編譯網口
A. 嵌入式系統開發為什麼要採用交叉編譯的方式
由於宿主機和目標機的體系結構不同,在宿主機X86平台上可以運行的程序在目標機ARM平台上無法運行,因此嵌入式軟體開發採用交叉編譯方式在一個平台上生成可以在另一個平台上執行的代碼。編譯的最主要的工作就是將程序轉化成運行該程序的CPU所能識別的機器代碼。
進行交叉編譯的主機稱為宿主機,也就是普通的通用計算機,宿主機系統資源豐富,使用方便地集成開發環境和調試工具等。
程序實際運行的環境稱為目標機,也就是嵌入式系統環境。
B. linux操作系統有哪五個基本的組成部分
Linux系統一般有4個主要部分:內核、shell、文件系統和應用程序。Linux內核主要由五個子系統組成:進程調度,內存管理,虛擬文件系統,網路介面,進程間通信。

操作系統的組成要素:
操作系統 = 內核 + 系統程序
系統程序 = 編譯環境 + API
編譯環境 = 編譯程序 + 連接程序 + 裝載程序
API = 系統調用 + 語言庫函數(C、C++、Java等等)
AUI = shell + 系統服務常式(如x伺服器等)+ 應用程序(瀏覽器,字處理,編輯器等)
軟體系統:
軟體系統 = 操作系統 + AUI
操作系統最底層的組件是內核,其上層搭建了許多系統軟體。
系統程序包括三個部分,分別是:編譯環境、應用程序介面和用戶介面。
編譯環境包含匯編、C 等低高級語言編譯程序,連接程序和裝載程序,這些程序負責將文本格式的程序語言轉變為機器能識別和裝載的機器代碼。
應用程序介面(API)包含內核提供的系統調用介面和語言庫,系統調用是為了能讓應用程序使用內核服務,語言庫函數則是為了方便應用程序開發,所以將一些常用的基礎功能預先編譯以供使用,比如對C語言來說常用的C庫等;
用戶介面(AUI)包括我們熟悉的shell、系統服務程序和常用的應用程序。
這是一個典型的結構,但不是一成不變。許多操作系統的發行中會有所刪減,比如應用於嵌入式設備的系統,對X伺服器就可能不做要求。但是像內核、系統調用等要素是必不可少的。
Linux系統一般有4個主要部分:內核、shell、文件系統和應用程序。內核、shell和文件系統一起形成了基本的操作系統結構,它們使得用戶可以運行程序、管理文件並使用系統。
一.Linux內核
內核是操作系統的核心,具有很多最基本功能,如虛擬內存、多任務、共享庫、需求載入、可執行程序和TCP/IP網路功能。Linux內核主要由五個子系統組成:進程調度,內存管理,虛擬文件系統,網路介面,進程間通信。
二.Linux shell
shell是系統的用戶界面,提供了用戶與內核進行交互操作的一種介面。它接收用戶輸入的命令並把它送入內核去執行,是一個命令解釋器。另外,shell編程語言具有普通編程語言的很多特點,用這種編程語言編寫的shell程序與其他應用程序具有同樣的效果。
三.Linux文件系統
文件系統是文件存放在磁碟等存儲設備上的組織方法。Linux系統能支持多種目前流行的文件系統,如EXT2、 EXT3、 FAT、 FAT32、VFAT和ISO9660。
四.Linux應用程序
標準的Linux系統一般都有一套都有稱為應用程序的程序集,它包括文本編輯器、編程語言、X
Window、辦公套件、Internet工具和資料庫等。
C. ZYNQ+linux網口調試筆記(3)PL-ETH
在ZYNQ上使用gigE Vision協議的網路介面相機。
第一步:調通PS側網口GEM0(Xilinx BSP默認配好)。
第二步:調通PS側網口GEM1(見前一篇文檔:開發筆記(1))。
第三步:調通PL側網口(本文闡述)。
第四步:在PL側網口上驗證Jumbo Frame特性,並在應用層適配gigE Vision協議。
根據《xapp1082》可知,PL側的PHY支持1000Base-X和SGMII兩種配置,這兩種配置對應兩種不同的PHY引腳介面(連接到MAC)。而我們的hdf文件使用的是1000Base-X的配置。
關於網口的Linux驅動,我們在官網找到一份資料: Xilinx Wiki - Zynq PL Ethernet 。資料很長,我們只看與我們相關的2.4.1 PL Ethernet BSP installation for 1000Base-X」這一章節就可以了。
首先導入FPGA設計同事提供的hdf文件:
在彈出的圖形界面里,進入Subsystem AUTO Hardware Settings——Ethernet Settings——Primary Ethernet,確認可以看到PL側網路設備axi_ethernet_0,說明hdf文件里已包含了必要的網口硬體信息:
上圖中被選中的網口將成為Linux上的設備eth0。這里我們默認選擇ps7_ethernet_0,即使用GEM0作為首選網口。
啟用Xilinx AXI Ethernet驅動
進入Device Drivers -- Network device support – 選中Xilinx AXI Ethernet(以及Xilinx Ethernet GEM,這是PS側網口的驅動)
