當前位置:首頁 » 編程軟體 » 中國編譯器技術的發展情況

中國編譯器技術的發展情況

發布時間: 2022-04-04 13:03:25

編譯器的工作分為哪幾個階段

編譯器就是一個普通程序,沒什麼大不了的
什麼是編譯器?

編譯器是一個將高級語言翻譯為低級語言的程序。

首先我們一定要意識到編譯器就是一個普通程序,沒什麼大不了的。

在沒有弄明白編譯器如何工作之前你可以簡單的把編譯器當做一個黑盒子,其作用就是輸入一個文本文件輸出一個二進制文件。

基本上編譯器經過了以下幾個階段,等等,這句話教科書上也有,但是我相信很多同學其實並沒有真正理解這幾個步驟到底在說些什麼,為了讓你徹底理解這幾個步驟,我們用一個簡單的例子來講解。

假定我們有一段程序:

while (y < z) {
int x = a + b;
y += x;
}
那麼編譯器是怎樣把這一段程序人類認識的程序轉換為CPU認識的二進制機器指令呢?

提取出每一個單詞:詞法分析
首先編譯器要把源代碼中的每個「單詞」提取出來,在編譯技術中「單詞」被稱為token。其實不只是每個單詞被稱為一個token,除去單詞之外的比如左括弧、右括弧、賦值操作符等都被稱為token。

從源代碼中提取出token的過程就被稱為詞法分析,Lexical Analysis。

經過一遍詞法分析,編譯器得到了以下token:

T_While while
T_LeftParen (
T_Identifier y
T_Less <
T_Identifier z
T_RightParen )
T_OpenBrace {
T_Int int
T_Identifier x
T_Assign =
T_Identifier a
T_Plus +
T_Identifier b
T_Semicolon ;
T_Identifier y
T_PlusAssign +=
T_Identifier x
T_Semicolon ;
T_CloseBrace }
就這樣一個磁碟中保存的字元串源代碼文件就轉換為了一個個的token。

這些token想表達什麼意思:語法分析
有了這些token之後編譯器就可以根據語言定義的語法恢復其原本的結構,怎麼恢復呢?

