增量式編譯和全部編譯
A. 一個C#問題
Bin 目錄用來存放編譯的結果,bin是二進制binrary的英文縮寫,因為最初C編譯的程序文件都是二進制文件,它有Debug和Release兩個版本,分別對應的文件夾為bin/Debug和bin/Release,這個文件夾是默認的輸出路徑,我們可以通過:項目屬性—>配置屬性—>輸出路徑來修改。
obj是object的縮寫,用於存放編譯過程中生成的中間臨時文件。其中都有debug和release兩個子目錄,分別對應調試版本和發行版本,在.NET中,編譯是分模塊進行的,編譯整個完成後會合並為一個.DLL或.EXE保存到bin目錄下。因為每次編譯時默認都是採用增量編譯,即只重新編譯改變了的模塊,obj保存每個模塊的編譯結果,用來加快編譯速度。是否採用增量編譯,可以通過:項目屬性—>配置屬性—>高級—>增量編譯來設置。
Properties文件夾 定義你程序集的屬性 項目屬性文件夾 一般只有一個 AssemblyInfo.cs 類文件,用於保存程序集的信息,如名稱,版本等,這些信息一般與項目屬性面板中的數據對應,不需要手動編寫。
.cs 類文件。源代碼都寫在這里,主要就看這里的代碼。
.resx 資源文件,一些資源存放在這里,一般不需要看。
.csproj C#項目文件,用VS打開這個文件就可以直接打開這個項目,自動生成,不需要看。
.csproj.user 是一個配置文件,自動生成的,會記錄項目生成路徑、項目啟動程序等信息。也不需要看。
.Designer.cs 設計文件歷橘,自動生成,不需要看。
.aspx 是肢盯團網頁文件,HTML代碼寫在這裡面。
sln:在開發環境中使用的解決方案文件。它將一個或多個項目的所有元素組織到單個的解決方案中。此文件存儲在父項目目錄中.解決方案文件,他是一個或多個.proj(項目)的集合
*.sln:(Visual Studio.Solution) 通過為環境提供對項目、項目項和解決方案項在磁碟上位置的引用,可將它們組織到解決方案中。
比如是生則舉成Debug模式,還是Release模式,是通用CPU還是專用的等.
B. C#大型項目調試修改的一點問題,每次修改都要全部生成嗎
菜單-->生成-->生成解決方案
或者
在解決方案上,右鍵菜單-->生成解決方案
屬肆滑伍於「增量編譯」——即讓念只編譯被修改的項目。
=========
如果,菜單-->生成-->重新生成解決方案
或者
在解決方案上,右鍵菜單-->重新生成解決方案
屬於「全部編譯」——即重新編譯解決方案中裂或的所有項目
C. 編譯和全部編譯的區別是什麼
全部編譯和編譯是完全不同的概念。
1、全部編譯是指程序代碼、界面等的輸入、構建,在消桐答這期間,開發工具會對輸入的代碼進行一般的語法檢查等,在可視化以前輪游的開發環境下,主要是指代碼的輸入、編輯。
2、編譯是指開發工具的編譯程序對編輯過的代碼進行轉換,以便生成可以執行的代碼文件,在可視化以前的開發環境下,編譯都是在編輯工作完成拿慧以後進行的。
D. quartus 如何進行增量編譯
二樓說的有問題,因為if..else和case是有區別的,不是語句的先後執行的問題,硬體語言是要考慮它的布線關系的問題。對於case語句,因為它的各個選項之間是互斥的,所以case語句比較容易綜合成mux選擇器。但是if..else語句之間的關系是後面語句的條件是以前面語句條件不成立為基礎的,在這個例子中第二句elsif (input="00000010") then 等價於 input="00000010" and input/="00000001"。以此類推這類語法綜合以後是逐級判斷的所以綜合的結果會完全不同。
所以在quartus的RTL Viewer中可以看出來 case語句綜合出來是並行的MUX,而if..else綜合出來是逐級遞推的關系。
資源問題的話,不同的器件確實不一樣,因為cyclone的LE和stratix的ALU的基本結構不一樣,所以實現的資源數也不一樣。如果是xilinx的器件就更不一樣。但是在同樣的器件下,case結構確實比if..else結構省資源