進入Networking support – 選中 Random ethaddr if unset
進入Device Drivers -- Network device support -- PHY Device support and infrastructure – 啟用Drivers for xilinx PHYs
進入~~~~Device Drivers -- DMA Engine Support -– 禁用~~~~Xilinx AXI DMAS Engine~~~ (對應的配置項名為 ~~ CONFIG_XILINX_DMA ~~~)
注意: Xilinx Wiki里對設備樹節點的引用有誤(&axi_ethernet),導致編譯報錯,應改為&axi_ethernet_0。
註:PL-ETH驅動所在路徑:<project>/build/tmp/work-shared/plnx_arm/kernel-source/drivers/net/ethernet/xilinx/xilinx_axienet_main.c和xilinx_axienet_mdio.c。對應的內核配置項為CONFIG_NET_VENDOR_XILINX和CONFIG_XILINX_AXI_EMAC。
啟用ethtool和tcpmp(調試用,非必須):
然後將生成的BOOT.BIN和image.ub拷貝到SD卡根目錄下,將SD卡插入板子上,上電運行。
上電後,使用ifconfig eth1查看網口信息,觀察MAC地址與設置的一致,且ifconfig eth1 192.168.1.11 up沒有報錯。
測試網路通路:ping PC是通的。說明網口工作正常。
Linux下eth1(即PL-ETH)的MAC地址有誤
問題描述:
開機列印:
注意:
MAC地址是錯的,驅動里解析出的是GEM0的MAC地址。
試驗發現,即使在system-user.dtsi里不寫local-mac-address,也照樣解析出的是GEM0的MAC。
而將system-user.dtsi里的local-mac-address改名為pl-mac-address,並將驅動里解析的字元串也對應更改為pl-mac-address,則可以正確解析出來:
Passing MAC address to kernel via Device Tree Blob and U-Boot:
http://zedboard.org/content/passing-mac-address-kernel-device-tree-blob
通過更改u-boot環境變數和設備樹,為每個板子設置一個獨特的MAC地址:
https://www.xilinx.com/support/answers/53476.html
U-Boot里的環境變數ethaddr會覆蓋掉設備樹里pl-eth的local-mac-addr欄位,從而影響Linux啟動後的網卡MAC地址;
但U-Boot里的環境變數ipaddr不會對Linux啟動後的配置產生任何影響。因為設備樹里根本就沒有關於IP地址的配置。
phy-mode怎麼會是sgmii?查了下官方的提供的BSP里,也是「sgmii」。說明這個沒問題。具體原因不清楚。
@TODO: 設備樹里的中斷號的順序如何影響功能?
為何讀出來的IRQ號不對呢?這是因為這里讀到的不是硬體的中斷號,而是經過系統映射之後的軟體IRQ number。兩者不具有線性關系。
關於中斷號的疑問:
Linux上的網口eth0、eth1的順序,似乎是按照phy地址從小到大來排布的。
Xilinx xapp1082-zynq-eth.pdf (v5.0) July 16, 2018
https://www.xilinx.com/support/documentation/application_notes/xapp1082-zynq-eth.pdf
Xilinx Wiki - Zynq PL Ethernet:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841633/Zynq+PL+Ethernet
Xilinx Wiki - Linux Drivers:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841873/Linux+Drivers
Xilinx Wiki - Linux Drivers - Macb Driver:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841740/Macb+Driver
Xilinx Wiki - Zynq Ethernet Performance:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841743/Zynq+Ethernet+Performance
查到關於Jumbo frame MTU的定義,當前值為9000,可否改大一些?