原來,編譯器在掃描出各個token後根據規則將其用樹的形式表示出來,這顆樹就被稱為語法樹。

語法樹是不是合理的:語義分析
有了語法樹後我們還要檢查這棵樹是不是合法的,比如我們不能把一個整數和一個字元串相加、比較符左右兩邊的數據類型要相同,等等。

這一步通過後就證明了程序合法,不會有編譯錯誤。

❷ 編譯器的歷史

20世紀50年代,IBM的John Backus帶領一個研究小組對FORTRAN語言及其編譯器進行開發。但由於當時人們對編譯理論了解不多,開發工作變得既復雜又艱苦。與此同時,Noam Chomsky開始了他對自然語言結構的研究。他的發現最終使得編譯器的結構異常簡單,甚至還帶有了一些自動化。Chomsky的研究導致了根據語言文法的難易程度以及識別它們所需要的演算法來對語言分類。正如Chomsky架構(Chomsky Hierarchy),它包括了文法的四個層次:0型文法、1型文法、2型文法和3型文法,且其中的每一個都是其前者的特殊情況。2型文法(或上下文無關文法)被證明是程序設計語言中最有用的,而且今天它已代表著程序設計語言結構的標准方式。分析問題(parsing problem,用於上下文無關文法識別的有效演算法)的研究是在60年代和70年代,它相當完善的解決了這個問題。它已是編譯原理中的一個標准部分。
有限狀態自動機(Finite Automation)和正則表達式(Regular Expression)同上下文無關文法緊密相關,它們與Chomsky的3型文法相對應。對它們的研究與Chomsky的研究幾乎同時開始,並且引出了表示程序設計語言的單詞的符號方式。
人們接著又深化了生成有效目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其稱為優化技術(Optimization Technique),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(Code Improvement Technique)。
當分析問題變得好懂起來時,人們就在開發程序上花費了很大的功夫來研究這一部分的編譯器自動構造。這些程序最初被稱為編譯器的編譯器(Compiler-compiler),但更確切地應稱為分析程序生成器(Parser Generator),這是因為它們僅僅能夠自動處理編譯的一部分。這些程序中最著名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年為Unix系統編寫的。類似的,有限狀態自動機的研究也發展了一種稱為掃描程序生成器(Scanner Generator)的工具,Lex(與Yacc同時,由Mike Lesk為Unix系統開發)是這其中的佼佼者。
在20世紀70年代後期和80年代早期,大量的項目都貫注於編譯器其它部分的生成自動化,這其中就包括了代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。
編譯器設計最近的發展包括:首先,編譯器包括了更加復雜演算法的應用程序它用於推斷或簡化程序中的信息;這又與更為復雜的程序設計語言的發展結合在一起。其中典型的有用於函數語言編譯的Hindley-Milner類型檢查的統一演算法。其次,編譯器已越來越成為基於窗口的交互開發環境(Interactive Development Environment,IDE)的一部分,它包括了編輯器、連接程序、調試程序以及項目管理程序。這樣的IDE標准並沒有多少,但是對標準的窗口環境進行開發已成為方向。另一方面,盡管在編譯原理領域進行了大量的研究,但是基本的編譯器設計原理在近20年中都沒有多大的改變,它正迅速地成為計算機科學課程中的中心環節。
在20世紀90年代,作為GNU項目或其它開放源代碼項目標一部分,許多免費編譯器和編譯器開發工具被開發出來。這些工具可用來編譯所有的計算機程序語言。它們中的一些項目被認為是高質量的,而且對現代編譯理論感興趣的人可以很容易的得到它們的免費源代碼。
大約在1999年,SGI公布了他們的一個工業化的並行化優化編譯器Pro64的源代碼,後被全世界多個編譯器研究小組用來做研究平台,並命名為Open64。Open64的設計結構好,分析優化全面,是編譯器高級研究的理想平台。
編譯器相關專業術語: 1. compiler編譯器;編譯程序 2. on-line compiler 連線編譯器 3. precompiler 預編譯器 4. serial compiler 串列編譯器 5. system-specific compiler 特殊系統編譯器 6. Information Presentation Facility Compiler 信息展示設施編譯器 7. Compiler Monitor System 編譯器監視系統

❸ 很奇怪為什麼國內沒有任何組織或個人開發最底層的中文編譯器呢

這是一個技術問題,你如果沒讀過編譯原理(龍書)的話,你是看不懂下面的回答的。因為中國技術不足,沒人能寫出支持中文的lex和yacc。首先詞法分析生成器lex,就對中文不友好,它只支持ascii字母,不支持中文。這意味著你編譯器里的詞彙只能是英文單詞,不能是中文詞彙。其次就是語法分析生成器yacc了,也不支持中文,只支持用英文寫的語法規則,不能用中文書寫。這意味著最最基本的語法規則是全英文的,這算哪門子中文編程語言。非常遺憾,中國目前沒有牛人造出支持中文的lex和yacc來,否則全中文編譯器一定會滿天飛的,多到爛大街。為什麼說多到爛大街?一個全中文的編譯器其實僅僅需要修改編譯器的前端詞法分析器和語法分析器(語法分析器甚至無需大改動),後端直接對接開源代碼即可,開源英文編譯器已經爛大街了,把它們的後端移植過來就行了。但關鍵就是沒有支持中文的自動化工具lex和yacc。
自動化這條路走不通,純手寫總可以吧。我猜測易語言就是前端純手寫的全中文編譯器。你可以使用易語言,絕對可以達到你的要求。但是從技術的角度來講,lex和yacc的技術高度遠高於易語言,畢竟lex和yacc號稱編譯器的編譯器,編譯器之母。

❹ 在國內從事C/C++編譯器的開發有發展前景嗎

我給你講講我的經歷。 我大概十年工作經驗,大概五年c++編譯器前端經驗(在兩家500強做靜態分析),四五年項目管理和品質過程改善經驗。其他主流語言都會用,實現的大概方式也明白。 前一段時間找工作,投了二十幾個c++職位一個電話都沒有。唯一的面試是朋友內推的阿里的項目管理專家。跑去面試,悲催,直接換崗成p5-p6的測試來面試,問了幾個測試問題直接讓我回家了(順便吐槽一下,他們對於測試過程感覺還沒問到點上) 最後的結局就是,沒人要,轉行去製造加工業了。我總結一下為什麼找不到工作(可能只是我偏頗的認識:一是這行需求太少,二是hr根本不知道你是幹嘛的,三是做這行的根本不好意思寫精通c++。