E. 如何用maven將java8寫的代碼編譯為java6平台的
在一般的Java應用開發過程中,開發人員使用Java的方式比較簡單。打開慣用的IDE,編寫Java源代碼,再利用IDE提供的功能直接運行Java 程序就可以了。這種開發模式背後的過程是:開發人員編寫的是Java源代碼文件(.java),IDE會負責調用Java的編譯器把Java源代碼編譯成平台無關的位元組代碼(byte code),以類文件的形式保存在磁碟上(.class)。Java虛擬機(JVM)會負責把Java位元組代碼載入並執行。Java通過這種方式來實現其「編寫一次,到處運行(Write once, run anywhere)」 的目標。Java類文件中包含的位元組代碼可以被不同平台上的JVM所使用。Java位元組代碼不僅可以以文件形式存在於磁碟上,也可以通過網路方式來下載,還可以只存在於內存中。JVM中的類載入器會負責從包含位元組代碼的位元組數組(byte[])中定義出Java類。在某些情況下,可能會需要動態的生成 Java位元組代碼,或是對已有的Java位元組代碼進行修改。這個時候就需要用到本文中將要介紹的相關技術。首先介紹一下如何動態編譯Java源文件。
動態編譯Java源文件
在一般情況下,開發人員都是在程序運行之前就編寫完成了全部的Java源代碼並且成功編譯。對有些應用來說,Java源代碼的內容在運行時刻才能確定。這個時候就需要動態編譯源代碼來生成Java位元組代碼,再由JVM來載入執行。典型的場景是很多演算法競賽的在線評測系統(如PKU JudgeOnline),允許用戶上傳Java代碼,由系統在後台編譯、運行並進行判定。在動態編譯Java源文件時,使用的做法是直接在程序中調用Java編譯器。
JSR 199引入了Java編譯器API。如果使用JDK 6的話,可以通過此API來動態編譯Java代碼。比如下面的代碼用來動態編譯最簡單的Hello World類。該Java類的代碼是保存在一個字元串中的。
01 public class CompilerTest {
02 public static void main(String[] args) throws Exception {
03 String source = "public class Main { public static void main(String[] args) {System.out.println(\"Hello World!\");} }";
04 JavaCompiler compiler = ToolProvider.getSystemJavaCompiler();
05 StandardJavaFileManager fileManager = compiler.getStandardFileManager(null, null, null);
06 StringSourceJavaObject sourceObject = newCompilerTest.StringSourceJavaObject("Main", source);
07 Iterable< extends JavaFileObject> fileObjects = Arrays.asList(sourceObject);
08 CompilationTask task = compiler.getTask(null, fileManager, null,null, null, fileObjects);
09 boolean result = task.call();
10 if (result) {
11 System.out.println("編譯成功。");
12 }
13 }
14
15 static class StringSourceJavaObject extends SimpleJavaFileObject {
16
17 private String content = null;
18 public StringSourceJavaObject(String name, String content) ??throwsURISyntaxException {
