編譯原理開發技術
1. 編譯原理課程講什麼內容
《編譯原理》課程介紹編譯器構造的一般原理和基本實現方法,主要介紹編譯器的各個階段:詞法分析、語法分析、語義分析、中間代碼生成、代碼優化和目標代碼生成。本課程在介紹命令式程序設計語言實現技術的同時,強調一些相關的理論知識,如形式語言和自動機理論、語法制導的定義和屬性文法、類型論等。它們是計算機專業理論知識的重要一部分,在本書中結合應用來介紹這些知識,有助於學生較快領會和掌握。本課程強調形式化描述技術,並以語法制導定義作為翻譯的主要描述工具。本課程強調對編譯原理和技術在宏觀上的理解,作為原理性的教學,本課程主要介紹基本的理論和方法,不偏向於某種源語言或目標機器。
2. 編譯原理
編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。編譯原理課程是計算機相關專業學生的必修課程和高等學校培養計算機專業人才的基礎及核心課程,同時也是計算機專業課程中最難及最挑戰學習能力的課程之一。編譯原理課程內容主要是原理性質,高度抽象[1]。
中文名
編譯原理[1]
外文名
Compilers: Principles, Techniques, and Tools[1]
領域
計算機專業的一門重要專業課[1]
快速
導航
編譯器
編譯原理課程
編譯技術的發展
編譯的基本流程
編譯過程概述
基本概念
編譯原理即是對高級程序語言進行翻譯的一門科學技術, 我們都知道計算機程序由程序語言編寫而成, 在早期計算機程序語言發展較為緩慢, 因為計算機存儲的數據和執行的程序都是由0、1代碼組合而成的, 那麼在早期程序員編寫計算機程序時必須十分了解計算機的底層指令代碼通過將這些微程序指令組合排列從而完成一個特定功能的程序, 這就對程序員的要求非常高了。人們一直在研究如何如何高效的開發計算機程序, 使編程的門檻降低。[2]
編譯器
C語言編譯器是一種現代化的設備, 其需要藉助計算機編譯程序, C語言編譯器的設計是一項專業性比較強的工作, 設計人員需要考慮計算機程序繁瑣的設計流程, 還要考慮計算機用戶的需求。計算機的種類在不斷增加, 所以, 在對C語言編譯器進行設計時, 一定要增加其適用性。C語言具有較強的處理能力, 其屬於結構化語言, 而且在計算機系統維護中應用比較多, C語言具有高效率的優點, 在其不同類型的計算機中應用比較多。[3]
C語言編譯器前端設計
編譯過程一般是在計算機系統中實現的, 是將源代碼轉化為計算機通用語言的過程。編譯器中包含入口點的地址、名稱以及機器代碼。編譯器是計算機程序中應用比較多的工具, 在對編譯器進行前端設計時, 一定要充分考慮影響因素, 還要對詞法、語法、語義進行分析。[3]
1 詞法分析[3]
詞法分析是編譯器前端設計的基礎階段, 在這一階段, 編譯器會根據設定的語法規則, 對源程序進行標記, 在標記的過程中, 每一處記號都代表著一類單詞, 在做記號的過程中, 主要有標識符、關鍵字、特殊符號等類型, 編譯器中包含詞法分析器、輸入源程序、輸出識別記號符, 利用這些功能可以將字型大小轉化為熟悉的單詞。[3]
2 語法分析[3]
語法分析是指利用設定的語法規則, 對記號中的結構進行標識, 這包括句子、短語等方式, 在標識的過程中, 可以形成特殊的結構語法樹。語法分析對編譯器功能的發揮有著重要影響, 在設計的過程中, 一定要保證標識的准確性。[3]
3 語義分析[3]
語義分析也需要藉助語法規則, 在對語法單元的靜態語義進行檢查時, 要保證語法規則設定的准確性。在對詞法或者語法進行轉化時, 一定要保證語法結構設置的合法性。在對語法、詞法進行檢查時, 語法結構設定不合理, 則會出現編譯錯誤的問題。前端設計對精確性要求比較好, 設計人員能夠要做好校對工作, 這會影響到編譯的准確性, 如果前端設計存在失誤, 則會影響C語言編譯的效果。[3]
3. 什麼是編譯原理
編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。雖然只有少數人從事編譯方面的工作,但是這門課在理論、技術、方法上都對學生提供了系統而有效的訓練,有利於提高軟體人員的素質和能力。
這門課程關注的是編譯器方面的產生原理和技術問題,似乎和計算機的基礎領域不沾邊,可是編譯原理卻一直作為大學本科的 必修課程,同時也成為了研究生入學考試的必考內容。編譯原理及技術從本質上來講就是一個演算法問題而已,當然由於這個問題十分復雜,其解決演算法也相對復雜。 我們學的數據結構與演算法分析也是講演算法的,不過講的基礎演算法,換句話說講的是演算法導論,而編譯原理這門課程講的就是比較專註解決一種的演算法了。在20世紀 50年代,編譯器的編寫一直被認為是十分困難的事情,第一Fortran的編譯器據說花了18年的時間才完成。在人們嘗試編寫編譯器的同時,誕生了許多跟 編譯相關的理論和技術,而這些理論和技術比一個實際的編譯器本身價值更大。就猶如數學家們在解決著名的哥德巴赫猜想一樣,雖然沒有最終解決問題,但是其間 誕生不少名著的相關數論。
