機器演算法腳本
⑴ 如何使用機器學習演算法預測股票價格
預測股票價格是金融領域中的一個重要任務,在過去幾年中,機器學習演算法已經成為了解決這個問題的一個熱門方法,以下是一些可能的步驟:
1.收集數散岩據:從財務報表、新聞和社交媒體、技術分沖芹御析等來源收集數據。
2.數據預處理:對收集到的數據進行清洗、處理和轉換,以便進行後續的分析。
3.特徵選擇:根據對股票價格影響的理解和實踐經驗,選擇與股票價格相關的特徵構建模型,比如股票的市值、市盈率、市凈率、每股收益等。
4.模型訓練:使用機器學習演算法,比如線性回歸、決策樹、支持向量機等訓練首行預測模型,並使用訓練數據集進行交叉驗證。
5.模型評價:評估模型的准確性和可靠性,確定最終的模型並進行可靠性測試。
6.預測:使用最終的模型對未來股票價格進行預測,基於多個特徵的組合和歷史價格數據進行預測。
⑵ Groovy這門語言有哪些具體項目使用場景 - 徐明明的回答 - 知乎
Groovy這門語言有哪些具體項目使用場景? - 徐明明的回答 - 知乎
https://www.hu.com/question/23737708/answer/45175040
我們正在做的一個項目用到了,這是一個機器學習的平台,平台裡面可以接入各種機器學習的演算法,目前已經支持30來種演算法。每個演算法有各種各樣的參數,為了提高用戶友好性,讓用戶使用起來更方便,用戶在頁面上「填入」,「選擇」的參數值跟我們實際提交到集群執行的參數往往不一樣,比如:用戶選擇一個演算法的輸入表table1,而實際上我們提交給後台集群的時候需要加上當前project的名字(假如是project1):project1.table1。
又比如有些演算法參數是不需要用戶輸入的,比如一個演算法的輸出表,具體的表名用戶其實不關心,他只想我們把最後的結果告訴他,這時候我們需要給他自動生成輸出表名的參數。
這樣就需納飢仿要一個【「參數轉換」】的過程,這些參數轉換邏輯雖然不復雜,但是它們有一個重要的特徵: 不可枚舉 。因此我們採用了【Groovy腳本來描述這個轉換演算法】。而且我們機器學習平台將來的目標是【允許用戶上傳自己編寫的演算法,這個轉換邏輯的可配置化就顯得更必要了。】
都是洞纖因為我們有一個叫洛笛的牛逼同事
//
groovy的生態中有gradle(安卓在使用), grails. gant, spock, Geb. Griffion。從生態上已經很全面了。最近又可以用groovy來開發Android了。如楊飛所答,有java的地方就可肢枝以有groovy。只是同時java也在進化,類庫等以java為主。不會發生直接替代。但是groovy的應用也會越來越廣泛。
//
我們用來做規則引擎、流程引擎,可以做動態腳本環境,尤其是那些不需要發布又經常變更的場合
⑶ 干貨 | 基礎機器學習演算法
本篇內容主要是面向機器學習初學者,介紹常見的機器學習演算法,當然,歡迎同行交流。
哲學要回答的基本問題是從哪裡來、我是誰、到哪裡去,尋找答案的過程或許可以借鑒機器學習的套路:組織數據->挖掘知識->預測未來。組織數據即為設計特徵,生成滿足特定格式要求的樣本,挖掘知識即建模,而預測未來就是對模型的應用。
特徵設計依賴於對業務場景的理解,可分為連續特徵、離散特徵和組合高階特徵。本篇重點是機器學習演算法的介紹,可以分為監督學習和無監督學習兩大類。
無監督學習演算法很多,最近幾年業界比較關注主題模型,LSA->PLSA->LDA 為主題模型三個發展階段的典型演算法,它們主要是建模假設條件上存在差異。LSA假設文檔只有一個主題,PLSA 假設各個主題的概率分布不變(theta 都是固定的),LDA 假設每個文檔和詞的主題概率是可變的。
LDA 演算法本質可以藉助上帝擲骰子幫助理解,詳細內容可參加 Rickjin 寫的《 LDA 數據八卦》文章,淺顯易懂,順便也科普了很多數學知識,非常推薦。
監督學習可分為分類和回歸,感知器是最簡單的線性分類器,現在實際應用比較少,但它是神經網路、深度學習的基本單元。
