並行編譯軟體
❶ 我們來講解以下如何才能編寫並行程序,以及如何編譯運行
我們下面以C 語言為例。
具體語法規則可參看《高性能計算並行編程技術-MPI 並行程序設計》一書。
mpicc -o outfilename cpi.c
其中outfilename 為編譯後的輸出文件,cpi.c 為源代碼.
可將cpi.c 下載後上傳的自己目錄下編譯.
例如:mpicc -o cpi cpi.c
如沒有安裝OpenPBS 則:
mpirun -np 4 cpi
否則:(一般安裝了)
之後需寫一作業提交腳本.例如:submit 內容如下:
#PBS -l nodes=nodes number
#PBS -N jobname#PBS -j oecd /home/xmin/Project
/usr/local/bin/mpiexec cpi
其中 #PBS -l nodes=nodes number 為指定幾個節點計算.如: nodes=4
#PBS -N jobname 為用戶命名的提交作業名稱.如: #PBS -N xmin
#PBS -j oe 為結果和錯誤輸出同文件.如無此項則分別在兩個文件中.
cd /home/xmin/Project 編譯後的輸出文件所在路徑(從根目錄開始).
/usr/local/bin/mpiexec cpi 為mpiexec 所在路徑.
下面是完整例子:
#PBS -l nodes=4
#PBS -N xmin#PBS -j oecd /home/xmin/Project
/usr/local/bin/mpiexec cpi
提交腳本如下:
qsub submit得到如下:3565.isc.math.nankai.e.cn
此為你的作業編號.
這樣你就可得到類似xmin.o2666 的文件,打開即可看到結果.
你還可以查詢作業提交情況.命令如下:qstat
❷ 並行處理技術的並行軟體
並行軟體可分成並行系統軟體和並行應用軟體兩大類,並行系統軟體主要指並行編譯系統和並行操作系統,並行應用軟體主要指各種軟體工具和應用軟體包。在軟體中所牽涉到的程序的並行性主要是指程序的相關性和網路互連兩方面。 程序的相關性主要分為數據相關、控制相關和資源相關三類。
數據相關:說明的是語句之間的有序關系,主要有流相關、反相關、輸出相關、I/O相關和求知相關等,這種關系在程序運行前就可以通過分析程序確定下來。數據相關是一種偏序關系,程序中並不是每一對語句的成員都是相關聯的。可以通過分析程序的數據相關,把程序中一些不存在相關性的指令並行地執行,以提高程序運行的速度。
控制相關:是語句執行次序在運行前不能確定的情況。它一般是由轉移指令引起的,只有在程序執行到一定的語句時才能判斷出語句的相關性。控制相關常使正在開發的並行性中止,為了開發更多的並行性,必須用編譯技術克服控制相關。而資源相關則與系統進行的工作無關,而與並行事件利用整數部件、浮點部件、寄存器和存儲區等共享資源時發生的沖突有關。軟體的並行性主要是由程序的控制相關和數據相關性決定的。在並行性開發時往往把程序劃分成許多的程序段——顆粒。顆粒的規模也稱為粒度,它是衡量軟體進程所含計算量的尺度,用細、中、粗來描述。劃分的粒度越細,各子系統間的通信時延也越低,並行性就越高,但系統開銷也越大。因此,在進行程序組合優化的時候應該選擇適當的粒度,並且把通訊時延盡可能放在程序段中進行,還可以通過軟硬體適配和編譯優化的手段來提高程序的並行度。 將計算機子系統互連在一起或構造多處理機或多計算機時可使用靜態或動態拓撲結構的網路。靜態網路由點一點直接相連而成,這種連接方式在程序執行過程中不會改變,常用來實現集中式系統的子系統之間或分布式系統的多個計算結點之間的固定連接。動態網路是用開關通道實現的,它可動態地改變結構,使之與用戶程序中的通信要求匹配。動態網路包括匯流排、交叉開關和多級網路,常用於共享存儲型多處理機中。在網路上的消息傳遞主要通過尋徑來實現。常見的尋徑方式有存儲轉發尋徑和蟲蝕尋徑等。在存儲轉發網路中以長度固定的包作為信息流的基本單位,每個結點有一個包緩沖區,包從源結點經過一系列中間結點到達目的結點。存儲轉發網路的時延與源和目的之間的距離(段數)成正比。而在新型的計算機系統中採用蟲蝕尋徑,把包進一步分成一些固定長度的片,與結點相連的硬體尋徑器中有片緩沖區。消息從源傳送到目的結點要經過一系列尋徑器。同一個包中所有的片以流水方式順序傳送,不同的包可交替地傳送,但不同包的片不能交叉,以免被送到錯誤的目的地。蟲蝕尋徑的時延幾乎與源和目的之間的距離無關。在尋徑中產生的死鎖問題可以由虛擬通道來解決。虛擬通道是兩個結點間的邏輯鏈,它由源結點的片緩沖區、結點間的物理通道以及接收結點的片緩沖區組成。物理通道由所有的虛擬通道分時地共享。虛擬通道雖然可以避免死鎖,但可能會使每個請求可用的有效通道頻寬降低。因此,在確定虛擬通道數目時,需要對網路吞吐量和通信時延折衷考慮。