4. 編譯原理
編譯原理是計算機科學中的一慎昌門重要課程,主要研究如段配何將高級程序語言轉化為機器語言寬燃扒的過程。它涉及到多個領域,如語言學、數學、計算機硬體和操作系統等。編譯器是實現這一過程的關鍵工具,它可以將程序源代碼轉化為可執行的機器代碼。
5. 編譯原理技術有哪些應用呢
編譯原理,說得通俗易懂一些就是:讓機器通過某種機制和規則,將一種由人們書寫的高級程序代碼,經過若干步驟,最終翻譯成機器可理解執行的二進制代碼。
編譯原理技術的具體應用,例如:
(1)、我們用戶通常編寫的 C/C++ 程序源代碼(*.C/*.CPP),通過 Microsoft Visual C++ 編譯器,將由人工書寫的 C/C++ 語言程序源代碼(*.C/*.CPP),最終翻譯成機器可執行的二進制代碼(*.EXE);
(2)、人工智慧領域中的自然語言處理、機器翻譯技術(例如:英/漢翻譯、日/漢翻譯系統等)等,都需要使用到編譯原理技術。
6. 學習編譯原理對從事應用軟體開發有何啟發
學習編譯原理和操作系統對編程能力對編程能力的作用在於:
1、學好了編譯原理,才可能編寫出高效,穩健,佔用內存少的程序。
2、學習操作系統對windows相關的編程很有幫助。如果是對操作系統關系不大的C/C++/c#,java之類的編程,關系不大。
編譯原理是計算機專業的一門重要專業課,旨在介紹編譯程序構造的一般原理和基本方法。內容包括語言和文法、詞法分析、語法分析、語法制導翻譯、中間代碼生成、存儲管理、代碼優化和目標代碼生成。 編譯原理是計算機專業設置的一門重要的專業課程。雖然只有少數人從事編譯方面的工作,但是這門課在理論、技術、方法上都對學生提供了系統而有效的訓練,有利於提高軟體人員的素質和能力。
操作系統(Operating System,簡稱OS)是管理和控制計算機硬體與軟體資源的計算機程序,是直接運行在「裸機」上的最基本的系統軟體,任何其他軟體都必須在操作系統的支持下才能運行。
7. 編譯原理設計的關鍵技術是什麼
形式語言和自動機理論。
8. 學習編譯原理的重要性
編譯原理代表了軟體技術的最高層次,它表示了一個由人的理性思維到形式思維的過程,形式思維屬於數學思維,接近計算機思維.編譯原理的技術可以應用到軟體開發的各個方面,包括需求分析,架構設計,模式等等,都可以應用到,語言是人類最偉大的工具.編譯原理以語言為核心,構建了完美的解決方案.將現實生活中待解決的問題,以語言來描述,再翻譯成計算機所識別的語言,形成完美、靈活、高效的神奇演繹。而語言的實現過程,將囊括許多演算法和工具。
學習編譯原理這門課程讓我們在寫代碼的時候更簡潔靈活,同時,學習編譯原理可以提高你自己的程序設計的精簡度以及有利於提高我們編譯程序員的個人素質與能力。我們應該好好學習這門課程。
9. 編譯原理的發展歷程
在20世紀40年代,由於馮·諾伊曼在存儲-程序計算機方面的先鋒作用,編寫一串代碼或程序已成必要,這樣計算機就可以執行所需的計算。開始時,這些程序都是用機器語言 (machine language )編寫的。機器語言就是表示機器實際操作的數字代碼,例如:
C7 06 0000 0002 表示在IBM PC 上使用的Intel 8x86處理器將數字2移至地址0 0 0 0 (16進制)的指令。
但編寫這樣的代碼是十分費時和乏味的,這種代碼形式很快就被匯編語言(assembly language )代替了。在匯編語言中,都是以符號形式給出指令和存儲地址的。例如,匯編語言指令 MOV X,2 就與前面的機器指令等價(假設符號存儲地址X是0 0 0 0 )。匯編程序(assembler )將匯編語言的符號代碼和存儲地址翻譯成與機器語言相對應的數字代碼。
匯編語言大大提高了編程的速度和准確度,人們至今仍在使用著它,在編碼需要極快的速度和極高的簡潔程度時尤為如此。但是,匯編語言也有許多缺點:編寫起來也不容易,閱讀和理解很難;而且匯編語言的編寫嚴格依賴於特定的機器,所以為一台計算機編寫的代碼在應用於另一台計算機時必須完全重寫。
發展編程技術的下一個重要步驟就是以一個更類似於數學定義或自然語言的簡潔形式來編寫程序的操作,它應與任何機器都無關,而且也可由一個程序翻譯為可執行的代碼。例如,前面的匯編語言代碼可以寫成一個簡潔的與機器無關的形式 x = 2。