線性函數擬合數據並基於閾值分類時,很容易受雜訊樣本的干擾,影響分類的准確性。邏輯回歸(Logistic Regression)利用 sigmoid 函數將模型輸出約束在 0 到 1 之間,能夠有效弱化雜訊數據的負面影響,被廣泛應用於互聯網廣告點擊率預估。
邏輯回歸模型參數可以通過最大似然求解,首先定義目標函數 L ( theta ),然後 log 處理將目標函數的乘法邏輯轉化為求和邏輯(最大化似然概率 -> 最小化損失函數),最後採用梯度下降求解。
相比於線性分類去,決策樹等非線性分類器具有更強的分類能力,ID3 和 C4.5 是典型的決策樹演算法,建模流程基本相似,兩者主要在增益函數(目標函數)的定義不同。
線性回歸和線性分類在表達形式上是類似的,本質區別是分類的目標函數是離散值,而回歸的目標函數是連續值。目標函數的不同導致回歸通常基於最小二乘定義目標函數,當然,在觀測誤差滿足高斯分布的假設情況下,最小二乘和最大似然可以等價。
當梯度下降求解模型參數時,可以採用 Batch 模式或者 Stochastic 模式,通常而言,Batch 模式准確性更高,Stochastic 模式復雜度更低。
上文已經提到,感知器雖然是最簡單的線性分類器,但是可以視為深度學習的基本單元,模型參數可以由自動編碼( Auto Encoder )等方法求解。
深度學習的優勢之一可以理解為特徵抽象,從底層特徵學習獲得高階特徵,描述更為復雜的信息結構。例如,從像素層特徵學習抽象出描述紋理結構的邊緣輪廓特徵,更進一步學習獲得表徵物體局部的更高階特徵。
俗話說三個臭皮匠賽過諸葛亮,無論是線性分類還是深度學習,都是單個模型演算法單打獨斗,有沒有一種集百家之長的方法,將模型處理數據的精度更進一步提升呢?當然,Model Ensembe l就是解決這個問題。Bagging 為方法之一,對於給定數據處理任務,採用不同模型/參數/特徵訓練多組模型參數,最後採用投票或者加權平均的方式輸出最終結果。
Boosting為Model Ensemble 的另外一種方法,其思想為模型每次迭代時通過調整錯誤樣本的損失權重提升對數據樣本整體的處理精度,典型演算法包括 AdaBoost 、GBDT 等。
不同的數據任務場景,可以選擇不同的 Model Ensemble 方法,對於深度學習,可以對隱層節點採用 DropOut 的方法實現類似的效果。
介紹了這么多機器學習基礎演算法,說一說評價模型優劣的基本准則。欠擬合和過擬合是經常出現的兩種情況,簡單的判定方法是比較訓練誤差和測試誤差的關系,當欠擬合時,可以設計更多特徵來提升模型訓練精度,當過擬合時,可以優化特徵量降低模型復雜度來提升模型測試精度。
特徵量是模型復雜度的直觀反映,模型訓練之前設定輸入的特徵量是一種方法,另外一種比較常用的方法是在模型訓練過程中,將特徵參數的正則約束項引入目標函數/損失函數,基於訓練過程篩選優質特徵。
模型調優是一個細致活,最終還是需要能夠對實際場景給出可靠的預測結果,解決實際問題。期待學以致用! 作者 曉惑 本文轉自阿里技術,轉載需授權
⑷ 用Linux shell腳本編程實現漢諾塔的遞歸演算法
http://wenku..com/view/df08d82be2bd960590c677ee.html
《高裂尺級Bash腳本編程指南》中例 23-14 漢諾塔
另外想要怎樣的輸入,怎樣的輸出?如果從該教程中無法自己實現,可以提出你的困難,大家慶源輪再幫忙解決。直接從別人那得到結果是譽信不容易提高自己的。
⑸ 急求,用VBS腳本進行一種靠譜一點的加密解密演算法
用VBS的話不要有過多指望,只要人家能看到你的VBS代碼,就可以知道你的加密方法。
不過你可以將VBS編譯為exe。
如果可能,建議用AutoIt吧(幫助中自帶示例)。
SetobjArgs=WScript.Arguments
ForI=0toobjArgs.Count-1
WScript.EchoobjArgs(I)
Next
這是VBS幫助里的原例子。
⑹ 人工智慧開發機器學習的常用演算法
我們在學習人工智慧以及智能AI技術的時候曾經給大家介紹過不同的機器學習的方法,而今天我們就著重介紹一下,關於機器學習的常用演算法都有哪些類型。
支持向量機是什麼?
