有限單元法編程
Ⅰ 學好有限元需要哪些數學基礎
高等數學(數學分析)、線性代數(高等代數)偏微分方程、常微分方程、泛函分析、復變函數等。
在數學中,有限元法(FEM,Finite Element Method)是一種為求解偏微分方程邊值問題近似解的數值技術。求解時對整個問題區域進行分解,每個子區域都成為簡單的部分,這種簡單部分就稱作有限元。它通過變分方法,使得誤差函數達到最小值並產生穩定解。類比於連接多段微小直線逼近圓的思想,有限元法包含了一切可能的方法,這些方法將許多被稱為有限元的小區域上的簡單方程聯系起來,並用其去估計更大區域上的復雜方程。它將求解域看成是由許多稱為有限元的小的互連子域組成,對每一單元假定一個合適的(較簡單的)近似解,然後推導求解這個域總的滿足條件(如結構的平衡條件),從而得到問題的解。這個解不是准確解,而是近似解,因為實際問題被較簡單的問題所代替。由於大多數實際問題難以得到准確解,而有限元不僅計算精度高,而且能適應各種復雜形狀,因而成為行之有效的工程分析手段。
Ⅱ 計算機輔助技術的發展歷程
CAD/CAM/CAE技術的發展與計算機圖形學的發展密切相關,並伴隨著計算機及其外圍設備的發展而發展。計算機圖形學中有關圖形處理的理論和方法構成了CAD/CAM/CAE技術的重要基礎。綜觀CAD/CAM/CAE技術的發展歷程,主要經歷了以下主要發展階段。
20世紀50年代,計算機主要用於科學計算,使用機器語言編程,圖形設備僅具有輸出功能。美國麻省理工學院(MIT)在其研製的旋風I號計算機上採用了陰極射線管(CRT)作為圖形終端,並能被動顯示圖形。其後出現了光筆,開始了互動式計算機圖形學的研究,也為CAD/CAM技術的出現和發展鋪平了道路。1952年MIT首次試製成功了數控銑床,通過數控程序對零件進行加工,隨後MIT研製開發了自動編程語言(APT),通過描述走刀軌跡的方法來實現計算機輔助編程,標志著CAM技術的開端。1956年首次嘗試將現代有限單元法用於分析飛機結構。50年代末,出現了平板式繪圖儀和滾筒式繪圖儀,開始了計算機繪圖的歷史。此間CAD技術處於醞釀、准備階段。
20世紀60年代,這是互動式計算機圖形學發展的最重要時期。1963年MIT學者I.E.Sutherland發表了題為「人機對話圖形通訊系統」的博士論文,首次提出了計算機圖形學等術語。由他推出的二維SKETCHPAD系統,允許設計者操作光筆和鍵盤,在圖形顯示器上進行圖形的選擇、定位等交互作業,對符號和圖形的存儲採用分層的數據結構。這項研究為互動式計算機圖形學及CAD技術奠定了基礎,也標志著CAD技術的誕生。此後,出現了互動式圖形顯示器、滑鼠器和磁碟等硬體設備及文件系統和高級語言等軟體。並陸續出現了許多商品化的CAD系統和設備。例如,1964年美國通用汽車公司研製了用於汽車設計DAC-1系統,1965年美國洛克希德飛機公司開發了CADAM系統,貝爾電話公司也推出了GRAPHIC-1系統等。此間CAD技術的應用以二維繪圖為主。在製造領域中,1962年研製成功了世界上第一台機器人,實現物料搬運自動化,1965年產生了計算機數控機床CNC系統,1966年以後出現了採用通用計算機直接控制多台數控機床DNC系統以及英國莫林公司研製的由計算機集中控制的自動化製造系統。20世紀60年代末,挪威開始了CAPP技術的研究,並於1969年正式推出第一個CAPP系統AutoPros。
20世紀70年代,計算機圖形學理論及計算機繪圖技術日趨成熟,並得到了廣泛應用。這期間,硬體的性能價格比不斷提高;圖形輸入板、大容量的磁碟存儲器等相應出現;資料庫管理系統等軟體得以應用;以小型、超小型計算機為主機的CAD/CAM系統進入市場並形成主流,這些系統的特點是硬體和軟體配套齊全、價格便宜、使用方便,形成所謂的交鑰匙系統(Turnkey System)。同時,三維幾何建模軟體也相繼發展起來,出現了一些面向中小企業的CAD/CAM商品化系統,法國達索公司率先開發出以表面模型為特點的三維曲面建模系統CATIA。20世紀70年代中期開始創立CAPP系統的研究與開發。1976年由CAM-I公司開發了CAPP系統——CAM-I Automated Process Planning。在製造方面,美國辛辛那提公司研製出了一條柔性製造系統(FMS),將CAD/CAM技術推向了新的階段。這一時期各種計算機輔助技術的功能模塊已基本形成,但數據結構尚不統一,集成性差,應用主要集中在二維繪圖、三維線框建模及有限元分析方面。
