當前位置:首頁 » 編程軟體 » ACK腳本

ACK腳本

發布時間: 2023-05-21 18:39:27

1. 網路攻擊的一般原理和方法是什麼

下載:http://download.csdn.net/source/274376
常見網路攻擊原理

1.1 TCP SYN拒絕服務攻擊

一般情況下,一個TCP連接的建立需要經過三次握手的過程,即:

1、 建立發起者向目標計算機發送一個TCP SYN報文;

2、 目標計算機收到這個SYN報文後,在內存中創建TCP連接控制塊(TCB),然後向發起者回送一個TCP ACK報文,等待發起者的回應;

3、 發起者收到TCP ACK報文後,再回應一個ACK報文,這樣TCP連接就建立起來了。
利用這個過程,一些惡意的攻擊者可以進行所謂的TCP SYN拒絕服務攻擊:

1、 攻擊者向目標計算機發送一個TCP SYN報文;

2、 目標計算機收到這個報文後,建立TCP連接控制結構(TCB),並回應一個ACK,等待發起者的回應;

3、 而發起者則不向目標計算機回應ACK報文,這樣導致目標計算機一致處於等待狀態。
可以看出,目標計算機如果接收到大量的TCP SYN報文,而沒有收到發起者的第三次ACK回應,會一直等待,處於這樣尷尬狀態的半連接如果很多,則會把目標計算機的資源(TCB控制結構,TCB,一般情況下是有限的)耗盡,而不能響應正常的TCP連接請求。

1.2 ICMP洪水

正常情況下,為了對網路進行診斷,一些診斷程序,比如PING等,會發出ICMP響應請求報文(ICMP ECHO),接收計算機接收到ICMP ECHO後,會回應一個ICMP ECHO Reply報文。而這個過程是需要CPU處理的,有的情況下還可能消耗掉大量的資源,比如處理分片的時候。這樣如果攻擊者向目標計算機發送大量的ICMP ECHO報文(產生ICMP洪水),則目標計算機會忙於處理這些ECHO報文,而無法繼續處理其它的網路數據報文,這也是一種拒絕服務攻擊(DOS)。

1.3 UDP洪水

原理與ICMP洪水類似,攻擊者通過發送大量的UDP報文給目標計算機,導致目標計算機忙於處理這些UDP報文而無法繼續處理正常的報文。

1.4 埠掃描

根據TCP協議規范,當一台計算機收到一個TCP連接建立請求報文(TCP SYN)的時候,做這樣的處理:

1、 如果請求的TCP埠是開放的,則回應一個TCP ACK報文,並建立TCP連接控制結構(TCB);
2、 如果請求的TCP埠沒有開放,則回應一個TCP RST(TCP頭部中的RST標志設為1)報文,告訴發起計算機,該埠沒有開放。

相應地,如果IP協議棧收到一個UDP報文,做如下處理:

1、 如果該報文的目標埠開放,則把該UDP報文送上層協議(UDP)處理,不回應任何報文(上層協議根據處理結果而回應的報文例外);
2、 如果該報文的目標埠沒有開放,則向發起者回應一個ICMP不可達報文,告訴發起者計算機該UDP報文的埠不可達。

利用這個原理,攻擊者計算機便可以通過發送合適的報文,判斷目標計算機哪些TCP或UDP埠是開放的,過程如下:

1、 發出埠號從0開始依次遞增的TCP SYN或UDP報文(埠號是一個16比特的數字,這樣最大為65535,數量很有限);
2、 如果收到了針對這個TCP報文的RST報文,或針對這個UDP報文的ICMP不可達報文,則說明這個埠沒有開放;
3、 相反,如果收到了針對這個TCP SYN報文的ACK報文,或者沒有接收到任何針對該UDP報文的ICMP報文,則說明該TCP埠是開放的,UDP埠可能開放(因為有的實現中可能不回應ICMP不可達報文,即使該UDP埠沒有開放)。

這樣繼續下去,便可以很容易的判斷出目標計算機開放了哪些TCP或UDP埠,然後針對埠的具體數字,進行下一步攻擊,這就是所謂的埠掃描攻擊。

1.5 分片IP報文攻擊

為了傳送一個大的IP報文,IP協議棧需要根據鏈路介面的MTU對該IP報文進行分片,通過填充適當的IP頭中的分片指示欄位,接收計算機可以很容易的把這些IP分片報文組裝起來。
目標計算機在處理這些分片報文的時候,會把先到的分片報文緩存起來,然後一直等待後續的分片報文,這個過程會消耗掉一部分內存,以及一些IP協議棧的數據結構。如果攻擊者給目標計算機只發送一片分片報文,而不發送所有的分片報文,這樣攻擊者計算機便會一直等待(直到一個內部計時器到時),如果攻擊者發送了大量的分片報文,就會消耗掉目標計算機的資源,而導致不能相應正常的IP報文,這也是一種DOS攻擊。

