試完成以後,就會把相應的目標文件燒錄到Flash中去,也就是等發布產品的時候才做的事情,因此對於開發人員來說,所有的工作永遠是測試。
通過前面的工作,我們已經准備好了交叉開發環境的硬體部分和一部分軟體,最後還缺少交叉編譯器,讀者可能會有疑問,為什麼要用交叉編譯器?前面已經講過,交叉開發環境必然會用到交叉編譯工具,通俗地講就是在一種平台上編譯出能運行在體系結構不同的另一種平台上的程序,開發主機PC平台(X86 CPU)上編譯出能運行在以ARM為內核的CPU平台上的程序,編譯得到的程序在X86 CPU平台上是不能運行的,必須放到ARM CPU平台上才能運行,雖然兩個平台用的都是Linux系統。相對於交叉編譯,平常做的編譯叫本地編譯,也就是在當前平台編譯,編譯得到的程序也是在本地執行。用來編譯這種跨平台程序的編譯器就叫交叉編譯器,相對來說,用來做本地編譯的工具就叫本地編譯器。所以要生成在目標機上運行的程序,必須要用交叉編譯工具鏈來完成。
這里又有一個問題,不就是一個交叉編譯工具嗎?為什麼又叫交叉工具鏈呢?原因很簡單,程序不能光編譯一下就可以運行,還得進行匯編和鏈接等過程,同時還需要進行調試,對於一個很大工程,還需要進行工程管理等等,所以,這里 說的交叉編譯工具是一個由 編譯器、連接器和解釋器 組成的綜合開發環境,交叉編譯工具鏈主要由binutils(主要包括匯編程序as和鏈接程序ld)、gcc(為GNU系統提供C編譯器)和glibc(一些基本的C函數和其他函數的定義) 3個部分組成。有時為了減小libc庫的大小,也可以用別的 c 庫來代替 glibc,例如 uClibc、dietlibc 和 newlib。
那麼,如何得到一個交叉工具鏈呢?是從網上下載一個「程序」然後安裝就可以使用了嗎?回答這個問題之前先思考這樣一個問題,我們的交叉工具鏈顧名思義就是在PC機上編譯出能夠在我們目標開發平台比如ARM上運行的程序,這里就又有一個問題了,我們的ARM處理器型號非常多,難道有專門針對我們某一款的交叉工具鏈嗎?若果有的話,可以想一想,這么多處理器平台,每個平台專門定製一個交叉工具鏈放在網路上,然後供大家去下載,想想可能需要找很久才能找到適合你的編譯器,顯然這種做法不太合理,且浪費資源!因此,要得到一個交叉工具鏈,就像我們移植一個Linux內核一樣,我們只關心我們需要的東西,編譯我們需要的東西在我們的平台上運行,不需要的東西我們不選擇不編譯,所以,交叉工具鏈的製作方法和系統移植有著很多相似的地方,也就是說,交叉開發工具是一個支持很多平台的工具集的集合(類似於Linux源碼),然後我們只需從這些工具集中找出跟我們平台相關的工具就行了,那麼如何才能找到跟我們的平台相關的工具,這就是涉及到一個如何製作交叉工具鏈的問題了。
通常構建交叉工具鏈有如下三種方法:
方法一 : 分步編譯和安裝交叉編譯工具鏈所需要的庫和源代碼,最終生成交叉編譯工具鏈。該方法相對比較困難,適合想深入學習構建交叉工具鏈的讀者。如果只是想使用交叉工具鏈,建議使用下列的方法二構建交叉工具鏈。
方法二: 通過Crosstool-ng腳本工具來實現一次編譯,生成交叉編譯工具鏈,該方法相對於方法一要簡單許多,並且出錯的機會也非常少,建議大多數情況下使用該方法構建交叉編譯工具鏈。
方法三 : 直接通過網上下載已經製作好的交叉編譯工具鏈。該方法的優點不用多說,當然是簡單省事,但與此同時該方法有一定的弊端就是局限性太大,因為畢竟是別人構建好的,也就是固定的,沒有靈活性,所以構建所用的庫以及編譯器的版本也許並不適合你要編譯的程序,同時也許會在使用時出現許多莫名其妙的錯誤,建議讀者慎用此方法。
crosstool-ng是一個腳本工具,可以製作出適合不同平台的交叉編譯工具鏈,在進行製作之前要安裝一下軟體:
$ sudo apt-get install g++ libncurses5-dev bison flex texinfo automake libtool patch gcj cvs cvsd gawk
crosstool腳本工具可以在http://ymorin.is-a-geek.org/projects/crosstool下載到本地,然後解壓,接下來就是進行安裝配置了,這個配置優點類似內核的配置。主要的過程有以下幾點:
1. 設定源碼包路徑和交叉編譯器的安裝路徑
2. 修改交叉編譯器針對的構架
3. 增加編譯時的並行進程數,以增加運行效率,加快編譯,因為這個編譯會比較慢。
4. 關閉JAVA編譯器 ,減少編譯時間