20世紀80年代,CAD/CAM技術及其應用系統得到迅速發展。這期間,出現了微型計算機和32位字長工作站,同時,計算機硬體成本大輻下降,計算機外圍設備(彩色高解析度圖形顯示器、大型數字化儀、自動繪圖機、彩色列印機等)已逐漸形成系列產品,網路技術也得到應用;CAD與CAM相結合,形成了CAD/CAM集成技術,導致了新理論、新演算法的大量涌現。在軟體方面,不僅實現了工程和產品的設計計算和繪圖,而且還實現了工程造型、自由曲面設計、機構分析與模擬等工程應用,特別是實體建模、特徵建模、參數化設計等理論的發展和應用,推動CAD技術由表面模型到實體建模,再到參數化建模發展,並出現了許多成熟的CAD軟體。在此期間,為滿足數據交換要求,相繼推出了有關標准(如CGI、GKS、IGES及STEP等)。20世紀80年代後期,人們認識到計算機集成製造(CIM)的重要性,開始強調信息集成,出現了CIMS,將CAD/CAM技術推向了更高的層次。
20世紀90年代以來,CAD/CAM/CAE技術更加強調信息集成和資源共享,出現了產品數據管理技術,CAD建模技術日益完善,出現了許多成熟的CAD/CAE/CAM集成化的商業軟體,如採用變數化技術的I-DEAS、應用復合建模技術的UG等。隨著世界市場的多變與激烈競爭,隨著各種先進設計理論和先進製造模式的發展,隨著高檔微機、操作系統和編程軟體的發展,隨著網路技術的迅速發展,CAD/CAM/CAE技術正在經歷著前所未有的發展機遇與挑戰,正在向集成化、網路化、智能化和標准化方向發展。 一個完善的CAD/CAM/CAE系統應具有如下功能:快速數字計算及圖形處理功能、幾何建模功能、處理數控加工信息的功能、大量數據和知識的存儲及快速檢索與操作功能、人機交互通信功能、輸入和輸出信息及圖形功能、工程分析功能等。為實現這些功能,CAD/CAM/CAE系統的運行環境由硬體、軟體和人三大部分所構成。
硬體主要包括計算機及其外圍設備等具有有形物質的設備,廣義上講硬體還包括用於數控加工的機械設備和機床等。硬體是CAD/CAM/CAE系統運行的基礎,硬體的每一次技術突破都帶來CAD/CAM/CAE技術革命性的變化。軟體是CAD/CAM/CAE系統的核心,包括系統軟體、各種支撐軟體和應用軟體等。硬體提供了CAD/CAM/CAE系統潛在的能力,而系統功能的實現是由系統中的軟體運行來完成。隨著CAD/CAM/CAE系統功能的不斷完善和提高,軟體成本在整個系統中所佔的比重越來越大,目前一些高端軟體的價格已經遠遠高於系統硬體的價格。
任何功能強大的計算機硬體和軟體均只是輔助設計工具,而如何充分發揮系統的功能,則主要是取決於用戶的素質,CAD/CAM/CAE系統的運行離不開人的創造性思維活動,不言而喻,人在系統中起著關鍵的作用。在21世紀初,CAD/CAM/CAE系統基本都採用人機交互的工作方式,這種方式要求人與計算機密切合作,發揮各自所長:計算機在信息的存儲與檢索、分析與計算、圖形與文字處理等方面具有特有的功能;人則在創造性思維、綜合分析、經驗判斷等方面佔有主導地位。 CAD/CAM系統的硬體主要由計算機主機、外存儲器、輸入設備、輸出設備、網路設備和自動化生產裝備等組成。有專門的輸入及輸出設備來處理圖形的交互輸入與輸出問題,是CAD/CAM/CAE系統與一般計算機系統的明顯區別。
(1)計算機主機
主機是CAD/CAM/CAE系統的硬體核心,主要由中央處理器(CPU)及內存儲器(也稱內存)組成。CPU包括控制器和運算器,控制器按照從內存中取出的指令指揮和協調整個計算機的工作,運算器負責執行程序指令所要求的數值計算和邏輯運算。CPU的性能決定著計算機的數據處理能力、運算精度和速度。內存儲器是CPU可以直接訪問的存儲單元,用來存放常駐的控製程序、用戶指令、數據及運算結果。衡量主機性能的指標主要有兩項:CPU性能和內存容量。按照主機性能等級的不同,可將計算機分為大中型機、小型機、工作站和微型機等不同檔次。