1.6 SYN比特和FIN比特同時設置

在TCP報文的報頭中,有幾個標志欄位:
1、 SYN:連接建立標志,TCP SYN報文就是把這個標志設置為1,來請求建立連接;
2、 ACK:回應標志,在一個TCP連接中,除了第一個報文(TCP SYN)外,所有報文都設置該欄位,作為對上一個報文的相應;
3、 FIN:結束標志,當一台計算機接收到一個設置了FIN標志的TCP報文後,會拆除這個TCP連接;
4、 RST:復位標志,當IP協議棧接收到一個目標埠不存在的TCP報文的時候,會回應一個RST標志設置的報文;
5、 PSH:通知協議棧盡快把TCP數據提交給上層程序處理。

正常情況下,SYN標志(連接請求標志)和FIN標志(連接拆除標志)是不能同時出現在一個TCP報文中的。而且RFC也沒有規定IP協議棧如何處理這樣的畸形報文,因此,各個操作系統的協議棧在收到這樣的報文後的處理方式也不同,攻擊者就可以利用這個特徵,通過發送SYN和FIN同時設置的報文,來判斷操作系統的類型,然後針對該操作系統,進行進一步的攻擊。

1.7 沒有設置任何標志的TCP報文攻擊

正常情況下,任何TCP報文都會設置SYN,FIN,ACK,RST,PSH五個標志中的至少一個標志,第一個TCP報文(TCP連接請求報文)設置SYN標志,後續報文都設置ACK標志。有的協議棧基於這樣的假設,沒有針對不設置任何標志的TCP報文的處理過程,因此,這樣的協議棧如果收到了這樣的報文,可能會崩潰。攻擊者利用了這個特點,對目標計算機進行攻擊。

1.8 設置了FIN標志卻沒有設置ACK標志的TCP報文攻擊

正常情況下,ACK標志在除了第一個報文(SYN報文)外,所有的報文都設置,包括TCP連接拆除報文(FIN標志設置的報文)。但有的攻擊者卻可能向目標計算機發送設置了FIN標志卻沒有設置ACK標志的TCP報文,這樣可能導致目標計算機崩潰。

1.9 死亡之PING

TCP/IP規范要求IP報文的長度在一定范圍內(比如,0-64K),但有的攻擊計算機可能向目標計算機發出大於64K長度的PING報文,導致目標計算機IP協議棧崩潰。

1.10 地址猜測攻擊

跟埠掃描攻擊類似,攻擊者通過發送目標地址變化的大量的ICMP ECHO報文,來判斷目標計算機是否存在。如果收到了對應的ECMP ECHO REPLY報文,則說明目標計算機是存在的,便可以針對該計算機進行下一步的攻擊。

1.11 淚滴攻擊

對於一些大的IP包,需要對其進行分片傳送,這是為了迎合鏈路層的MTU(最大傳輸單元)的要求。比如,一個4500位元組的IP包,在MTU為1500的鏈路上傳輸的時候,就需要分成三個IP包。
在IP報頭中有一個偏移欄位和一個分片標志(MF),如果MF標志設置為1,則表面這個IP包是一個大IP包的片斷,其中偏移欄位指出了這個片斷在整個IP包中的位置。例如,對一個4500位元組的IP包進行分片(MTU為1500),則三個片斷中偏移欄位的值依次為:0,1500,3000。這樣接收端就可以根據這些信息成功的組裝該IP包。

如果一個攻擊者打破這種正常情況,把偏移欄位設置成不正確的值,即可能出現重合或斷開的情況,就可能導致目標操作系統崩潰。比如,把上述偏移設置為0,1300,3000。這就是所謂的淚滴攻擊。

1.12 帶源路由選項的IP報文

為了實現一些附加功能,IP協議規范在IP報頭中增加了選項欄位,這個欄位可以有選擇的攜帶一些數據,以指明中間設備(路由器)或最終目標計算機對這些IP報文進行額外的處理。