❺ 編譯技術的發展歷程

1954年至1957年間,IBM的John Backus帶領一個小組開發FORTRAN語言及其編譯器,使得上面的擔憂不必要了。
但由於當時處理中所涉及到的大多數程序設計語言的翻譯並不為人所掌握,所以這個項目的成功也伴隨著巨大的辛勞。
幾乎與此同時,人們也在開發著第一個編譯器,Noam Chomsky開始自然語言結構的研究。使得編譯器結構異常簡單,甚至還帶有了一些自動化。
Chomsky的研究導致了根據語言文法(grammar,結構規則)的難易程度以及識別它們所需的演算法來為語言分類。文法有4個層次:0型、1型、2型和3型文法,且其中的每一個都是其前者的專門化。2型(或上下文無關文法context-free grammar)是程序設計語言中最有用的,代表著程序設計語言結構的標准方式。
人們接著又深化了生成有效的目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其誤稱為優化技術(optimization technique),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(code improvement technique)。
在70年代後期和80年代早期,大量的項目都關注於編譯器其他部分的生成自動化,這其中就包括了代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。

❻ C/C++ 編譯器的開發有發展前景嗎

C就是一個面向過程的開發語言.有它擅長的,也有它不擅長的,但是沒有別的語言能幹,它卻幹不了的.但是,只要你學好了,那是絕對不用為吃飯發愁的. 如果你打算當純C的程序員,那你就等於走上了一條專向底層和高深技術發展的路,會很辛苦倒是真的

❼ 編譯器的發展史

編譯器
編譯器,是將便於人編寫,閱讀,維護的高級計算機語言翻譯為計算機能識別,運行的低級機器語言的程序。編譯器將源程序(Source program)作為輸入,翻譯產生使用目標語言(Target language)的等價程序。源程序一般為高級語言(High-level language),如Pascal,C++等,而目標語言則是匯編語言或目標機器的目標代碼(Object code),有時也稱作機器代碼(Machine code)。

一個現代編譯器的主要工作流程如下:

源程序(source code)→預處理器(preprocessor)→編譯器(compiler)→匯編程序(assembler)→目標程序(object code)→連接器(鏈接器,Linker)→可執行程序(executables)
目錄 [隱藏]
1 工作原理
2 編譯器種類
3 預處理器(preprocessor)
4 編譯器前端(frontend)
5 編譯器後端(backend)
6 編譯語言與解釋語言對比
7 歷史
8 參見

工作原理
翻譯是從源代碼(通常為高級語言)到能直接被計算機或虛擬機執行的目標代碼(通常為低級語言或機器言)。然而,也存在從低級語言到高級語言的編譯器,這類編譯器中用來從由高級語言生成的低級語言代碼重新生成高級語言代碼的又被叫做反編譯器。也有從一種高級語言生成另一種高級語言的編譯器,或者生成一種需要進一步處理的的中間代碼的編譯器(又叫級聯)。

典型的編譯器輸出是由包含入口點的名字和地址以及外部調用(到不在這個目標文件中的函數調用)的機器代碼所組成的目標文件。一組目標文件,不必是同一編譯器產生,但使用的編譯器必需採用同樣的輸出格式,可以鏈接在一起並生成可以由用戶直接執行的可執行程序。

編譯器種類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高級語言作為輸入,輸出也是高級語言的編譯器。例如: 自動並行化編譯器經常採用一種高級語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。

預處理器(preprocessor)
作用是通過代入預定義等程序段將源程序補充完整。

編譯器前端(frontend)
前端主要負責解析(parse)輸入的源程序,由詞法分析器和語法分析器協同工作。詞法分析器負責把源程序中的『單詞』(Token)找出來,語法分析器把這些分散的單詞按預先定義好的語法組裝成有意義的表達式,語句 ,函數等等。 例如「a = b + c;」前端詞法分析器看到的是「a, =, b , +, c;」,語法分析器按定義的語法,先把他們組裝成表達式「b + c」,再組裝成「a = b + c」的語句。 前端還負責語義(semantic checking)的檢查,例如檢測參與運算的變數是否是同一類型的,簡單的錯誤處理。最終的結果常常是一個抽象的語法樹(abstract syntax tree,或 AST),這樣後端可以在此基礎上進一步優化,處理。