(2)外存儲器
外存儲器簡稱外存,用來存放暫時不用或等待調用的程序、數據等信息。當使用這些信息時,由操作系統根據命令調入內存。外存儲器的特點是容量大,經常達到數百MB、數十GB或更多,但存取速度慢。常見的有磁帶、磁碟(軟盤、硬碟)和光碟等。隨著存儲技術的發展,移動硬碟、U盤等移動存儲設備成為外存儲器的重要組成部分。
(3)輸入設備
輸入設備是指通過人機交互作用將各種外部數據轉換成計算機能識別的電子脈沖信號的裝置,主要分為鍵盤輸入類(如:鍵盤)、指點輸入類(如:滑鼠)、圖形輸入類(如:數字化儀)、圖像輸入類(如:掃描儀、數碼相機)、語音輸入類等。
(4)輸出設備
將計算機處理後的數據轉換成用戶所需的形式,實現這一功能的裝置稱為輸出設備。輸出設備能將計算機運行的中間或最終結果、過程,通過文字、圖形、影像、語音等形式表現出來,實現與外界的直接交流與溝通。常用的輸出設備包括顯示輸出(如:圖形顯示器)、列印輸出(如:列印機)、繪圖輸出(如:自動繪圖儀)及影像輸出、語音輸出等。
(5)網路互聯設備
包括網路適配器(也稱網卡)、中繼器、集線器、網橋、路由器、網關及數據機等裝置,通過傳輸介質聯接到網路上以實現資源共享。網路的連接方式即拓撲結構可分為星狀結構、環狀結構、樹狀結構、網狀結構、等結構。先進的CAD/CAM系統都是以網路的形式出現的。 為了充分發揮計算機硬體的作用,CAD/CAM/CAE系統必須配備功能齊全的軟體,軟體配置的檔次和水平是決定系統功能、工作效率及使用方便程度的關鍵因素。計算機軟體是指控制CAD/CAM/CAE系統運行、並使計算機發揮最大功效的計算機程序、數據以及各種相關文檔。程序是對數據進行處理並指揮計算機硬體工作的指令集合,是軟體的主要內容。文檔是指關於程序處理結果、資料庫、使用說明書等,文檔是程序設計的依據,其設計和編制水平在很大程度上決定了軟體的質量,只有具備了合格、齊全的文檔,軟體才能商品化。
根據執行任務和處理對象的不同,CAD/CAM/CAE系統的軟體可分系統軟體、支撐軟體和應用軟體三個不同層次。系統軟體與計算機硬體直接關聯,起著擴充計算機的功能和合理調度與運用計算機硬體資源的作用。支撐軟體運行在系統軟體之上,是各種應用軟體的工具和基礎,包括實現CAD/CAM/CAE各種功能的通用性應用基礎軟體。應用軟體是在系統軟體及支撐軟體的支持下,實現某個應用領域內的特定任務的專用軟體。
(1)系統軟體
系統軟體是用戶與計算機硬體連接的紐帶,是使用、控制、管理計算機的運行程序的集合。系統軟體通常由計算機製造商或軟體公司開發。系統軟體有兩個顯著的特點:一是通用性,不同應用領域的用戶都需要使用系統軟體;二是基礎性,即支撐軟體和應用軟體都需要在系統軟體的支持下運行。系統軟體首先是為用戶使用計算機提供一個清晰、簡潔、易於使用的友好界面;其次是盡可能使計算機系統中的各種資源得到充分而合理的應用。系統軟體主要包括三大部分:操作系統、編程語言系統和網路通信及其管理軟體。
操作系統是系統軟體的核心,是CAD/CAM/CAE系統的靈魂,它控制和指揮計算機的軟體資源和硬體資源。其主要功能是硬體資源管理、任務隊列管理、硬體驅動程序、定時分時系統、基本數學計算、日常事務管理、錯誤診斷與糾正、用戶界面管理和作業管理等。操作系統依賴於計算機系統的硬體,用戶通過操作系統使用計算機,任何程序需經過操作系統分配必要的資源後才能執行。21世紀流行的操作系統有Windows、UNIX、Linux。
編程語言系統主要完成源程序編輯、庫函數及管理、語法檢查、代碼編譯、程序連接與執行。按照程序設計方法的不同,可分為結構化編程語言和面向對象的編程語言;按照編程時對計算機硬體依賴程度的不同,可分為低級語言和高級語言。21世紀廣泛使用面向對象的編程語言,如Visual C++、Visual Basic、Java等。
網路通信及其管理軟體主要包括網路協議、網路資源管理、網路任務管理、網路安全管理、通信瀏覽工具等內容。國際標準的網路協議方案為「開放系統互連參考模型」(OSI),它分為七層:應用層、表示層、會話層、傳輸層、網路層、數據鏈路層和物理層。CAD/CAM/CAE系統中流行的主要網路協議包括TCP/IP協議、MAP協議、TOP協議等。