❸ lammps 可以同時編譯 並行 和 單核嗎
並行技術可分為三類,分別是線程庫、消息傳遞庫和編譯器支持。線程庫(如 POSIX* 線程和 Windows* API 線程)可實現對線程的顯性控制;如果需要對線程進行精細管理,可以考慮使用這些顯性線程技術。藉助消息傳遞庫(如消息傳遞介面〔MPI〕),應用程序可同時利用多台計算機,它們彼此間不必共享同一內存空間。MPI 廣泛應用於科學計算領域。第三項技術是在編譯器中實現的線程處理支持,採用的形式自動並行化。一旦將線程處理引入到應用程序中,開發人員就可能要面對一系列新的編程缺陷(Bug)。其中許多缺陷是難以檢測到的,需要付出額外的時間和關注以確保程序的正確運行。一些比較常見的線程處理問題包括:數據爭用 ,同步,線程停頓 ,鎖 ,共享錯誤.
並行技術可以分為多進程編程和多線程編程。人們總會用某種IPC(inter-process communication,進程間通信)的形式來實現進程間同步,如管道(pipes),信號量(semaphores),信息隊列(message queues),或者共享存儲(shared memory)。在所有的這些IPC形式中,共享存儲器是最快的(除了門(doors)之外)。在處理進程間資源管理,IPC和同步時,你可以選擇 POSIX或者System V的定義。
線程技術早在20世紀60年代就被提出,但真正應用多線程到操作系統中還是在20世紀80年代中期。現在,多線程技術已經被許多操作系統所支持,包括Windows NT/2000和Linux。
在1999年1月發布的Linux 2.2內核中,進程是通過系統調用fork創建的,新的進程是原來進程的子進程。需要說明的是,在Linux 2.2.x中,不存在真正意義上的線程,Linux中常用的線程Pthread實際上是通過進程來模擬的。
也就是說,Linux中的線程也是通過fork創建的,是「輕」進程。Linux 2.2預設只允許4096個進程/線程同時運行,而高端系統同時要服務上千的用戶,所以這顯然是一個問題。它一度是阻礙Linux進入企業級市場的一大因素。
2001年1月發布的Linux 2.4內核消除了這個限制,並且允許在系統運行中動態調整進程數上限。因此,進程數現在只受制於物理內存的多少。在高端伺服器上,即使只安裝了512MB內存,現在也能輕而易舉地同時支持1.6萬個進程。
在Linux 2.5內核中,已經做了很多改進線程性能的工作。在Linux 2.6中改進的線程模型仍然是由Ingo Molnar 來完成的。它基於一個1:1的線程模型(一個內核線程對應一個用戶線程),包括內核內在的對新NPTL(Native Posix Threading Library)的支持,這個新的NPTL是由Molnar和Ulrich Drepper合作開發的。
2003年12月發布的Linux 2.6內核,對進程調度經過重新編寫,去掉了以前版本中效率不高的演算法。進程標識號(PID)的數目也從3.2萬升到10億。內核內部的大改變之一就是Linux的線程框架被重寫,以使NPTL可以運行其上。
在現代操作系統里,同一時間可能有多個內核執行流在執行,因此內核其實象多進程多線程編程一樣也需要一些同步機制來同步各執行單元對共享數據的訪問。尤其是在多處理器系統上,更需要一些同步機制來同步不同處理器上的執行單元對共享的數據的訪問。在主流的Linux內核中包含了幾乎所有現代的操作系統具有的同步機制,這些同步機制包括:原子操作、信號量(semaphore)、讀寫信號量(rw_semaphore)、spinlock、BKL(Big Kernel Lock)、rwlock、brlock(只包含在2.4內核中)、RCU(只包含在2.6內核中)和seqlock(只包含在2.6內核中)。
現在的隨著現在計算機體系結構的發展,指令級的並行和線程級的並行都在日新月異地發展著.