源路由選項便是其中一個,從名字中就可以看出,源路由選項的目的,是指導中間設備(路由器)如何轉發該數據報文的,即明確指明了報文的傳輸路徑。比如,讓一個IP報文明確的經過三台路由器R1,R2,R3,則可以在源路由選項中明確指明這三個路由器的介面地址,這樣不論三台路由器上的路由表如何,這個IP報文就會依次經過R1,R2,R3。而且這些帶源路由選項的IP報文在傳輸的過程中,其源地址不斷改變,目標地址也不斷改變,因此,通過合適的設置源路由選項,攻擊者便可以偽造一些合法的IP地址,而矇混進入網路。

1.13 帶記錄路由選項的IP報文

記錄路由選項也是一個IP選項,攜帶了該選項的IP報文,每經過一台路由器,該路由器便把自己的介面地址填在選項欄位裡面。這樣這些報文在到達目的地的時候,選項數據裡面便記錄了該報文經過的整個路徑。
通過這樣的報文可以很容易的判斷該報文經過的路徑,從而使攻擊者可以很容易的尋找其中的攻擊弱點。

1.14 未知協議欄位的IP報文

在IP報文頭中,有一個協議欄位,這個欄位指明了該IP報文承載了何種協議 ,比如,如果該欄位值為1,則表明該IP報文承載了ICMP報文,如果為6,則是TCP,等等。目前情況下,已經分配的該欄位的值都是小於100的,因此,一個帶大於100的協議欄位的IP報文,可能就是不合法的,這樣的報文可能對一些計算機操作系統的協議棧進行破壞。

1.15 IP地址欺騙

一般情況下,路由器在轉發報文的時候,只根據報文的目的地址查路由表,而不管報文的源地址是什麼,因此,這樣就 可能面臨一種危險:如果一個攻擊者向一台目標計算機發出一個報文,而把報文的源地址填寫為第三方的一個IP地址,這樣這個報文在到達目標計算機後,目標計算機便可能向毫無知覺的第三方計算機回應。這便是所謂的IP地址欺騙攻擊。

比較著名的SQL Server蠕蟲病毒,就是採用了這種原理。該病毒(可以理解為一個攻擊者)向一台運行SQL Server解析服務的伺服器發送一個解析服務的UDP報文,該報文的源地址填寫為另外一台運行SQL Server解析程序(SQL Server 2000以後版本)的伺服器,這樣由於SQL Server 解析服務的一個漏洞,就可能使得該UDP報文在這兩台伺服器之間往復,最終導致伺服器或網路癱瘓。

1.16 WinNuke攻擊

NetBIOS作為一種基本的網路資源訪問介面,廣泛的應用於文件共享,列印共享,進程間通信(IPC),以及不同操作系統之間的數據交換。一般情況下,NetBIOS是運行在LLC2鏈路協議之上的,是一種基於組播的網路訪問介面。為了在TCP/IP協議棧上實現NetBIOS,RFC規定了一系列交互標准,以及幾個常用的TCP/UDP埠:

139:NetBIOS會話服務的TCP埠;
137:NetBIOS名字服務的UDP埠;
136:NetBIOS數據報服務的UDP埠。

WINDOWS操作系統的早期版本(WIN95/98/NT)的網路服務(文件共享等)都是建立在NetBIOS之上的,因此,這些操作系統都開放了139埠(最新版本的WINDOWS 2000/XP/2003等,為了兼容,也實現了NetBIOS over TCP/IP功能,開放了139埠)。

WinNuke攻擊就是利用了WINDOWS操作系統的一個漏洞,向這個139埠發送一些攜帶TCP帶外(OOB)數據報文,但這些攻擊報文與正常攜帶OOB數據報文不同的是,其指針欄位與數據的實際位置不符,即存在重合,這樣WINDOWS操作系統在處理這些數據的時候,就會崩潰。

1.17 Land攻擊

LAND攻擊利用了TCP連接建立的三次握手過程,通過向一個目標計算機發送一個TCP SYN報文(連接建立請求報文)而完成對目標計算機的攻擊。與正常的TCP SYN報文不同的是,LAND攻擊報文的源IP地址和目的IP地址是相同的,都是目標計算機的IP地址。這樣目標計算機接收到這個SYN報文後,就會向該報文的源地址發送一個ACK報文,並建立一個TCP連接控制結構(TCB),而該報文的源地址就是自己,因此,這個ACK報文就發給了自己。這樣如果攻擊者發送了足夠多的SYN報文,則目標計算機的TCB可能會耗盡,最終不能正常服務。這也是一種DOS攻擊。

1.18 Script/ActiveX攻擊

Script是一種可執行的腳本,它一般由一些腳本語言寫成,比如常見的java SCRIPT,VB SCRIPT等。這些腳本在執行的時候,需要一個專門的解釋器來翻譯,翻譯成計算機指令後,在本地計算機上運行。這種腳本的好處是,可以通過少量的程序寫作,而完成大量的功能。