(2)支撐軟體
支撐軟體是CAD/CAM軟體系統的重要組成部分,一般由商業化的軟體公司開發。支撐軟體是滿足共性需要的CAD/CAM/CAE通用性軟體,屬知識密集型產品,這類軟體不針對具體的應用對象,而是為某一應用領域的用戶提供工具或開發環境。支撐軟體一般具有較好的數據交換性能、軟體集成性能和二次開發性能。根據支撐軟體的功能可分為功能單一型和功能集成型軟體。功能單一型支撐軟體只提供CAD/CAM/CAE系統中某些典型過程的功能,如互動式繪圖軟體、三維幾何建模軟體、工程計算與分析軟體、數控編程軟體、資料庫管理系統等。功能集成型支撐軟體提供了設計、分析、造型、數控編程以及加工控制等綜合功能模塊。
1)互動式繪圖軟體
這類軟體主要以交互方法完成二維工程圖樣的生成和繪制,具有圖形的編輯、變換、存儲、顯示控制、尺寸標注等功能;具有尺寸驅動參數化繪圖功能;有較完備的機械標准件參數化圖庫等。這類軟體繪圖功能很強、操作方便、價格便宜。在微機上採用的典型產品是AutoCAD以及國內自主開發的CAXA電子圖板、PICAD、高華CAD等。
2)三維幾何建模軟體
這類軟體主要解決零部件的結構設計問題,為用戶提供完整准確地描述和顯示三維幾何形狀的方法和工具,具有消隱、著色、濃淡處理、實體參數計算、質量特性計算、參數化特徵造型及裝配和干涉檢驗等功能,具有簡單曲面造型功能,價格適中,易於學習掌握。這類軟體在國內的應用主要以MDT、SolidWorks和SolidEdge為主。
3)工程計算與分析軟體
這類軟體的功能主要包括基本物理量計算、基本力學參數計算、產品裝配、公差分析、有限元分析、優化演算法、機構運動學分析、動力學分析及模擬與模擬等,有限元分析是核心工具。ADAMS。
4)數控編程軟體
這類軟體一般具有刀具定義、工藝參數的設定、刀具軌跡的自動生成、後置處理及切削加工模擬等功能。應用較多的有MasterCAM、SurfCAM及CAXA製造工程師等。
5)資料庫管理系統
工程資料庫是CAD/CAM/CAE集成系統的重要組成部分,工程資料庫管理系統能夠有效地存儲、管理和使用工程數據,支持各子系統間的數據傳遞與共享。工程資料庫管理系統的開發可在通用資料庫管理系統基礎上,根據工程特點進行修改或補充。21世紀比較流行的資料庫管理系統有ORACLE、SYBASE、FOXPRO、FOXBASE等。
(3)功能集成型軟體
1)Pro/Engineer
2)UG
3)I-DEAS
4)CATIA
Ⅲ 做有限元分析,需要掌握哪方面的知識
如果對結構有限元分析感興趣,應該從材料力學、彈性力學開始。對應力、應變、平衡方程、本構關系、位移-應變關系等知識有了了解以後,可以學習變分法的知識,推薦看錢偉長先生的《變分法及有限元》。
有了力學和變分學基礎,就可以看一些比較基礎的有限元書籍了,比如Zienkiewicz先生的《有限元方法》(有中文版),裡面用到的數學知識不多。
如果想對有限元的收斂性分析、穩定性分析有比較深入的了解,需要看有限元數學理論方面的專著,這時需要對泛函分析、Sobolev空間比較熟悉。當然只想解決工程問題,不必往這個方向發展。
(3)有限單元法編程擴展閱讀:
振動模態是彈性結構固有的、整體的特性。通過模態分析方法搞清楚了結構物在某一易受影響的頻率范圍內的各階主要模態的特性,就可以預言結構在此頻段內在外部或內部各種振源作用下產生的實際振動響應。因此,模態分析是結構動態設計及設備故障診斷的重要方法。
機器、建築物、航天航空飛行器、船舶、汽車等的實際振動模態各不相同。模態分析提供了研究各類振動特性的一條有效途徑。首先,將結構物在靜止狀態下進行人為激振,通過測量激振力與響應並進行雙通道快速傅里葉變換(FFT)分析。
得到任意兩點之間的機械導納函數(傳遞函數)。用模態分析理論通過對試驗導納函數的曲線擬合,識別出結構物的模態參數,從而建立起結構物的模態模型。根據模態疊加原理,在已知各種載荷時間歷程的情況下,就可以預言結構物的實際振動的響應歷程或響應譜。