19 super(URI.create("string:///" + name.replace('.','/') + Kind.SOURCE.extension), Kind.SOURCE);
20 this.content = content;
21 }
22
23 public CharSequence getCharContent(boolean ignoreEncodingErrors) ??throws IOException {
24 return content;
25 }
26 }
27 }
如果不能使用JDK 6提供的Java編譯器API的話,可以使用JDK中的工具類com.sun.tools.javac.Main,不過該工具類只能編譯存放在磁碟上的文件,類似於直接使用javac命令。
另外一個可用的工具是Eclipse JDT Core提供的編譯器。這是Eclipse Java開發環境使用的增量式Java編譯器,支持運行和調試有錯誤的代碼。該編譯器也可以單獨使用。Play框架在內部使用了JDT的編譯器來動態編譯Java源代碼。在開發模式下,Play框架會定期掃描項目中的Java源代碼文件,一旦發現有修改,會自動編譯 Java源代碼。因此在修改代碼之後,刷新頁面就可以看到變化。使用這些動態編譯的方式的時候,需要確保JDK中的tools.jar在應用的 CLASSPATH中。
下面介紹一個例子,是關於如何在Java裡面做四則運算,比如求出來(3+4)*7-10的值。一般的做法是分析輸入的運算表達式,自己來模擬計算過程。考慮到括弧的存在和運算符的優先順序等問題,這樣的計算過程會比較復雜,而且容易出錯。另外一種做法是可以用JSR 223引入的腳本語言支持,直接把輸入的表達式當做JavaScript或是JavaFX腳本來執行,得到結果。下面的代碼使用的做法是動態生成Java源代碼並編譯,接著載入Java類來執行並獲取結果。這種做法完全使用Java來實現。
01 private static double calculate(String expr) throws CalculationException {
02 String className = "CalculatorMain";
03 String methodName = "calculate";
04 String source = "public class " + className
05 + " { public static double " + methodName + "() { return " + expr +"; } }";
06 //省略動態編譯Java源代碼的相關代碼,參見上一節
07 boolean result = task.call();
08 if (result) {
09 ClassLoader loader = Calculator.class.getClassLoader();
10 try {
11 Class<?> clazz = loader.loadClass(className);
12 Method method = clazz.getMethod(methodName, new Class<?>[] {});
13 Object value = method.invoke(null, new Object[] {});
14 return (Double) value;
15 } catch (Exception e) {
16 throw new CalculationException("內部錯誤。");
17 }
18 } else {
19 throw new CalculationException("錯誤的表達式。");
20 }
21 }
上面的代碼給出了使用動態生成的Java位元組代碼的基本模式,即通過類載入器來載入位元組代碼,創建Java類的對象的實例,再通過Java反射API來調用對象中的方法。
Java位元組代碼增強