這種SCRIPT的一個重要應用就是嵌入在WEB頁面裡面,執行一些靜態WEB頁面標記語言(HTML)無法完成的功能,比如本地計算,資料庫查詢和修改,以及系統信息的提取等。這些腳本在帶來方便和強大功能的同時,也為攻擊者提供了方便的攻擊途徑。如果攻擊者寫一些對系統有破壞的SCRIPT,然後嵌入在WEB頁面中,一旦這些頁面被下載到本地,計算機便以當前用戶的許可權執行這些腳本,這樣,當前用戶所具有的任何許可權,SCRIPT都可以使用,可以想像這些惡意的SCRIPT的破壞程度有多強。這就是所謂的SCRIPT攻擊。

ActiveX是一種控制項對象,它是建立在MICROSOFT的組件對象模型(COM)之上的,而COM則幾乎是Windows操作系統的基礎結構。可以簡單的理解,這些控制項對象是由方法和屬性構成的,方法即一些操作,而屬性則是一些特定的數據。這種控制項對象可以被應用程序載入,然後訪問其中的方法或屬性,以完成一些特定的功能。可以說,COM提供了一種二進制的兼容模型(所謂二進制兼容,指的是程序模塊與調用的編譯環境,甚至操作系統沒有關系)。但需要注意的是,這種對象控制項不能自己執行,因為它沒有自己的進程空間,而只能由其它進程載入,並調用其中的方法和屬性,這時候,這些控制項便在載入進程的進程空間運行,類似與操作系統的可載入模塊,比如DLL庫。

ActiveX控制項可以嵌入在WEB頁面裡面,當瀏覽器下載這些頁面到本地後,相應地也下載了嵌入在其中的ActiveX控制項,這樣這些控制項便可以在本地瀏覽器進程空間中運行(ActiveX空間沒有自己的進程空間,只能由其它進程載入並調用),因此,當前用戶的許可權有多大,ActiveX的破壞性便有多大。如果一個惡意的攻擊者編寫一個含有惡意代碼的ActiveX控制項,然後嵌入在WEB頁面中,被一個瀏覽用戶下載後執行,其破壞作用是非常大的。這便是所謂的ActiveX攻擊。

1.19 Smurf攻擊

ICMP ECHO請求包用來對網路進行診斷,當一台計算機接收到這樣一個報文後,會向報文的源地址回應一個ICMP ECHO REPLY。一般情況下,計算機是不檢查該ECHO請求的源地址的,因此,如果一個惡意的攻擊者把ECHO的源地址設置為一個廣播地址,這樣計算機在恢復REPLY的時候,就會以廣播地址為目的地址,這樣本地網路上所有的計算機都必須處理這些廣播報文。如果攻擊者發送的ECHO 請求報文足夠多,產生的REPLY廣播報文就可能把整個網路淹沒。這就是所謂的smurf攻擊。

除了把ECHO報文的源地址設置為廣播地址外,攻擊者還可能把源地址設置為一個子網廣播地址,這樣,該子網所在的計算機就可能受影響。

1.20 虛擬終端(VTY)耗盡攻擊

這是一種針對網路設備的攻擊,比如路由器,交換機等。這些網路設備為了便於遠程管理,一般設置了一些TELNET用戶界面,即用戶可以通過TELNET到該設備上,對這些設備進行管理。

一般情況下,這些設備的TELNET用戶界面個數是有限制的,比如,5個或10個等。這樣,如果一個攻擊者同時同一台網路設備建立了5個或10個TELNET連接,這些設備的遠程管理界面便被占盡,這樣合法用戶如果再對這些設備進行遠程管理,則會因為TELNET連接資源被佔用而失敗。

1.21 路由協議攻擊

網路設備之間為了交換路由信息,常常運行一些動態的路由協議,這些路由協議可以完成諸如路由表的建立,路由信息的分發等功能。常見的路由協議有RIP,OSPF,IS-IS,BGP等。這些路由協議在方便路由信息管理和傳遞的同時,也存在一些缺陷,如果攻擊者利用了路由協議的這些許可權,對網路進行攻擊,可能造成網路設備路由表紊亂(這足可以導致網路中斷),網路設備資源大量消耗,甚至導致網路設備癱瘓。

下面列舉一些常見路由協議的攻擊方式及原理:

1.21.1 針對RIP協議的攻擊

RIP,即路由信息協議,是通過周期性(一般情況下為30S)的路由更新報文來維護路由表的,一台運行RIP路由協議的路由器,如果從一個介面上接收到了一個路由更新報文,它就會分析其中包含的路由信息,並與自己的路由表作出比較,如果該路由器認為這些路由信息比自己所掌握的要有效,它便把這些路由信息引入自己的路由表中。

這樣如果一個攻擊者向一台運行RIP協議的路由器發送了人為構造的帶破壞性的路由更新報文,就很容易的把路由器的路由表搞紊亂,從而導致網路中斷。

如果運行RIP路由協議的路由器啟用了路由更新信息的HMAC驗證,則可從很大程度上避免這種攻擊。

1.21.2 針對OSPF路由協議的攻擊

OSPF,即開放最短路徑優先,是一種應用廣泛的鏈路狀態路由協議。該路由協議基於鏈路狀態演算法,具有收斂速度快,平穩,杜絕環路等優點,十分適合大型的計算機網路使用。OSPF路由協議通過建立鄰接關系,來交換路由器的本地鏈路信息,然後形成一個整網的鏈路狀態資料庫,針對該資料庫,路由器就可以很容易的計算出路由表。

可以看出,如果一個攻擊者冒充一台合法路由器與網路中的一台路由器建立鄰接關系,並向攻擊路由器輸入大量的鏈路狀態廣播(LSA,組成鏈路狀態資料庫的數據單元),就會引導路由器形成錯誤的網路拓撲結構,從而導致整個網路的路由表紊亂,導致整個網路癱瘓。

當前版本的WINDOWS 操作系統(WIN 2K/XP等)都實現了OSPF路由協議功能,因此一個攻擊者可以很容易的利用這些操作系統自帶的路由功能模塊進行攻擊。

跟RIP類似,如果OSPF啟用了報文驗證功能(HMAC驗證),則可以從很大程度上避免這種攻擊。

1.21.3 針對IS-IS路由協議的攻擊

IS-IS路由協議,即中間系統到中間系統,是ISO提出來對ISO的CLNS網路服務進行路由的一種協議,這種協議也是基於鏈路狀態的,原理與OSPF類似。IS-IS路由協議經過 擴展,可以運行在IP網路中,對IP報文進行選路。這種路由協議也是通過建立鄰居關系,收集路由器本地鏈路狀態的手段來完成鏈路狀態資料庫同步的。該協議的鄰居關系建立比OSPF簡單,而且也省略了OSPF特有的一些特性,使該協議簡單明了,伸縮性更強。

對該協議的攻擊與OSPF類似,通過一種模擬軟體與運行該協議的路由器建立鄰居關系,然後傳頌給攻擊路由器大量的鏈路狀態數據單元(LSP),可以導致整個網路路由器的鏈路狀態資料庫不一致(因為整個網路中所有路由器的鏈路狀態資料庫都需要同步到相同的狀態),從而導致路由表與實際情況不符,致使網路中斷。

與OSPF類似,如果運行該路由協議的路由器啟用了IS-IS協議單元(PDU)HMAC驗證功能,則可以從很大程度上避免這種攻擊。

1.22 針對設備轉發表的攻擊

為了合理有限的轉發數據,網路設備上一般都建立一些寄存器表項,比如MAC地址表,ARP表,路由表,快速轉發表,以及一些基於更多報文頭欄位的表格,比如多層交換表,流項目表等。這些表結構都存儲在設備本地的內存中,或者晶元的片上內存中,數量有限。如果一個攻擊者通過發送合適的數據報,促使設備建立大量的此類表格,就會使設備的存儲結構消耗盡,從而不能正常的轉發數據或崩潰。

下面針對幾種常見的表項,介紹其攻擊原理:

1.22.1 針對MAC地址表的攻擊

MAC地址表一般存在於乙太網交換機上,乙太網通過分析接收到的數據幀的目的MAC地址,來查本地的MAC地址表,然後作出合適的轉發決定。

這些MAC地址表一般是通過學習獲取的,交換機在接收到一個數據幀後,有一個學習的過程,該過程是這樣的:

a) 提取數據幀的源MAC地址和接收到該數據幀的埠號;
查MAC地址表,看該MAC地址是否存在,以及對應的埠是否符合;
c) 如果該MAC地址在本地MAC地址表中不存在,則創建一個MAC地址表項;
d) 如果存在,但對應的出埠跟接收到該數據幀的埠不符,則更新該表;
e) 如果存在,且埠符合,則進行下一步處理。