驅動源碼里關於jumbo frame的說明:
設置MTU為9000,發現ping包最大長度只能設為ping 192.168.1.10 -s 1472
https://lore.kernel.org/patchwork/patch/939535/
【完】
D. 如何編譯hi3520d sdk
第一章 Hi3520D_SDK_Vx.x.x.x版本升級操作說明
如果您是首次安裝本SDK,請直接參看第2章。
第二章 首次安裝SDK
1、hi3520D SDK包位置
在"hi3520D_V100R001***/01.software/board"目錄下,您可以看到一個 hi3520D_SDK_Vx.x.x.x.tgz 的文件,
該文件就是hi3520D的軟體開發包。
2、解壓縮SDK包
在linux伺服器上(或者一台裝有linux的PC上,主流的linux發行版本均可以),使用命令:tar -zxf hi3520D_SDK_Vx.x.x.x.tgz ,
解壓縮該文件,可以得到一個hi3520D_SDK_Vx.x.x.x目錄。
3、展開SDK包內容
返回hi3520D_SDK_Vx.x.x.x目錄,運行./sdk.unpack(請用root或sudo許可權執行)將會展開SDK包打包壓縮存放的內容,請按照提示完成操作。
如果您需要通過WINDOWS操作系統中轉拷貝SDK包,請先運行./sdk.cleanup,收起SDK包的內容,拷貝到新的目錄後再展開。
4、在linux伺服器上安裝交叉編譯器
1)安裝uclibc交叉編譯器(注意,需要有sudo許可權或者root許可權):
進入hi3520D_SDK_Vx.x.x.x/osdrv/toolchain/arm-hisiv100nptl-linux目錄,運行chmod +x cross.install,然後運行./cross.install即可。
2) 安裝glibc交叉編譯器(注意,需要有sudo許可權或者root許可權,暫時不支持glibc版本):
進入hi3520D_SDK_Vx.x.x.x/osdrv/toolchain/arm-hisiv200-linux目錄,運行chmod +x cross.install,然後運行./cross.install即可。
3) 執行source /etc/profile, 安裝交叉編譯器的腳本配置的環境變數就可以生效了,或者請重新登陸也可。
5、編譯osdrv
參見osdrv目錄下readme
6、SDK目錄介紹
hi3520D_SDK_Vx.x.x.x 目錄結構如下:
|-- sdk.cleanup # SDK清理腳本
|-- sdk.unpack # SDK展開腳本
|-- osdrv # 存放操作系統及相關驅動的目錄
| |-- busybox # busybox源代碼
| |-- drv # drv源代碼
| |-- kernel # linux內核源代碼
| |-- pub # 編譯好的鏡像、工具、drv驅動等
| |-- rootfs_scripts # rootfs源代碼
| |-- toolchain # 交叉編譯器
| |-- tools # linux工具源代碼
| |-- uboot # uboot源代碼
| `-- Makefile # osdrv Makefile
|-- package # 存放SDK各種壓縮包的目錄
| |-- osdrv.tgz # linux內核/uboot/rootfs/tools源碼壓縮包
| |-- mpp.tgz # 媒體處理平台軟體壓縮包
| `-- image # 可供FLASH燒寫的映像文件,如內核、根文件系統
|-- scripts # 存放shell腳本的目錄
|-- mpp # 存放媒體處理平台的目錄
|-- component # 組件源代碼
|-- extdrv # 板級外圍驅動源代碼
|-- include # 對外頭文件
|-- ko # 內核模塊
|-- lib # release版本庫以及音頻庫
|-- tools # 媒體處理相關工具
`-- sample # 樣例源代碼
第三章、安裝、升級hi3520DDEMO板開發開發環境
# 如果您使用的hi3520D的DEMO板,可以按照以下步驟燒寫u-boot,內核以及文件系統,以下步驟均使用網路來更新。
# 通常,您拿到的單板中已經有u-boot,如果沒有的話,就需要使用模擬器進行燒寫。
# 更詳細的操作步驟及說明,請參見01.software\board\documents目錄下的《Linux開發環境用戶指南》。
# 以下操作假設您的單板上已經有u-boot,使用網口燒寫uboot、kernel及rootfs到Flash中。
# Demo單板默認為從SPI Flahs啟動。
1、配置tftp伺服器
# 可以使用任意的tftp伺服器,將package/image_uclibc(或image_glibc)下的相關文件拷貝到tftp伺服器目錄下。
2、參數配置
# 單板上電後,敲任意鍵進入u-boot。設置serverip(即tftp伺服器的ip)、ipaddr(單板ip)和ethaddr(單板的MAC地址)。
setenv serverip xx.xx.xx.xx
setenv ipaddr xx.xx.xx.xx
setenv ethaddr xx:xx:xx:xx:xx:xx
setenv netmask xx.xx.xx.xx
setenv gatewayip xx.xx.xx.xx
ping serverip,確保網路暢通。
3、燒寫映像文件到SPI Flash
以16M SPI Flash為例。
1)地址空間說明
| 1M | 4M | 11M |
|---------------|---------------|---------------|
| boot | kernel | rootfs |
以下的操作均基於圖示的地址空間分配,您也可以根據實際情況進行調整。