Java 位元組代碼增強指的是在Java位元組代碼生成之後,對其進行修改,增強其功能。這種做法相當於對應用程序的二進制文件進行修改。在很多Java框架中都可以見到這種實現方式。Java位元組代碼增強通常與Java源文件中的註解(annotation)一塊使用。註解在Java源代碼中聲明了需要增強的行為及相關的元數據,由框架在運行時刻完成對位元組代碼的增強。Java位元組代碼增強應用的場景比較多,一般都集中在減少冗餘代碼和對開發人員屏蔽底層的實現細節上。用過JavaBeans的人可能對其中那些必須添加的getter/setter方法感到很繁瑣,並且難以維護。而通過位元組代碼增強,開發人員只需要聲明Bean中的屬性即可,getter/setter方法可以通過修改位元組代碼來自動添加。用過JPA的人,在調試程序的時候,會發現實體類中被添加了一些額外的 域和方法。這些域和方法是在運行時刻由JPA的實現動態添加的。位元組代碼增強在面向方面編程(AOP)的一些實現中也有使用。
F. 20分(不知道者勿擾)--什麼是增量編譯
只需編譯被改變的代碼以及依賴於被改變代碼的代碼,可以加快編譯的速度。
對於一個大的系統來說編譯一次是要消耗很長時間的。
G. eclipse怎麼設置增量編譯
Eclipse預設就是增量編譯,有兩種方式,在保存的時候自動編譯,或者把保存時自動編譯選項去掉,需要編譯的時候按Ctrl+B即可。
求採納。
H. FPGA現在學起來怎麼樣難不需要了解哪些基礎課程
FPGA學習重點
1. 看代碼,建模型
只有在腦海中建立了一個個邏運祥模輯模型,理解FPGA內部邏輯結構實現的基礎,才能明白為什麼寫Verilog和寫C整體思路是不一樣的,才能理解順序執行語言和並行執行語言的設計方法上的差異。在看到一段簡單程序的時候應該想到是什麼樣的功能電路。2. 用數學思維來簡化設計邏輯
學習FPGA不僅邏輯思維很重要,好的數學思維也能讓你的設計化繁為簡,所以啊,那些看見高數就頭疼的童鞋需要重視一下這門課哦。舉個簡單的例子,比如有兩個32bit的數據X[31:0]與Y[31:0]相乘。當然,無論Altera還是Xilinx都有現成的乘法器IP核可以調用,這也是最簡單的方法,但是兩個32bit的乘法器將耗費大量的資源。那麼有沒有節省資源,又不太復雜的方式來實現呢?我們可以稍做修改:將X[31:0]拆成兩部分X1[15:0]和X2[15:0],令X1[15:0]=X[31:16],X2[15:0]=X[15:0],則X1左移16位後與X2相加可以得到X;同樣將Y[31:0]拆成兩部分宴者Y1[15:0]和Y2[15:0],令 Y1[15:0]=Y[31:16],Y2[15:0]=Y[15:0],則Y1左移16位後與Y2相加可以得到Y,則X與Y的相乘可以轉化為X1和X2 分別與Y1和Y2相乘,這樣一個32bit*32bit的乘法運算轉換成了四個16bit*16bit的乘法運算和三個32bit的加法運算。轉換後的佔用資源將會減少很多,有興趣的童鞋,不妨綜合一下看看,看看兩者差多少。3. 時鍾與觸發器的關系
「時鍾是時序電路的控制者」這句話太經典了,可以說是FPGA設計的聖言。FPGA的設計主要是以時序電路為主,因為組合邏輯電路再怎麼復雜也變不出太多花樣,理解起來也不沒太多困難。但是時序電路就不同了,它的所有動作都是在時鍾一拍一拍的節奏下轉變觸發,可以說時鍾就是整個電路的控制者,控制不好,電路功能就會混亂。打個比方,時鍾就相當於人體的心臟,它每一次的跳動就是觸發一個 CLK,向身體的各個器官供血,維持著機體的正常運作,每一個器官體統正常工作少不了組織細胞的構成,那麼觸發器就可以比作基本單元組織細胞。
時序邏輯電路的時鍾是控制時序邏輯電路旁緩狀態轉換的「發動機」,沒有它時序邏輯電路就不能正常工作。因為時序邏輯電路主要是利用觸發器存儲電路的狀態,而觸發器狀態變換需要時鍾的上升或下降沿,由此可見時鍾在時序電路中的核心作用。最後簡單說一下體會吧,歸結起來就是多實踐、多思考、多問。實踐出真知,看100遍別人的方案不如自己去實踐一下。實踐的動力一方面來自興趣,一方面來自壓力。有需求會容易形成壓力,也就是說最好能在實際的項目開發中鍛煉,而不是為了學習而學習。為什麼你會覺得FPGA難學?