分析這個過程可以看出,如果一個攻擊者向一台交換機發送大量源MAC地址不同的數據幀,則該交換機就可能把自己本地的MAC地址表學滿。一旦MAC地址表溢出,則交換機就不能繼續學習正確的MAC表項,結果是可能產生大量的網路冗餘數據,甚至可能使交換機崩潰。

而構造一些源MAC地址不同的數據幀,是非常容易的事情。

1.22.2 針對ARP表的攻擊

ARP表是IP地址和MAC地址的映射關系表,任何實現了IP協議棧的設備,一般情況下都通過該表維護IP地址和MAC地址的對應關系,這是為了避免ARP解析而造成的廣播數據報文對網路造成沖擊。ARP表的建立一般情況下是通過二個途徑:

1、 主動解析,如果一台計算機想與另外一台不知道MAC地址的計算機通信,則該計算機主動發ARP請求,通過ARP協議建立(前提是這兩台計算機位於同一個IP子網上);

2、 被動請求,如果一台計算機接收到了一台計算機的ARP請求,則首先在本地建立請求計算機的IP地址和MAC地址的對應表。

因此,如果一個攻擊者通過變換不同的IP地址和MAC地址,向同一台設備,比如三層交換機發送大量的ARP請求,則被攻擊設備可能會因為ARP緩存溢出而崩潰。

針對ARP表項,還有一個可能的攻擊就是誤導計算機建立正確的ARP表。根據ARP協議,如果一台計算機接收到了一個ARP請求報文,在滿足下列兩個條件的情況下,該計算機會用ARP請求報文中的源IP地址和源MAC地址更新自己的ARP緩存:

1、 如果發起該ARP請求的IP地址在自己本地的ARP緩存中;
2、 請求的目標IP地址不是自己的。

可以舉一個例子說明這個過程,假設有三台計算機A,B,C,其中B已經正確建立了A和C計算機的ARP表項。假設A是攻擊者,此時,A發出一個ARP請求報文,該請求報文這樣構造:

1、 源IP地址是C的IP地址,源MAC地址是A的MAC地址;
2、 請求的目標IP地址是A的IP地址。

這樣計算機B在收到這個ARP請求報文後(ARP請求是廣播報文,網路上所有設備都能收到),發現B的ARP表項已經在自己的緩存中,但MAC地址與收到的請求的源MAC地址不符,於是根據ARP協議,使用ARP請求的源MAC地址(即A的MAC地址)更新自己的ARP表。

這樣B的ARP混存中就存在這樣的錯誤ARP表項:C的IP地址跟A的MAC地址對應。這樣的結果是,B發給C的數據都被計算機A接收到。

1.22.3 針對流項目表的攻擊

有的網路設備為了加快轉發效率,建立了所謂的流緩存。所謂流,可以理解為一台計算機的一個進程到另外一台計算機的一個進程之間的數據流。如果表現在TCP/IP協議上,則是由(源IP地址,目的IP地址,協議號,源埠號,目的埠號)五元組共同確定的所有數據報文。

一個流緩存表一般由該五元組為索引,每當設備接收到一個IP報文後,會首先分析IP報頭,把對應的五元組數據提取出來,進行一個HASH運算,然後根據運算結果查詢流緩存,如果查找成功,則根據查找的結果進行處理,如果查找失敗,則新建一個流緩存項,查路由表,根據路由表查詢結果填完整這個流緩存,然後對數據報文進行轉發(具體轉發是在流項目創建前還是創建後並不重要)。

可以看出,如果一個攻擊者發出大量的源IP地址或者目的IP地址變化的數據報文,就可能導致設備創建大量的流項目,因為不同的源IP地址和不同的目標IP地址對應不同的流。這樣可能導致流緩存溢出