2)燒寫u-boot
sf probe 0
mw.b 82000000 ff 100000
tftp 0x82000000 u-boot-hi3520D.bin
sf probe 0
sf erase 0 100000
sf write 82000000 0 100000
reset
3)燒寫內核
mw.b 82000000 ff 400000
tftp 82000000 uImage_3520d
sf probe 0
sf erase 100000 400000
sf write 82000000 100000 400000
4)燒寫文件系統
mw.b 82000000 ff b00000
tftp 0x82000000 rootfs_3520d_64k.jffs2
sf erase 500000 b00000
sf write 82000000 500000 b00000
5)設置啟動參數
setenv bootargs 'mem=64M console=ttyAMA0,115200 root=/dev/mtdblock2 rootfstype=jffs2 mtdparts=hi_sfc:1M(boot),4M(kernel),11M(rootfs)'
setenv bootcmd 'sf probe 0;sf read 0x82000000 0x100000 0x400000;bootm 0x82000000'
sa
4、啟動新系統
reset # 重啟進入新系統。
第四章、開發前環境准備
1、管腳復用
與媒體業務相關的管腳復用都在mpp/ko_hi3520D目錄下的sh腳本中配置,如果與實際情況不符請直接修改,此腳本被load3520D調用,在載入mpp內核模塊之前被執行;
mpp之外的其他管腳復用統一在uboot中配置,詳細說明請參見《U-boot移植應用開發指南》。
第五章、使用SDK和DEMO板進行開發
1、開啟Linux下的網路
# 設置網路
ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx;
ifconfig eth0 xx.xx.xx.xx netmask xx.xx.xx.xx;
route add default gw xx.xx.xx.xx
# 然後ping一下其他機器,如無意外,網路將能正常工作。
2、使用NFS文件系統進行開發
# 在開發階段,推薦使用NFS作為開發環境,可以省去重新製作和燒寫根文件系統的工作。
# 掛載NFS文件系統的操作命令:
mount -t nfs -o nolock -o tcp xx.xx.xx.xx:/your-nfs-path /mnt
# 然後就可以在/mnt目錄下訪問伺服器上的文件,並進行開發工作。
3、開啟telnet服務
# 網路正常後,運行命令 telnetd& 就可以啟動單板telnet服務,然後才能使用telnet登錄到單板。
4、運行MPP業務
# 在單板linux系統下,進入mpp/ko目錄,載入KO
cd mpp/ko
./load3520D -i
# 進入各sample目錄下執行相應樣常式序(sample需要先在伺服器上成功編譯過)
cd mpp/sample/vio
./sample_vio 0
第六章 地址空間分配與使用
1、DDR內存管理說明
1)所有DDR內存中,一部分由操作系統管理,稱為OS內存;另一部分由MMZ模塊管理,供媒體業務單獨使用,稱為MMZ內存。
2)OS內存起始地址為0x80000000,內存大小可通過bootargs進行配置,例如第三章中的setenv bootargs 'mem=64M ... ',表示分配給操作系統內存為64M,您可以根據實際情況進行調整。
3)MMZ內存由MMZ內核模塊管理(mpp/ko_hi35xx目錄下的mmz.ko),載入mmz模塊時,通過模塊參數指定其起始地址及大小,例如:
insmod mmz.ko mmz=anonymous,0,0x84000000,186M:jpeg,0,0x8fa00000,5M anony=1 || report_error
表示mmz兩塊區域,區域一的名稱為anonymous,起始地址為0x84000000,大小為186M;區域二的名稱為jpeg,起始地址為0x8fa00000,大小為5M。
您可以通過修改mpp/ko_hi35XX目錄下load3520D腳本中的mmz模塊參數,來修改其起始地址和總大小。
4)請注意MMZ內存地址范圍不能與OS內存重疊。
2、DEMO板DDR內存管理示意
1) 以容量為256MBytes的DDR內存為例,以下為根據本文檔和SDK默認配置得到的內存管理示意圖:
DDR:
-----|-------| 0x80000000 # Memory managed by OS.
64M | OS |
| |
-----|-------| 0x84000000 # Memory managed by MMZ block anonymous.
187M | MMZ |
| |
-----|-------| 0x8fa00000 # Memory managed by MMZ block jpeg.
5M | |
| |
-----|-------| 0x8ff00000 # Not used.
1M | |
| |
-----|-------| 0x90000000 # End of DDR.
注意:
(1)用戶在配置啟動參數時需要設置OS的管理內存為64M,「setenv bootargs 'mem=64M ...」。
(2)系統啟動後,配置load3520D的腳本中mmz的管理內存為191M,「insmod mmz.ko mmz=anonymous,0,0x84000000,186M:jpeg,0,0x8fa00000,5M anony=1 || report_error」。