1. 不熟悉FPGA的內部結構
FPGA為什麼是可以編程的?恐怕很多初學者不知道,他們也不想知道。因為他們覺得這是無關緊要的。他們潛意識的認為可編程嘛,肯定就是像寫軟體一樣啦。軟體編程的思想根深蒂固,看到Verilog或者VHDL就像看到C語言或者其它軟體編程語言一樣。一條條的讀,一條條的分析。
拒絕去了解為什麼FPGA是可以編程的,不去了解FPGA的內部結構,要想學會FPGA 恐怕是天方夜譚。那麼FPGA為什麼是可以「編程」的呢?首先來了解一下什麼叫「程」。其實 「程」只不過是一堆具有一定含義的01編碼而已。編程,其實就是編寫這些01編碼。只不過我們現在有了很多開發工具運算或者是其它操作。所以軟體是一條一條的,通常都不是直接編寫這些01編碼,而是以高級語言的形式來編寫,最後由開發工具轉換為這種01編碼而已。對於軟體編程而言,處理器會有一個專門的解碼電路逐條把這些01編碼翻譯為各種控制信號,然後控制其內部的電路完成一個個的讀,因為軟體的操作是一步一步完成的。
而FPGA的可編程,本質也是依靠這些01編碼實現其功能的改變,但不同的是FPGA之所以可以完成不同的功能,不是依靠像軟體那樣將01編碼翻譯出來再去控制一個運算電路,FPGA裡面沒有這些東西。FPGA內部主要三塊:可編程的邏輯單元、可編程的連線和可編程的IO模塊。
可編程的邏輯單元
其基本結構某種存儲器(SRAM、 FLASH等)製成的4輸入或6輸入1輸出的「真值表」加上一個D觸發器構成。任何一個4輸入1輸出組合邏輯電路,都有一張對應的「真值表」,同樣的如果用這么一個存儲器製成的4輸入1輸出的「真值表」,只需要修改其「真值表」內部值就可以等效出任意4輸入1輸出的組合邏輯,這些「真值表」內部值就是那些01編碼。
如果要實現時序邏輯電路怎麼辦?任何的時序邏輯都可以轉換為組合邏輯+D觸發器來完成。但這畢竟只實現了4輸入1輸出的邏輯電路而已,通常邏輯電路的規模那是相當的大。可編程連線
那怎麼辦呢?這個時候就需要用到可編程連線了。在這些連線上有很多用存儲器控制的鏈接點,通過改寫對應存儲器的值就可以確定哪些線是連上的而哪些線是斷開的。這就可以把很多可編程邏輯單元組合起來形成大型的邏輯電路。
可編程的IO
任何晶元都必然有輸入引腳和輸出引腳。有可編程的IO可以任意的定義某個非專用引腳(FPGA中有專門的非用戶可使用的測試、下載用引腳)為輸入還是輸出,還可以對IO的電平標准進行設置。
總歸一句話,FPGA之所以可編程是因為可以通過特殊的01代碼製作成一張張 「真值表」,並將這些「真值表」組合起來以實現大規模的邏輯功能。不了解FPGA內部結構,就不能明白最終代碼如何變到FPGA裡面去的,也就無法深入的了解如何能夠充分運用FPGA。現在的FPGA,不單單是有前面講的那三塊,還有很多專用的硬體功能單元,如何利用好這些單元實現復雜的邏輯電路設計,是從菜鳥邁向高手的路上必須要克服的障礙。而這一切,還是必須先從了解FPGA內部邏輯及其工作原理做起。
2. 錯誤理解HDL語言,怎麼看都看不出硬體結構
HDL語言的英語全稱是:Hardware Deion Language,注意這個單詞Deion,而不是Design。老外為什麼要用Deion這個詞而不是Design呢?因為HDL確實不是用用來設計硬體的,而僅僅是用來描述硬體的。
描述這個詞精確地反映了HDL語言的本質,HDL語言不過是已知硬體電路的文本表現形式而已,只是將以後的電路用文本的形式描述出來而已。而在編寫語言之前,硬體電路應該已經被設計出來了。語言只不過是將這種設計轉化為文字表達形式而已。
硬體設計也是有不同的抽象層次,每一個層次都需要設計。最高的抽象層次為演算法級、然後依次是體系結構級、寄存器傳輸級、門級、物理版圖級。