5. 編譯
6. 添加環境變數
7. 刷新環境變數。
8. 測試交叉工具鏈
到此,嵌入式Linux系統移植四大部分的第一部分工作全部完成,接下來可以進行後續的開發了。
第二部分:bootloader的選擇和移植
01 Boot Loader 概念
就是在操作系統內核運行之前運行的一段小程序。通過這段小程序,我們可以初始化硬體設備、建立內存空間的映射圖,從而將系統的軟硬體環境帶到一個合適的狀態,以便為最終調用操作系統內核准備好正確的環境,他就是所謂的引導載入程序(Boot Loader)。
02 為什麼系統移植之前要先移植BootLoader?
BootLoader的任務是引導操作系統,所謂引導操作系統,就是啟動內核,讓內核運行就是把內核載入到內存RAM中去運行,那先問兩個問題:第一個問題,是誰把內核搬到內存中去運行?第二個問題:我們說的內存是SDRAM,大家都知道,這種內存和SRAM不同,最大的不同就是SRAM只要系統上電就可以運行,而SDRAM需要軟體進行初始化才能運行,那麼在把內核搬運到內存運行之前必須要先初始化內存吧,那麼內存是由誰來初始化的呢?其實這兩件事情都是由bootloader來乾的,目的是為內核的運行准備好軟硬體環境,沒有bootloadr我們的系統當然不能跑起來。
03 bootloader的分類
首先更正一個錯誤的說法,很多人說bootloader就是U-boot,這種說法是錯誤的,確切來說是u-boot是bootloader的一種。也就是說bootloader具有很多種類,
由上圖可以看出,不同的bootloader具有不同的使用范圍,其中最令人矚目的就是有一個叫U-Boot的bootloader,是一個通用的引導程序,而且同時支持X86、ARM和PowerPC等多種處理器架構。U-Boot,全稱 Universal Boot Loader,是遵循GPL條款的開放源碼項目,是由德國DENX小組開發的用於多種嵌入式CPU的bootloader程序,對於Linux的開發,德國的u-boot做出了巨大的貢獻,而且是開源的。
u-boot具有以下特點:
① 開放源碼;
② 支持多種嵌入式操作系統內核,如Linux、NetBSD, VxWorks, QNX, RTEMS, ARTOS, LynxOS;
③ 支持多個處理器系列,如PowerPC、ARM、x86、MIPS、XScale;
④ 較高的可靠性和穩定性;
⑤ 高度靈活的功能設置,適合U-Boot調試、操作系統不同引導要求、產品發布等;
⑥ 豐富的設備驅動源碼,如串口、乙太網、SDRAM、FLASH、LCD、NVRAM、EEPROM、RTC、鍵盤等;
⑦ 較為豐富的開發調試文檔與強大的網路技術支持;
其實,把u-boot可以理解為是一個小型的操作系統。
04 u-boot的目錄結構
* board 目標板相關文件,主要包含SDRAM、FLASH驅動;
* common 獨立於處理器體系結構的通用代碼,如內存大小探測與故障檢測;
* cpu 與處理器相關的文件。如mpc8xx子目錄下含串口、網口、LCD驅動及中斷初始化等文件;
* driver 通用設備驅動,如CFI FLASH驅動(目前對INTEL FLASH支持較好)
* doc U-Boot的說明文檔;
* examples可在U-Boot下運行的示常式序;如hello_world.c,timer.c;
* include U-Boot頭文件;尤其configs子目錄下與目標板相關的配置頭文件是移植過程中經常要修改的文件;
* lib_xxx 處理器體系相關的文件,如lib_ppc, lib_arm目錄分別包含與PowerPC、ARM體系結構相關的文件;
* net 與網路功能相關的文件目錄,如bootp,nfs,tftp;
* post 上電自檢文件目錄。尚有待於進一步完善;
* rtc RTC驅動程序;
* tools 用於創建U-Boot S-RECORD和BIN鏡像文件的工具;
05 u-boot的工作模式
U-Boot的工作模式有 啟動載入模式和下載模式 。啟動載入模式是Bootloader的正常工作模式,嵌入式產品發布時,Bootloader必須工作在這種模式下,Bootloader將嵌入式操作系統從FLASH中載入到SDRAM中運行,整個過程是自動的。 下載模式 就是Bootloader通過某些通信手段將內核映像或根文件系統映像等從PC機中下載到目標板的SDRAM中運行,用戶可以利用Bootloader提供的一些令介面來完成自己想要的操作,這種模式主要用於測試和開發。