2. 如何保證kafka 的消息機制 ack-fail 源碼跟蹤

Kafka is a distributed, partitioned, replicated commit log service. It provides the functionality of a messaging system, but with a unique design.(Kafka布式、區(partitioned)、基於備份(replicated)commit-log存儲服務.提供類似於messaging system特性,設計實現完全同)kafka種高吞吐量布式發布訂閱消息系統特性:
(1)、通O(1)磁碟數據結構提供消息持久化種結構於即使數TB消息存儲能夠保持間穩定性能
(2)、高吞吐量:即使非普通硬體kafka支持每秒數十萬消息
(3)、支持通kafka伺服器消費機集群區消息
(4)、支持Hadoop並行數據載入
、用Kafka面自帶腳本進行編譯
載Kafka源碼面自帶gradlew腳本我利用編譯Kafka源碼:
1 # wget
2 # tar -zxf kafka-0.8.1.1-src.tgz
3 # cd kafka-0.8.1.1-src
4 # ./gradlew releaseTarGz
運行面命令進行編譯現異信息:
01 :core:signArchives FAILED
02
03 FAILURE: Build failed with an exception.
04
05 * What went wrong:
06 Execution failed for task ':core:signArchives'.
07 > Cannot perform signing task ':core:signArchives' because it
08 has no configured signatory
09
10 * Try:
11 Run with --stacktrace option to get the stack trace. Run with
12 --info or --debug option to get more log output.
13
14 BUILD FAILED
bug()用面命令進行編譯
1 ./gradlew releaseTarGzAll -x signArchives
候編譯功(編譯程現)編譯程我指定應Scala版本進行編譯:
1 ./gradlew -PscalaVersion=2.10.3 releaseTarGz -x signArchives
編譯完core/build/distributions/面kafka_2.10-0.8.1.1.tgz文件網載直接用
二、利用sbt進行編譯
我同用sbt編譯Kafka步驟:
01 # git clone
02 # cd kafka
03 # git checkout -b 0.8 remotes/origin/0.8
04 # ./sbt update
05 [info] [SUCCESSFUL ] org.eclipse.jdt#core;3.1.1!core.jar (2243ms)
06 [info] downloading ...
07 [info] [SUCCESSFUL ] ant#ant;1.6.5!ant.jar (1150ms)
08 [info] Done updating.
09 [info] Resolving org.apache.hadoop#hadoop-core;0.20.2 ...
10 [info] Done updating.
11 [info] Resolving com.yammer.metrics#metrics-annotation;2.2.0 ...
12 [info] Done updating.
13 [info] Resolving com.yammer.metrics#metrics-annotation;2.2.0 ...
14 [info] Done updating.
15 [success] Total time: 168 s, completed Jun 18, 2014 6:51:38 PM
16
17 # ./sbt package
18 [info] Set current project to Kafka (in build file:/export1/spark/kafka/)
19 Getting Scala 2.8.0 ...
20 :: retrieving :: org.scala-sbt#boot-scala
21 confs: [default]
22 3 artifacts copied, 0 already retrieved (14544kB/27ms)
23 [success] Total time: 1 s, completed Jun 18, 2014 6:52:37 PM
於Kafka 0.8及版本需要運行命令:
01 # ./sbt assembly-package-dependency
02 [info] Loading project definition from /export1/spark/kafka/project
03 [warn] Multiple resolvers having different access mechanism configured with
04 same name 'sbt-plugin-releases'. To avoid conflict, Remove plicate project
05 resolvers (`resolvers`) or rename publishing resolver (`publishTo`).
06 [info] Set current project to Kafka (in build file:/export1/spark/kafka/)
07 [warn] Credentials file /home/wyp/.m2/.credentials does not exist
08 [info] Including slf4j-api-1.7.2.jar
09 [info] Including metrics-annotation-2.2.0.jar
10 [info] Including scala-compiler.jar
11 [info] Including scala-library.jar
12 [info] Including slf4j-simple-1.6.4.jar
13 [info] Including metrics-core-2.2.0.jar
14 [info] Including snappy-java-1.0.4.1.jar
15 [info] Including zookeeper-3.3.4.jar
16 [info] Including log4j-1.2.15.jar
17 [info] Including zkclient-0.3.jar
18 [info] Including jopt-simple-3.2.jar
19 [warn] Merging 'META-INF/NOTICE' with strategy 'rename'
20 [warn] Merging 'org/xerial/snappy/native/README' with strategy 'rename'
21 [warn] Merging 'META-INF/maven/org.xerial.snappy/snappy-java/LICENSE'
22 with strategy 'rename'
23 [warn] Merging 'LICENSE.txt' with strategy 'rename'
24 [warn] Merging 'META-INF/LICENSE' with strategy 'rename'
25 [warn] Merging 'META-INF/MANIFEST.MF' with strategy 'discard'
26 [warn] Strategy 'discard' was applied to a file
27 [warn] Strategy 'rename' was applied to 5 files
28 [success] Total time: 3 s, completed Jun 18, 2014 6:53:41 PM
我sbt面指定scala版本:
01 <!--
02 User: 往記憶
03 Date: 14-6-18
04 Time: 20:20
05 bolg:
06 本文址:/archives/1044
07 往記憶博客專注於hadoop、hive、spark、shark、flume技術博客量干貨
08 往記憶博客微信公共帳號:iteblog_hadoop
09 -->
10 sbt "++2.10.3 update"
11 sbt "++2.10.3 package"
12 sbt "++2.10.3 assembly-package-dependency"

3. CentOS系統里如何提高文本搜索效率

CentOS系統里如何提高文本搜索效率?