使用HDL的好處在於我們已經設計好了一個寄存器傳輸級的電路,那麼用HDL描述以後轉化為文本的形式,剩下的向更低層次的轉換就可以讓EDA工具去做了,這就大大的降低了工作量。這就是可綜合的概念,也就是說在對這一抽象層次上硬體單元進行描述可以被EDA工具理解並轉化為底層的門級電路或其他結構的電路。在FPGA設計中,就是在將這以抽象層級的意見描述成HDL語言,就可以通過FPGA開發軟體轉化為上一點中所述的FPGA內部邏輯功能實現形式。HDL也可以描述更高的抽象層級如演算法級或者是體系結構級,但目前受限於EDA軟體的發展,EDA軟體還無法理解這么高的抽象層次,所以HDL描述這樣抽象層級是無法被轉化為較低的抽象層級的,這也就是所謂的不可綜合。
所以在閱讀或編寫HDL語言,尤其是可綜合的HDL,不應該看到的是語言本身,而是要看到語言背後所對應的硬體電路結構。3. FPGA本身不算什麼,一切皆在FPGA之外
FPGA是給誰用的?很多學校是為給學微電子專業或者集成電路設計專業的學生用的,其實這不過是很多學校受資金限制,買不起專業的集成電路設計工具而用FPGA工具替代而已。其實FPGA是給設計電子系統的工程師使用的。這些工程師通常是使用已有的晶元搭配在一起完成一個電子設備,如基站、機頂盒、視頻監控設備等。當現有晶元無法滿足系統的需求時,就需要用FPGA來快速的定義一個能用的晶元。前面說了,FPGA裡面無法就是一些「真值表」、觸發器、各種連線以及一些硬體資源,電子系統工程師使用FPGA進行設計時無非就是考慮如何將這些以後資源組合起來實現一定的邏輯功能而已,而不必像IC設計工程師那樣一直要關注到最後晶元是不是能夠被製造出來。
本質上和利用現有晶元組合成不同的電子系統沒有區別,只是需要關注更底層的資源而已。要想把FPGA用起來還是簡單的,因為無非就是那些資源,在理解了前面兩點再搞個實驗板,跑跑實驗,做點簡單的東西是可以的。而真正要把FPGA用好,那光懂點FPGA知識就遠遠不夠了。因為最終要讓FPGA裡面的資源如何組合,實現何種功能才能滿足系統的需要,那就需要懂得更多更廣泛的知識。4. 數字邏輯知識是根本
無論是FPGA的哪個方向,都離不開數字邏輯知識的支撐。FPGA說白了是一種實現數字邏輯的方式而已。如果連最基本的數字邏輯的知識都有問題,學習FPGA的願望只是空中樓閣而已。數字邏輯是任何電子電氣類專業的專業基礎知識,也是必須要學好的一門課。
如果不能將數字邏輯知識爛熟於心,養成良好的設計習慣,學FPGA到最後仍然是霧里看花水中望月,始終是一場空的。以上四條只是我目前總結菜鳥們在學習FPGA時所最容易跑偏的地方,FPGA的學習其實就像學習圍棋一樣,學會如何在棋盤上落子很容易,成為一位高手卻是難上加難。要真成為李昌鎬那樣的神一般的選手,除了靠刻苦專研,恐怕還確實得要一點天賦。薦讀
1. 入門首先要掌握HDL(HDL=verilog+VHDL)
第一句話是:還沒學數電的先學數電。然後你可以選擇verilog或者VHDL,有C語言基礎的,建議選擇VHDL。因為verilog太像C了,很容易混淆,最後你會發現,你花了大量時間去區分這兩種語言,而不是在學習如何使用它。當然,你思維能轉得過來,也可以選verilog,畢竟在國內verilog用得比較多。接下來,首先找本實例抄代碼。抄代碼的意義在於熟悉語法規則和編譯器(這里的編譯器是硅編譯器又叫綜合器,常用的編譯器有:Quartus、ISE、Vivado、Design Compiler 、Synopsys的VCS、iverilog、Lattice的Diamond、Microsemi/Actel的Libero、Synplify pro),然後再模仿著寫,最後不看書也能寫出來。