06 u-boot的啟動過程
大多數BootLoader都分為stage1和stage2兩大部分,U-boot也不例外。依賴於cpu體系結構的代碼(如設備初始化代碼等)通常都放在stage1且可以用匯編語言來實現,而stage2則通常用C語言來實現,這樣可以實現復雜的功能,而且有更好的可讀性和移植性。
1、 stage1(start.s代碼結構)
U-boot的stage1代碼通常放在start.s文件中,它用匯編語言寫成,其主要代碼部分如下:
(1) 定義入口。由於一個可執行的image必須有一個入口點,並且只能有一個全局入口,通常這個入口放在rom(Flash)的0x0地址,因此,必須通知編譯器以使其知道這個入口,該工作可通過修改連接器腳本來完成。
(2)設置異常向量(exception vector)。
(3)設置CPU的速度、時鍾頻率及中斷控制寄存器。
(4)初始化內存控制器 。
(5)將rom中的程序復制到ram中。
(6)初始化堆棧 。
(7)轉到ram中執行,該工作可使用指令ldrpc來完成。
2、 stage2(C語言代碼部分)
lib_arm/board.c中的start armboot是C語言開始的函數,也是整個啟動代碼中C語言的主函數,同時還是整個u-boot(armboot)的主函數,該函數主要完成如下操作:
(1)調用一系列的初始化函數。
(2)初始化flash設備。
(3)初始化系統內存分配函數。
(4)如果目標系統擁有nand設備,則初始化nand設備。
(5)如果目標系統有顯示設備,則初始化該類設備。
(6)初始化相關網路設備,填寫ip,c地址等。
(7)進入命令循環(即整個boot的工作循環),接受用戶從串口輸入的命令,然後進行相應的工作。
07 基於cortex-a8的s5pc100bootloader啟動過程分析
s5pc100支持兩種啟動方式,分別為USB啟動方式和NandFlash啟動方式:
1. S5PC100 USB啟動過程
[1] A8 reset, 執行iROM中的程序
[2] iROM中的程序根據S5PC100的配置管腳(SW1開關4,撥到4對面),判斷從哪裡啟動(USB)
[3] iROM中的程序會初始化USB,然後等待PC機下載程序
[4] 利用DNW程序,從PC機下載SDRAM的初始化程序到iRAM中運行,初始化SDRAM
[5] SDRAM初始化完畢,iROM中的程序繼續接管A8, 然後等待PC下載程序(BootLoader)
[6] PC利用DNW下載BootLoader到SDRAM
[7] 在SDRAM中運行BootLoader
2. S5PC100 Nandflash啟動過程
[1] A8 reset, 執行IROM中的程序
[2] iROM中的程序根據S5PC100的配置管腳(SW1開關4,撥到靠4那邊),判斷從哪裡啟動(Nandflash)
[3] iROM中的程序驅動Nandflash
[4] iROM中的程序會拷貝Nandflash前16k到iRAM
[5] 前16k的程序(BootLoader前半部分)初始化SDRAM,然後拷貝完整的BootLoader到SDRAM並運行
[6] BootLoader拷貝內核到SDRAM,並運行它
[7] 內核運行起來後,掛載rootfs,並且運行系統初始化腳本
08 u-boot移植(基於cortex_a8的s5pc100為例)
1.建立自己的平台
(1).下載源碼包2010.03版本,比較穩定
(2).解壓後添加我們自己的平台信息,以smdkc100為參考版,移植自己s5pc100的開發板
(3).修改相應目錄的文件名,和相應目錄的Makefile,指定交叉工具鏈。
(4).編譯
(5).針對我們的平台進行相應的移植,主要包括修改SDRAM的運行地址,從0x20000000
(6).「開關」相應的宏定義
(7).添加Nand和網卡的驅動代碼
(8).優化go命令
(9).重新編譯 make distclean(徹底刪除中間文件和配置文件) make s5pc100_config(配置我們的開發板) make(編譯出我們的u-boot.bin鏡像文件)
(10).設置環境變數,即啟動參數,把編譯好的u-boot下載到內存中運行,過程如下:
1. 配置開發板網路
ip地址配置:
$setenv ipaddr 192.168.0.6 配置ip地址到內存的環境變數