支持向量機是一種有監督的機器學習演算法,可以用於分類或回歸問題。它使用一種稱為核技巧的技術來轉換數據,然後根據這些轉換在可能的輸出之間找到一個邊界。簡單地說,它做一些非常復雜的數據轉換,然後根據定義的標簽或輸出來劃分數據。
那麼是什麼讓它如此偉大呢?
支持向量機既能進行分類又能進行回歸。在本文中,我將重點介紹如何使用SVM進行分類。我將特別關注非線性支持向量機,或者說是使用非線性核的支持向量機。非線性支持向量機意味著演算法計算讓悶的邊界不一定是直線。好處是您可以捕獲數據點之間更復雜的關系,而不必自己做困難的轉換。缺點是訓練時間更長,因為它需要更多的計算。
那麼核技巧是什麼?
核技巧對你獲得的數據進行轉換。有一些很好的特性,你認為可以用來做一個很好的分類器,然後出來一些你不再認識的數據。這有點像解開一條DNA鏈。你從這個看起來很難看的數據向量開始,在通過核技巧之後,它會被解開並自正滑悔我復合,直到它現在是一個更大的數據集,通過查看電子表格無法理解。但是這里有魔力,在擴展數據集時,你的類之間現在有更明顯的界限,SVM演算法能夠計算出更加優化的超平面。
接下來,假設你是一個農民,你有一個問題-你需要設置一個圍欄,以保護你的奶牛免受狼的攻擊。但是你在哪裡建造籬笆?好吧,如果你是一個真正的數據驅動農民,你可以做的一件事就是建立一個基於你牧場中奶牛和狼的位舉正置的分類器。昌平北大青鳥建議通過幾種不同類型的分類器,我們看到SVM在從狼群中分離你的奶牛方面做得很好。我認為這些圖也很好地說明了使用非線性分類器的好處。您可以看到邏輯和決策樹模型都只使用直線。
⑺ 什麼是AI腳本
illustrator裡面通過實現寫好的程序腳本實現批處理,這類軟體功能很多如coreldraw的宏,PS的動作、批處理等等
⑻ 機器學習演算法用什麼軟體
機器學習演算法用的軟體:機器學習新手可以選擇以下演算法軟體:線性回歸、邏輯回歸、線性判別分析、分類和回歸樹、樸素貝葉斯、K-近鄰演算法、學習向量量化、支持向量機、Bagging和隨機森林、Boosting和AdaBoost。
⑼ 如何利用python語言實現機器學習演算法
基於以下三個原因,我們選擇Python作為實現機器學習演算法的編程語言:(一) Python的語法清晰;(二) 易於操作純文本文件;(三) 使用廣泛,存在大量的開發文檔。 可執行偽代碼 Python具有清晰的語法結構,大家也把它稱作可執行偽代碼(executable pseudo-code)。默認安裝的Python開發環境已經附帶了很多高級數據類型,如列表、元組、字典、集合、隊列等,無需進一步編程就可以使用這些數據類型的操作。使用這些數據類型使得實現抽象的數學概念非常簡單。此外,讀者還可以使用自己熟悉的編程風格,如面向對象編程、面向過程編程、或者函數式編程。不熟悉Python的讀者可以參閱附錄A,該附錄詳細介紹了Python語言、Python使用的數據類型以及安裝指南。 Python語言處理和操作文本文件非常簡單,非常易於處理非數值型數據。Python語言提供了豐富的正則表達式函數以及很多訪問Web頁面的函數庫,使得從HTML中提取數據變得非常簡單直觀。 Python比較流行 Python語言使用廣泛,代碼範例也很多,便於讀者快速學習和掌握。此外,在開發實際應用程序時,也可以利用豐富的模塊庫縮短開發周期。 在科學和金融領域,Python語言得到了廣泛應用。