❹ 學C語言現在最好用的編程軟體
Turbo C就可以的。編輯文本的時候可以用utraledit
至於vc++之類的我是不推薦初學者使用的
❺ 目前最好的Fortran編譯器是什麼啊最適合並行用的是什麼
看你用什麼操作系統。
如果是windows XP, 用compaq visual fortran就可以了,內存只能用到2G
如果是windows 7,用intel visual fortran,好處是可以處理64位,內存能用到128G,不過這個要求你要安裝visual studio
❻ 用python寫GPU上的並行計算程序,有什麼庫或者編譯器
OpenCL
PyOpenCL
讓你們實驗室/數據中心買 Anaconda/NumbaPro
很好用 不吃虧
pycuda沒商量。
❼ 並行計算中有哪些好的相關軟體
!yuanyeguhong(站內聯系TA):cat2::cat2:songlailin(站內聯系TA):victory::victory::victory:gongxd325(站內聯系TA)有集群管理軟體,可以解決你的部分問題,但不是所有的userhung(站內聯系TA)集群管理軟體~~~~~~~~~~~~~~~~~~~~:hand::hand:qiqi2926(站內聯系TA)MPICH2, OPENMPI, 其實就是一些並行計算的庫。莫有。不過在C語言下,有一個傻瓜式的軟體。dswayb(站內聯系TA)你自己沒怎麼想吧,調試是一樣的,我用 intel 編譯器,效率,加速比不用軟體,自己跑程序,用64,128,256,512,2^n 個處理器跑程序,對比總計算時間,通信時間,傳輸時間是否和處理器數目scale,這里的sccale 分strong scale 和weak scale,自己去查,注意這里要避免讀寫,這是一個很費時的工作,讓你既的程序scale要花大量的時間去優化,否則你沒必要用那麼多的處理器,這是申請機時的絕對參考。不知道你所說的節點狀態是什麼。
❽ 目前處理並行編譯技術有哪幾種方法
三種形式編輯
時間並行
時間並行指時間重疊,在並行性概念中引入時間因素,讓多個處理過程在時間上相互錯開,輪流重疊地使用同一套硬體設備的各個部分,以加快硬體周轉而贏得速度。?
時間並行性概念的實現方式就是採用流水處理部件。這是一種非常經濟而實用的並行技術,能保證計算機系統具有較高的性能價格比。目前的高性能微型機幾乎無一例外地使用了流水技術。
空間並行
空間並行指資源重復,在並行性概念中引入空間因素,以「數量取勝」為原則來大幅度提高計算機的處理速度。大規模和超大規模集成電路的迅速發展為空間並行技術帶來了巨大生機,因而成為實現並行處理的一個主要途徑。空間並行技術主要體現在多處理器系統和多計算機系統。但是在單處理器系統中也得到了廣泛應用。?
時間並行+空間並行
指時間重疊和資源重復的綜合應用,既採用時間並行性又採用空間並行性。顯然,第三種並行技術帶來的高速效益是最好的。
❾ 編譯器的種類
編譯器可以生成用來在與編譯器本身所在的計算機和操作系統(平台)相同的環境下運行的目標代碼,這種編譯器又叫做「本地」編譯器。另外,編譯器也可以生成用來在其它平台上運行的目標代碼,這種編譯器又叫做交叉編譯器。交叉編譯器在生成新的硬體平台時非常有用。「源碼到源碼編譯器」是指用一種高級語言作為輸入,輸出也是高級語言的編譯器。例如: 自動並行化編譯器經常採用一種高級語言作為輸入,轉換其中的代碼,並用並行代碼注釋對它進行注釋(如OpenMP)或者用語言構造進行注釋(如FORTRAN的DOALL指令)。 編譯器後端主要負責分析,優化中間代碼(Intermediate representation)以及生成機器代碼(Code Generation)。
一般說來所有的編譯器分析,優化,變型都可以分成兩大類: 函數內(intraproceral)還是函數之間(interproceral)進行。很明顯,函數間的分析,優化更准確,但需要更長的時間來完成。
❿ 並行計算openmp需要下載嗎
現在最新版的C、C++、Fortran編譯器基本上都內置OpenMP支持。
比如gcc、g++、gfortran(GCC套件4.2版之後開始支持)
Intel C++ compiler、Intel Fortran compiler
Microsoft visual C++ (版本8.0或者叫2005之後開始支持)
如果是很舊的編譯器,比如Compaq Visual Fortran,那需要額外安裝OpenMP函數庫,很麻煩。