編譯器後端(backend)
編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。

一般說來所有的編譯器分析,優化,變型都可以分成兩大類: 函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。

編譯器分析(compiler analysis)的對象是前端生成並傳遞過來的中間代碼,現代的優化型編譯器(optimizing compiler)常常用好幾種層次的中間代碼來表示程序,高層的中間代碼(high level IR)接近輸入的源程序的格式,與輸入語言相關(language dependent),包含更多的全局性的信息,和源程序的結構;中層的中間代碼(middle level IR)與輸入語言無關,低層的中間代碼(Low level IR)與機器語言類似。 不同的分析,優化發生在最適合的那一層中間代碼上。

常見的編譯分析有函數調用樹(call tree),控制流程圖(Control flow graph),以及在此基礎上的 變數定義-使用,使用-定義鏈(define-use/use-define or u-d/d-u chain),變數別名分析(alias analysis),指針分析(pointer analysis),數據依賴分析(data dependence analysis)等等。

上述的程序分析結果是編譯器優化(compiler optimization)和程序變形(compiler transformation)的前提條件。常見的優化和變新有:函數內嵌(inlining),無用代碼刪除(Dead code elimination),標准化循環結構(loop normalization),循環體展開(loop unrolling),循環體合並,分裂(loop fusion,loop fission),數組填充(array padding),等等。 優化和變形的目的是減少代碼的長度,提高內存(memory),緩存(cache)的使用率,減少讀寫磁碟,訪問網路數據的頻率。更高級的優化甚至可以把序列化的代碼(serial code)變成並行運算,多線程的代碼(parallelized,multi-threaded code)。

機器代碼的生成是優化變型後的中間代碼轉換成機器指令的過程。現代編譯器主要採用生成匯編代碼(assembly code)的策略,而不直接生成二進制的目標代碼(binary object code)。即使在代碼生成階段,高級編譯器仍然要做很多分析,優化,變形的工作。例如如何分配寄存器(register allocatioin),如何選擇合適的機器指令(instruction selection),如何合並幾句代碼成一句等等。

編譯語言與解釋語言對比
許多人將高級程序語言分為兩類: 編譯型語言 和 解釋型語言 。然而,實際上,這些語言中的大多數既可用編譯型實現也可用解釋型實現,分類實際上反映的是那種語言常見的實現方式。(但是,某些解釋型語言,很難用編譯型實現。比如那些允許 在線代碼更改 的解釋型語言。)

歷史
上世紀50年代,IBM的John Backus帶領一個研究小組對FORTRAN語言及其編譯器進行開發。但由於當時人們對編譯理論了解不多,開發工作變得既復雜又艱苦。與此同時,Noam Chomsky開始了他對自然語言結構的研究。他的發現最終使得編譯器的結構異常簡單,甚至還帶有了一些自動化。Chomsky的研究導致了根據語言文法的難易程度以及識別它們所需要的演算法來對語言分類。正如現在所稱的Chomsky架構(Chomsky Hierarchy),它包括了文法的四個層次:0型文法、1型文法、2型文法和3型文法,且其中的每一個都是其前者的特殊情況。2型文法(或上下文無關文法)被證明是程序設計語言中最有用的,而且今天它已代表著程序設計語言結構的標准方式。分析問題(parsing problem,用於上下文無關文法識別的有效演算法)的研究是在60年代和70年代,它相當完善的解決了這個問題。現在它已是編譯原理中的一個標准部分。

有限狀態自動機(Finite Automaton)和正則表達式(Regular Expression)同上下文無關文法緊密相關,它們與Chomsky的3型文法相對應。對它們的研究與Chomsky的研究幾乎同時開始,並且引出了表示程序設計語言的單詞的符號方式。