編譯完代碼,就打開RTL圖,看一下綜合出來是什麼樣的電路。HDL是硬體描述語言,突出硬體這一特點,所以要用數電的思維去思考HDL,而不是用C語言或者其它高級語言,如果不能理解這句話的,可以看《什麼是硬體以及什麼是軟體》。在這一階段,推薦的教材是《Verilog傳奇》、《Verilog HDL高級數字設計》或者是《用於邏輯綜合的VHDL》。不看書也能寫出個三段式狀態機就可以進入下一階段了。此外,你手上必須准備Verilog或者VHDL的官方文檔,《verilog_IEEE官方標准手冊-2005_IEEE_P1364》、《IEEE Standard VHDL Language_2008》,以便遇到一些語法問題的時候能查一下。2. 獨立完成中小規模的數字電路設計
現在,你可以設計一些數字電路了,像交通燈、電子琴、DDS等等,推薦的教材是夏老《Verilog 數字系統設計教程》(第三版)。在這一階段,你要做到的是:給你一個指標要求或者時序圖,你能用HDL設計電路去實現它。這里你需要一塊開發板,可以選Altera的cyclone IV系列,或者Xilinx的Spantan 6。
還沒掌握HDL之前千萬不要買開發板,因為你買回來也沒用。這里你沒必要每次編譯通過就下載代碼,咱們用modelsim模擬(此外還有QuestaSim、NC verilog、Diamond的Active-HDL、VCS、Debussy/Verdi等模擬工具),如果模擬都不能通過那就不用下載了,肯定不行的。在這里先掌握簡單的testbench就可以了。推薦的教材是《WRITING TESTBENCHES Functional Verification of HDL Models》。3. 掌握設計方法和設計原則
你可能發現你綜合出來的電路盡管沒錯,但有很多警告。這個時候,你得學會同步設計原則、優化電路,是速度優先還是面積優先,時鍾樹應該怎樣設計,怎樣同步兩個異頻時鍾等等。
推薦的教材是《FPGA權威指南》、《IP核芯志-數字邏輯設計思想》、《Altera FPGA/CPLD設計》第二版的基礎篇和高級篇兩本。學會加快編譯速度(增量式編譯、LogicLock),靜態時序分析(timequest),嵌入式邏輯分析儀(signaltap)就算是通關了。如果有不懂的地方可以暫時跳過,因為這部分還需要足量的實踐,才能有較深刻的理解。4. 學會提高開發效率
因為Quartus和ISE的編輯器功能太弱,影響了開發效率。所以建議使用Sublime text編輯器中代碼片段的功能,以減少重復性勞動。Modelsim也是常用的模擬工具,學會TCL/TK以編寫適合自己的DO文件,使得模擬變得自動化,推薦的教材是《TCL/TK入門經典》。
你可能會手動備份代碼,但是專業人士都是用版本控制器的,所以,為了提高工作效率,必須掌握GIT。文件比較器Beyond Compare也是個比較常用的工具。此外,你也可以使用System Verilog來替代testbench,這樣效率會更高一些。如果你是做IC驗證的,就必須掌握System Verilog和驗證方法學(UVM)。推薦的教材是《Writing Testbenches using SystemVerilog》、《The UVM Primer》、《System Verilog1800-2012語法手冊》。掌握了TCL/TK之後,可以學習虛擬Jtag(ISE也有類似的工具)製作屬於自己的調試工具,此外,有時間的話,最好再學個python。腳本,意味著一勞永逸。5. 增強理論基礎
這個時候,你已經會使用FPGA了,但是還有很多事情做不了(比如,FIR濾波器、PID演算法、OFDM等),因為理論沒學好。我大概地分幾個方向供大家參考,後面跟的是要掌握的理論課。信號處理 —— 信號與系統、數字信號處理、數字圖像處理、現代數字信號處理、盲信號處理、自適應濾波器原理、雷達信號處理