SciPy和NumPy等許多科學函數庫都實現了向量和矩陣操作,這些函數庫增加了代碼的可讀性,學過線性代數的人都可以看懂代碼的實際功能。另外,科學函數庫SciPy和NumPy使用底層語言(C和Fortran)編寫,提高了相關應用程序的計算性能。本書將大量使用Python的NumPy。 Python的科學工具可以與繪圖工具Matplotlib協同工作。Matplotlib可以繪制二D、三D圖形,也可以處理科學研究中經常使用到的圖形,所以本書也將大量使用Matplotlib。 Python開發環境還提供了互動式shell環境,允許用戶開發程序時查看和檢測程序內容。 Python開發環境將來還會集成Pylab模塊,它將NumPy、SciPy和Matplotlib合並為一個開發環境。在本書寫作時,Pylab還沒有並入Python環境,但是不遠的將來我們肯定可以在Python開發環境找到它。 Python語言的特色 諸如MATLAB和Mathematica等高級程序語言也允許用戶執行矩陣操作,MATLAB甚至還有許多內嵌的特徵可以輕松地構造機器學習應用,而且MATLAB的運算速度也很快。然而MATLAB的不足之處是軟體費用太高,單個軟體授權就要花費數千美元。雖然也有適合MATLAB的第三方插件,但是沒有一個有影響力的大型開源項目。 Java和C等強類型程序設計語言也有矩陣數學庫,然而對於這些程序設計語言來說,最大的問題是即使完成簡單的操作也要編寫大量的代碼。程序員首先需要定義變數的類型,對於Java來說,每次封裝屬性時還需要實現getter和setter方法。另外還要記著實現子類,即使並不想使用子類,也必須實現子類方法。為了完成一個簡單的工作,我們必須花費大量時間編寫了很多無用冗長的代碼。Python語言則與Java和C完全不同,它清晰簡練,而且易於理解,即使不是編程人員也能夠理解程序的含義,而Java和C對於非編程人員則像天書一樣難於理解。 所有人在小學二年級已經學會了寫作,然而大多數人必須從事其他更重要的工作。 ——鮑比·奈特 也許某一天,我們可以在這句話中將「寫作」替代為「編寫代碼」,雖然有些人對於編寫代碼很感興趣,但是對於大多數人來說,編程僅是完成其他任務的工具而已。Python語言是高級編程語言,我們可以花費更多的時間處理數據的內在含義,而無須花費太多精力解決計算機如何得到數據結果。Python語言使得我們很容易表達自己的目的。 Python語言的缺點 Python語言唯一的不足是性能問題。Python程序運行的效率不如Java或者C代碼高,但是我們可以使用Python調用C編譯的代碼。這樣,我們就可以同時利用C和Python的優點,逐步地開發機器學習應用程序。我們可以首先使用Python編寫實驗程序,如果進一步想要在產品中實現機器學習,轉換成C代碼也不困難。如果程序是按照模塊化原則組織的,我們可以先構造可運行的Python程序,然後再逐步使用C代碼替換核心代碼以改進程序的性能。C++ Boost庫就適合完成這個任務,其他類似於Cython和PyPy的工具也可以編寫強類型的Python代碼,改進一般Python程序的性能。 如果程序的演算法或者思想有缺陷,則無論程序的性能如何,都無法得到正確的結果。如果解決問題的思想存在問題,那麼單純通過提高程序的運行效率,擴展用戶規模都無法解決這個核心問題。從這個角度來看,Python快速實現系統的優勢就更加明顯了,我們可以快速地檢驗演算法或者思想是否正確,如果需要,再進一步優化代碼