人們接著又深化了生成有效目標代碼的方法,這就是最初的編譯器,它們被一直使用至今。人們通常將其稱為優化技術(Optimization Technique),但因其從未真正地得到過被優化了的目標代碼而僅僅改進了它的有效性,因此實際上應稱作代碼改進技術(Code Improvement Technique)。

當分析問題變得好懂起來時,人們就在開發程序上花費了很大的功夫來研究這一部分的編譯器自動構造。這些程序最初被稱為編譯器的編譯器(Compiler-compiler),但更確切地應稱為分析程序生成器(Parser Generator),這是因為它們僅僅能夠自動處理編譯的一部分。這些程序中最著名的是Yacc(Yet Another Compiler-compiler),它是由Steve Johnson在1975年為Unix系統編寫的。類似的,有限狀態自動機的研究也發展了一種稱為掃描程序生成器(Scanner Generator)的工具,Lex(與Yacc同時,由Mike Lesk為Unix系統開發)是這其中的佼佼者。

在70年代後期和80年代早期,大量的項目都貫注於編譯器其它部分的生成自動化,這其中就包括了代碼生成。這些嘗試並未取得多少成功,這大概是因為操作太復雜而人們又對其不甚了解。

編譯器設計最近的發展包括:首先,編譯器包括了更加復雜演算法的應用程序它用於推斷或簡化程序中的信息;這又與更為復雜的程序設計語言的發展結合在一起。其中典型的有用於函數語言編譯的Hindley-Milner類型檢查的統一演算法。其次,編譯器已越來越成為基於窗口的交互開發環境(Interactive Development Environment,IDE)的一部分,它包括了編輯器、連接程序、調試程序以及項目管理程序。這樣的IDE標准並沒有多少,但是對標準的窗口環境進行開發已成為方向。另一方面,盡管近年來在編譯原理領域進行了大量的研究,但是基本的編譯器設計原理在近20年中都沒有多大的改變,它現在正迅速地成為計算機科學課程中的中心環節。

在九十年代,作為GNU項目或其它開放源代碼項目的一部分,許多免費編譯器和編譯器開發工具被開發出來。這些工具可用來編譯所有的計算機程序語言。它們中的一些項目被認為是高質量的,而且對現代編譯理論感性趣的人可以很容易的得到它們的免費源代碼。

大約在1999年,SGI公布了他們的一個工業化的並行化優化編譯器Pro64的源代碼,後被全世界多個編譯器研究小組用來做研究平台,並命名為Open64。Open64的設計結構好,分析優化全面,是編譯器高級研究的理想平台。

編譯器是一種特殊的程序,它可以把以特定編程語言寫成的程序變為機器可以運行的機器碼。我們把一個程序寫好,這時我們利用的環境是文本編輯器。這時我程序把程序稱為源程序。在此以後程序員可以運行相應的編譯器,通過指定需要編譯的文件的名稱就可以把相應的源文件(通過一個復雜的過程)轉化為機器碼了。

編譯器工作方法
首先編譯器進行語法分析,也就是要把那些字元串分離出來。然後進行語義分析,就是把各個由語法分析分析出的語法單元的意義搞清楚。最後生成的是目標文件,我們也稱為obj文件。再經過鏈接器的鏈接就可以生成最後的可執行代碼了。有些時候我們需要把多個文件產生的目標文件進行鏈接,產生最後的代碼。我們把一過程稱為交叉鏈接。

熱點內容
租用伺服器如何測速 發布:2025-05-09 20:03:39 瀏覽:790
文件夾左邊 發布:2025-05-09 19:59:21 瀏覽:730
wincc腳本從入門到精通 發布:2025-05-09 19:35:39 瀏覽:894
網路電腦配置哪個好 發布:2025-05-09 19:35:02 瀏覽:273
函數中未指定存儲類別 發布:2025-05-09 19:24:45 瀏覽:131
大話西遊2腳本錯誤解決方法 發布:2025-05-09 19:23:24 瀏覽:898
我的世界伺服器op掛下載 發布:2025-05-09 19:23:23 瀏覽:647
政府配置哪些資源 發布:2025-05-09 19:21:57 瀏覽:231
怎麼注銷電腦密碼 發布:2025-05-09 19:18:47 瀏覽:148
台灣中華電信大型伺服器雲伺服器 發布:2025-05-09 19:09:08 瀏覽:408