在1954年至1957年期間,IBM的John Backus帶領的一個研究小組對FORTRAN語言及其編譯器的開發,使得上面的擔憂不必要了。但是,由於當時處理中所涉及到的大多數程序設計語言的翻譯並不為人所掌握,所以這個項目的成功也伴隨著巨大的辛勞。幾乎與此同時,人們也在開發著第一個編譯器, Noam Chomsky開始了他的自然語言結構的研究。他的發現最終使得編譯器結構異常簡單,甚至還帶有了一些自動化。Chomsky的研究導致了根據語言文法(grammar ,指定其結構的規則)的難易程度以及識別它們所需的演算法來為語言分類。正如現在所稱的-與喬姆斯基分類結構(Chomsky hierarchy )一樣-包括了文法的4個層次:0型、1型、2型和3型文法,且其中的每一個都是其前者的專門化。2型(或上下文無關文法(context-free grammar ))被證明是程序設計語言中最有用的,而且今天它已代表著程序設計語言結構的標准方式。
分析問題( parsing problem ,用於限定上下文無關語言的識別的有效演算法)的研究是在20世紀60年代和70年代,它相當完善地解決了這一問題, 現在它已是編譯理論的一個標准部分。它們與喬姆斯基的3型文法相對應。對它們的研究與喬姆斯基的研究幾乎同時開始,並且引出了表示程序設計語言的單詞(或稱為記號)的符號方式。
人們接著又深化了生成有效的目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其誤稱為優化技術(optimization technique ),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(code improvement technique )。
這些程序最初被稱為編譯程序-編譯器,但更確切地應稱為分析程序生成器 (parser generator ),這是因為它們僅僅能夠自動處理編譯的一部分。這些程序中最著名的是 Yacc (yet another compiler- compiler),它是由Steve Johnson在1975年為Unix系統編寫的。
類似地,有窮自動機的研究也發展了另一種稱為掃描程序生成器 (scanner generator )的工具,Lex (與Yacc同時,由Mike Lesk為Unix系統開發的)是這其中的佼佼者。在20世紀70年代後期和80年代早期,大量的項目都關注於編譯器其他部分的生成自動化,這其中就包括代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。
編譯器設計最近的發展包括:首先,編譯器包括了更為復雜的演算法的應用程序,它用於推斷或簡化程序中的信息;這又與更為復雜的程序設計語言(可允許此類分析)的發展結合在一起。其中典型的有用於函數語言編譯的Hindle y - Milner類型檢查的統一演算法。
其次,編譯器已越來越成為基於窗口的交互開發環境(interactive development environment,IDE )的一部 分,它包括了編輯器、鏈接程序、調試程序以及項目管理程序。這樣的IDE的標准並沒有多少, 但是已沿著這一方向對標準的窗口環境進行開發了。
10. C語言編譯原理是什麼
編譯共分為四個階段:預處理階段、編譯階段、匯編階段、鏈接階段。
1、預處理階段:
主要工作是將頭文件插入到所寫的代碼中,生成擴展名為「.i」的文件替換原來的擴展名為「.c」的文件,但是原來的文件仍然保留,只是執行過程中的實際文件發生了改變。(這里所說的替換並不是指原來的文件被刪除)
2、匯編階段:
插入匯編語言程序,將代碼翻譯成匯編語言。編譯器首先要檢查代碼的規范性、是否有語法錯誤等,以確定代碼的實際要做的工作,在檢查無誤後,編譯器把代碼翻譯成匯編語言,同時將擴展名為「.i」的文件翻譯成擴展名為「.s」的文件。
3、編譯階段:
將匯編語言翻譯成機器語言指令,並將指令打包封存成可重定位目標程序的格式,將擴展名為「.s」的文件翻譯成擴展名為「.o」的二進制文件。
4、鏈接階段:
在示例代碼中,改代碼文件調用了標准庫中printf函數。而printf函數的實際存儲位置是一個單獨編譯的目標文件(編譯的結果也是擴展名為「.o」的文件),所以此時主函數調用的時候,需要將該文件(即printf函數所在的編譯文件)與hello world文件整合到一起,此時鏈接器就可以大顯神通了,將兩個文件合並後生成一個可執行目標文件。