$saveenv 保存環境變數的值到nandflash的參數區
網路測試:
在開發開發板上ping虛擬機:
$ ping 192.168.0.157(虛擬機的ip地址)
如果網路測試失敗,從下面幾個方面檢查網路:
1. 網線連接好
2. 開發板和虛擬機的ip地址是否配置在同一個網段
3. 虛擬機網路一定要採用橋接(VM--Setting-->option)
4. 連接開發板時,虛擬機需要設置成 靜態ip地址
2. 在開發板上,配置tftp伺服器(虛擬機)的ip地址
$setenv serverip 192.168.0.157(虛擬機的ip地址)
$saveenv
3. 拷貝u-boot.bin到/tftpboot(虛擬機上的目錄)
4. 通過tftp下載u-boot.bin到開發板內存
$ tftp 20008000(內存地址即可) u-boot.bin(要下載的文件名)
如果上面的命令無法正常下載:
1. serverip配置是否正確
2. tftp服務啟動失敗,重啟tftp服務
#sudo service tftpd-hpa restart
5. 燒寫u-boot.bin到nandflash的0地址
$nand erase 0(起始地址) 40000(大小) 擦出nandflash 0 - 256k的區域
$nand write 20008000((緩存u-boot.bin的內存地址) 0(nandflash上u-boot的位置) 40000(燒寫大小)
6. 切換開發板的啟動方式到nandflash
1. 關閉開發板
2. 把SW1的開關4撥到4的那邊
3. 啟動開發板,它就從nandflash啟動
『肆』 Linux嵌入式交叉編譯工具鏈問題 淺談
簡介
交叉編譯工具鏈是一個由編譯器、連接器和解釋器組成的綜合開發環境,交叉編譯工具鏈主要由binutils、gcc和glibc 3個部分組成。有時出於減小libc庫大小的考慮,也可以用別的c庫來代替glibc,例如uClibc、dietlibc和newlib。交叉編譯工具鏈主要包括針對目標系統的編譯器gcc、目標系統的二進制工具binutils、目標系統的標准c庫glibc和目標系統的Linux內核頭文件。第一個步驟就是確定目標平台。每個目標平台都有一個明確的格式,這些信息用於在構建過程中識別要使用的不同工具的正確版本。因此,當在一個特定目標機下運行GCC時,GCC便在目錄路徑中查找包含該目標規范的應用程序路徑。GNU的目標規范格式為CPU-PLATFORM-OS。例如,建立基於ARM平台的交叉工具鏈,目標平台名為arm-linux-gnu。
交叉編譯工具鏈的製作方法
分步編譯和安裝交叉編譯工具鏈所需要的庫和源代碼,最終生成交叉編譯工具鏈。
通過Crosstool腳本工具來實現一次編譯生成交叉編譯工具鏈。
直接通過網上(ftp.arm.kernel.org.uk)下載已經製作好的交叉編譯工具鏈。
方法1相對比較困難,適合想深入學習構建交叉工具鏈的讀者。如果只是想使用交叉工具鏈,建議使用方法2或方法3構建交叉工具鏈。方法3的優點不用多說,當然是簡單省事,但與此同時該方法有一定的弊端就是局限性太大,因為畢竟是別人構建好的,也就是固定的沒有靈活性,所以構建所用的庫以及編譯器的版本也許並不適合你要編譯的程序,同時也許會在使用時出現許多莫名的錯誤,建議你慎用此方法。
方法1:分步構建交叉編譯工具鏈
下載所需的源代碼包
建立工作目錄
建立環境變數
編譯、安裝Binutils
獲取內核頭文件
編譯gcc的輔助編譯器
編譯生成glibc庫
編譯生成完整的gcc
由於在問答中的篇幅,我不能細述具體的步驟,興趣的同學請自行閱讀開源共創協議的《Linux from scratch》,網址是:linuxfromscratch dot org
。
方法2:用Crosstool工具構建交叉工具鏈(推薦)
Crosstool是一組腳本工具集,可構建和測試不同版本的gcc和glibc,用於那些支持glibc的體系結構。它也是一個開源項目,下載地址是kegel dot com/crosstool。用Crosstool構建交叉工具鏈要比上述的分步編譯容易得多,並且也方便許多,對於僅僅為了工作需要構建交叉編譯工具鏈的你,建議使用此方法。
運行which makeinfo,如果不能找見該命令,在解壓texinfo-4.11.tar.bz2,進入texinfo-4.11目錄,執行./configure&&make&&make install完成makeinfo工具的安裝