對於系統管理員或程序員來說,當需要在復雜配置的目錄中或者在大型源碼樹中搜尋特定的文本或模式時,grep類型的工具大概是最受歡迎的。

如果grep是你最喜歡的工具之一,那麼你可能會更喜歡ack。ack是一個基於Perl的類似於grep的命令行工具,但是搜索速度更快,能力比grep更強。尤其是當你是程序員時,我強烈推薦你使用ack來取代顫嫌衫grep。

ack的用法非常適用與代碼搜索,因此程序員可以在源碼樹中進行復雜的查詢,而只需要更少的按鍵。

ack的特性

ack的一些非常強大的特性:

默認搜索當前工作目錄

默認遞歸搜索子目錄

忽略元數據目錄,比如.svn,.git,CSV等目錄

忽略二進制文件(比如pdf,image,coremps)和備份文件(比如茄腔foo~,*.swp)

在搜索結果中列印行號,有助於找到目標代碼

能搜索特定文件類型(比如Perl,C++,Makefile),該文件類型可以有多種文件後綴

高亮搜索結果

支持Perl的高級正則表達式,比grep所使用GNU正則表達式更有表現力。

相比於搜索速度,ack總體上比grep更快。ack的速度只要表現在它的內置的文件類型過濾器。在搜索過程中,ack維持著認可的文件類型的列表,同時跳過未知或不必要的文件類型。它同樣避免檢查多餘的元數據目錄。

在Linux上安裝ack

盡管在大多數Linux發行版中是ack是標准包,可輕易獲得(比如在基於debian的系統中,是ack-grep包,而在基於Redhat的系統中則是ack包),但是與發行版捆綁的ack版本仍然是1.x,而ack2.0已經發布,而且擁有更多特性。

因此我准備在官方網站下載,然後安裝ack。

方便的是,ack在官網可可作為一個單獨的Perl腳本獲得,其中整合了所有需要依賴的模塊。因此,你不需要額外安裝Perl模塊來運行這腳本。

為了在你的Linux系統中安裝ack,去官網下載最新版本的ack。在寫本文時,最新的版本是2.12

$ wget http://beyondgrep.com/ack-2.12-single-file $ sudo mv ack-2.12-single-file /usr/local/bin/ack $ sudo chmod 0755 /usr/local/bin/ack

需要注意的是,在基於Debian的系統中,有一個獨立的包也叫ack(漢碼轉換器)。所以如果你碰巧有使用那個包,那麼你就必須重命名ack來避免命名沖突了。

ack的使用案例

1.在當前目者轎錄遞歸搜索單詞」eat」,不匹配類似於」feature」或」eating」的字元串:

$ ack -w eat

2.搜索有特殊字元的字元串』$path=.』,所有的元字元(比如』$',』.')需要在字面上被匹配:

$ ack -Q '$path=.' /etc

3.除了dowloads目錄,在所有目錄搜索」about」單詞:

$ ack about --ignore-dir=downloads

4.只搜索包含』protected』單詞的php文件,然後通過文件名把搜索結果整合在一起,列印每個文件對應的搜索結果:

$ ack --php --group protected



5.獲取包含』CFLAG』關鍵字的Makefile的文件名。文件名為*.mk,makefile,Makefile,GNUmakefile的都在考慮范圍內:

$ ack --make -l CFLAG

6.顯示整個日誌文件時高亮匹配到的字元串:

$ tail -f /var/log/syslog | ack --passthru 192.168.1.10

7.要換取ack支持的文件過濾類型,運行:

$ ack --help-type

熱點內容
蔬菜解壓游戲大全 發布:2025-07-18 10:00:12 瀏覽:70
linuxand 發布:2025-07-18 09:48:27 瀏覽:725
為什麼安卓的app下載不了 發布:2025-07-18 09:47:45 瀏覽:178
如何用伺服器搭建網路 發布:2025-07-18 09:36:05 瀏覽:451
迷你世界電腦版怎麼改密碼 發布:2025-07-18 09:26:41 瀏覽:51
php創建目錄 發布:2025-07-18 09:26:17 瀏覽:659
為什麼手機游戲分ios和安卓端 發布:2025-07-18 09:22:17 瀏覽:140
android數據顯示 發布:2025-07-18 09:17:27 瀏覽:528
腳本精靈天天酷跑怎麼用 發布:2025-07-18 09:00:04 瀏覽:154
android技術面試 發布:2025-07-18 08:59:55 瀏覽:967