介面應用 —— 如:UART、SPI、IIC、USB、CAN、PCIE、Rapid IO、DDR、TCP/IP、SPI4.2(10G乙太網介面)、SATA、光纖、DisplayPort
無線通信 —— 信號與系統、數字信號處理、通信原理、移動通信基礎、隨機過程、資訊理論與編碼
CPU設計 —— 計算機組成原理、單片機、計算機體系結構、編譯原理
儀器儀表 —— 模擬電子技術、高頻電子線路、電子測量技術、智能儀器原理及應用
控制系統 —— 自動控制原理、現代控制理論、過程式控制制工程、模糊控制器理論與應用
壓縮、編碼、加密 —— 數論、抽象代數、現代編碼技術、資訊理論與編碼、數據壓縮導論、應用密碼學、音頻信息處理技術、數字視頻編碼技術原理現在你發現,原來FPGA會涉及到那麼多知識,你可以選一個感興趣的方向,但是工作中很有可能用到其中幾個方向的知識,所以理論還是學得越多越好。如果你要更上一層,數學和英語是不可避免的。6. 學會使用MATLAB模擬
設計FPGA演算法的時候,多多少少都會用到MATLAB,比如CRC的系數矩陣、數字濾波器系數、各種表格和文本處理等。此外,MATLAB還能用於調試HDL(用MATLAB的計算結果跟用HDL算出來的一步步對照,可以知道哪裡出問題)。推薦的教材是《MATLAB寶典》和杜勇的《數字濾波器的MATLAB與FPGA實現》。7. 圖像處理
Photoshop
花一、兩周的時間學習PS,對圖像處理有個大概的了解,知道各種圖片格式、直方圖、色相、通道、濾鏡、拼接等基本概念,並能使用它。這部分是0基礎,目的讓大家對圖像處理有個感性的認識,而不是一上來就各種各樣的公式推導。推薦《Photoshop CS6完全自學教程》。基於MATLAB或OpenCV的圖像處理
有C/C++基礎的可以學習OpenCV,否則的話,建議學MATLAB。這個階段下,只要學會簡單的調用函數即可,暫時不用深究實現的細節。推薦《數字圖像處理matlab版》、《學習OpenCV》。圖像處理的基礎理論
這部分的理論是需要高數、復變、線性代數、信號與系統、數字信號處理等基礎,基礎不好的話,建議先補補基礎再來。看不懂的理論也可以暫時先放下,或許學到後面就自然而然地開竅了。推薦《數字圖像處理》。基於FPGA的圖像處理
把前面學到的理論運用到FPGA上面,如果這時你有前面第七個階段的水平,你將輕松地獨立完成圖像演算法設計(圖像處理是離不開介面的,上面第五個階段有講)。推薦《基於FPGA的嵌入式圖像處理系統設計》、《基於FPGA的數字圖像處理原理及應用》。進一步鑽研數學。要在演算法上更上一層,必然需要更多的數學,所以這里建議學習實分析、泛涵分析、小波分析等。
I. qt改了一個文件全部重新編譯
1 需要重新編譯
2 因為Qt的腔升編譯過程是將源代碼編譯為目標代碼,如果修改了一個文件,需要重新編譯整伍派老個項目,否則會出現編譯錯誤。
3 可以使用Qt的增量編譯功能,只編譯修改過的文件和依賴它的文件,從而縮短編譯時羨陪間。
但是如果修改的文件涉及到了項目結構或者配置文件等,還是需要重新編譯整個項目。
J. powerbuilder9如何編譯程序
首先選擇「project」在彈出的對話框中選擇『new』(新建一個編譯程序的目錄),選定要編譯的程序,在彈出的界面的第一個框中選擇編譯的路徑(就是生成可執行文件的保存路徑),選擇變異類型(全編譯和增量編譯,全編譯慢,但是很完整,增量編譯只對之前編譯過的程序的修改部分進行編譯很快,但不一定完整),選擇相應的PBL,單擊「builde」,就開始編譯了