准備文件:
下載所需資源文件linux-2.4.20.tar.gz、binutils-2.19.tar.bz2、gcc-3.3.6.tar.gz、glibc- 2.3.2.tar.gz、glibc-linuxthreads-2.3.2.tar.gz和gdb-6.5.tar.bz2。然後將這些工具包文件放在新建的$HOME/downloads目錄下,最後在$HOME/目錄下解壓crosstool-0.43.tar.gz,命
令如下:
#cd$HOME/
#tar–xvzfcrosstool-0.43.tar.gz
建立腳本文件
接著需要建立自己的編譯腳本,起名為arm.sh,為了簡化編寫arm.sh,尋找一個最接近的腳本文件demo-arm.sh作為模板,然後將該腳本的內容復制到arm.sh,修改arm.sh腳本,具體操作如下:
# cd crosstool-0.43
# cp demo-arm.sh arm.sh
# vi arm.sh
修改後的arm.sh腳本內容如下:
#!/bin/sh
set-ex
TARBALLS_DIR=$HOME/downloads#定義工具鏈源碼所存放位置。
RESULT_TOP=$HOME/arm-bin#定義工具鏈的安裝目錄
exportTARBALLS_DIRRESULT_TOP
GCC_LANGUAGES="c,c++"#定義支持C,C++語言
exportGCC_LANGUAGES
#創建/opt/crosstool目錄
mkdir-p$RESULT_TOP
#編譯工具鏈,該過程需要數小時完成。
eval'catarm.datgcc-3.3.6-glibc-2.3.2.dat'shall.sh--notest
echoDone.
建立配置文件
在arm.sh腳本文件中需要注意arm-xscale.dat和gcc-3.3.6-glibc-2.3.2.dat兩個文件,這兩個文件是作為Crosstool的編譯的配置文件。其中arm.dat文件內容如下,主要用於定義配置文件、定義生成編譯工具鏈的名稱以及定義編譯選項等。
KERNELCONFIG='pwd'/arm.config#內核的配置
TARGET=arm-linux#編譯生成的工具鏈名稱
TARGET_CFLAGS="-O"#編譯選項
gcc-3.3.6-glibc-2.3.2.dat文件內容如下,該文件主要定義編譯過程中所需要的庫以及它定義的版本,如果在編譯過程中發現有些庫不存在時,Crosstool會自動在相關網站上下載,該工具在這點上相對比較智能,也非常有用。
BINUTILS_DIR=binutils-2.19
GCC_DIR=gcc-3.3.6
GLIBC_DIR=glibc-2.3.2
LINUX_DIR=linux-2.6.10-8(根據實際情況填寫)
GDB_DIR=gdb-6.5
執行腳本
將Crosstool的腳本文件和配置文件准備好之後,開始執行arm.sh腳本來編譯交叉編譯工具。具體執行命令如下:
#cdcrosstool-0.43
#./arm.sh
經過數小時的漫長編譯之後,會在/opt/crosstool目錄下生成新的交叉編譯工具,其中包括以下內容:
arm-linux-addr2linearm-linux-g++arm-linux-ldarm-linux-size
arm-linux-ararm-linux-gccarm-linux-nmarm-linux-strings
arm-linux-asarm-linux-gcc-3.3.6arm-linux-objarm-linux-strip
arm-linux-c++arm-linux-gccbugarm-linux-objmpfix-embedded-paths
arm-linux-c++filtarm-linux-gcovarm-linux-ranlib
arm-linux-cpparm-linux-gprofarm-linux-readelf
添加環境變數
然後將生成的編譯工具鏈路徑添加到環境變數PATH上去,添加的方法是在系統/etc/ bashrc文件的最後添加下面一行,在bashrc文件中添加環境變數
export PATH=/home/jiabing/gcc-3.3.6-glibc-2.3.2/arm-linux-bin/bin:$PATH
至此,arm-linux下的交叉編譯工具鏈已經完成,現在就可以使用arm-linux-gcc來生成試驗箱上的程序了!
『伍』 LINUX交叉編譯工具鏈和GCC是什麼關系啊
編譯工具鏈一般最簡化的為
binutils
+
gcc
+
glibc
+
kernel-header
組合的環境。
GCC
就是編譯器,他的輸出每次安裝只能有針對一個架構的指令輸出。如果要多個架構輸出,那就要裝多個
GCC
,所以編譯工具鏈裡面會有一個
GCC
。
交叉編譯就是跨架構編譯,編譯出來的程序不能在本機執行(當然有例外情況)。所以這個時候就需要交叉編譯工具鏈。
工具鏈光有
GCC
是不行的,還需要一個
binutils
的二進制連接器,以及一個最基本的目標架構的
C
庫,C
庫還需要一個目標架構的內核源代碼才能完全工作(當然不是必須的,但編譯有的時候需要)
又因為
GCC
、binutils
不能實現單軟體同時多架構輸出,所以需要單獨另裝,又加上
C
庫和內核頭文件需要目標架構的東西而不能用本機本地架構的數據。
所以一個交叉編譯工具鏈就是針對目標架構准備的單獨安裝單獨使用的
binutils
+
gcc
+
glibc
+
kernel-header
的集合了。
PS:這個
kernel-header
並不一定就是
Linux
,他還可以是別的系統核心開發庫,比如
FreeBSD
。
『陸』 怎麼查linux的交叉工具鏈版本
如果交叉編譯工具鏈的路徑已經添加到path變數中的話,直接使用... -v即可查看
比如我的是arm-linux-gnueabihf-g++
那麼直接arm-linux-gnueabihf-g++ -v或者是--version就可以得到版本信息了。
『柒』 如何更改ubuntu中交叉編譯工具鏈
更改ubuntu中交叉編譯工具鏈的操作步驟如下:
1. 下載軟體包
從linaro的網站下載預編譯二進制包,地址:https://launchpad.net/linaro-toolchain-binaries/trunk/2013.10。
注意選擇的版本,要使用linux下的哦。選擇這個:gcc-linaro-arm-linux-gnueabihf-4.8-2013.10_linux.tar.bz2
2. 解壓
解壓gcc-linaro-arm-linux-gnueabihf-4.8-2013.10_linux.tar.xz到 ~/arm-cross-toolchain/目錄下
3. 設置環境變數
~$ vi .bashrc
在最後添加如下 2 行:
PATH=$PATH:/home/lxl/arm-cross-toolchain/gcc-linaro-arm-linux-gnueabihf-4.8-2013.10_linux/bin
export PATH
請注意,第一行的$PATH後面是英文冒號,而冒號後面是你的cross-toolchain的可執行文件目錄(bin目錄)的絕對路徑。這兩句的意思就是將cross-toolchain的可執行文件路徑加入系統環境變數PATH中。
4. 使環境變數 生效
~$ source .bashrc
5. 測試
『捌』 QtCreator配置交叉編譯工具鏈
環境:ubuntu16.04桌面環境。
說明:使用ubuntu16.04桌面環境,安裝QtCreator之後,再利用QtCreator開發QT5 GUI程序,如果編譯的程序要運行在arm linux嵌入式系統中,則必須配置交叉編譯工具鏈。
主要配置內容:調試器、編譯器、QT版本。
1、打開工具,點擊選項。
2、選擇選項中的構建與運行,概要界面。
3、構建套件(kit)界面。
4、Qt Versions界面。
5、編譯器界面。
6、Debuggers界面。
7、Qbs界面。
8、交叉編譯例子:
