齒片軸編程
『壹』 數控編程g代碼m代碼,所有的!詳細點!
1、代碼1:FANUC車床G代碼。
『貳』 這種齒輪軸在數控機床上怎麼編程
有人認為當時周王室已經衰微,而晉國三家力量強盛,就算周王不想承認他們,又怎麼能做得到呢!這種說法是完全錯誤的。晉國三家雖然強悍,但他們如果打算不顧天下的指責而公然侵犯禮義的話,就不會來請求周天子的批准,而是去自立為君了。不向天子請封而自立為國君,那就是叛逆之臣,天下如果有像齊桓公、晉文公那樣的賢德諸侯,一定會尊奉禮義對他們進行征討。現在晉國三家向天子請封,天子又批准了。他們就是奉天子命令而成為諸侯的,誰又能對他們加以討伐呢!所以晉國三家大夫成為諸侯,並不是晉國三家破壞了禮教,正是周天子自已破壞了周朝的禮教啊!
『叄』 數控c軸定位車牙怎麼編程
C軸不是主軸角度嗎?那個一般不用來車牙啊?你是要車多線螺紋嗎?個人覺得用C軸還麻煩一點。
『肆』 請教UG高手,關於 旋轉軸編程 的。在UG中怎麼進行四軸編程,怎麼初始化,是不是有特殊的後處理
簡單說一下
ug建模界面中ctrl+Alt+M在第二個框中選第三項(第一個平面銑第二個行腔銑第三個多軸銑即可理解為五軸聯動)ok進入cam界面
在頁面左上角創建程序選擇道具。。。幾個選項中你自己研究一下就可以弄出來其實不難的
去圖書館借本書很多這方面的知識
『伍』 齒輪如何數控編程
好像有專門的數控滾齒機吧 或者有cam自動編程 手工編程不太可能實現 呵呵
『陸』 數控滾齒機床的指令有那些
齒輪是工業生產中的重要基礎零件,其加工技師和加工能力反映一個國家的工業水平。實現齒輪加工數控傾和自動化、加工和檢測的一體化是目前齒輪加工的發展趨勢。
基於開放式運動控制器的數控滾齒系統的研究
摘要:討論了一種基於開放式運動控制器的數控滾齒體系結構,通過對其進行深入的研究,在國內首次提出了電子差動
齒輪箱的概念,開發出相應的數控滾齒軟體,給出了運動控制系統軟體的基本模塊,以及該數控系統成功用於YG6132B
機械滾齒機數控改造的實例。
序詞:數控 滾齒機床 運動控制
中圖分類號:TG659
前言
齒輪被廣泛地應用於機械設備的傳動系統中,滾齒是應用最廣的切齒方法〔1 〕,傳統的機械滾齒機床機械結構非常復雜,一台主電機不僅要驅動展成分度傳動鏈,還要驅動差動和進給傳動鏈,各傳動鏈中的每一個傳動元件本身的加工誤差都會影響被加工齒輪的加工精度,同時為加工不同齒輪,還需要更換各種掛輪調整起來復雜費時[2],大大降低了勞動生產率。
以德國西門子、日本發那科公司數控系統為主流的數控滾齒機的出現,大大提高了齒輪加工能力和加工效率。我國目前真正能夠生產數控滾齒機的只有2-3個廠家,且使用的多是德國西門子數控系統,加工中模數齒輪,沒有自主產權的核心技術,缺少國際競爭力。
注意到以上問題,並根據近來數控技術,尤其是開放式運動控制器飛速發展的現狀,本文針對小模數、少齒數、大螺旋角斜齒輪滾齒加工迫切要求數控化的實際需求,進行了深入的研究,成功地開發了了一套基於開放式運動控制器的數控滾齒系統並用於實際生產。
1 基於開放式運動控制器的數控體系結構
該體系結構的核心是一塊具有PC104 匯流排並且自帶高速DSP 晶元的開放式多軸運動控制卡,與嵌入式PC 主機構成多處理器結構,提供4路16 位D/A 模擬電壓(+/-10V)控制信號,4路4倍頻差動式光電編碼器反饋信號介面,輸入信號頻率最高可達8MHZ,32 路光電隔離輸入輸出介面。可編程數字PID+速度前饋+加速度前饋濾波方式,卡上自帶DSP 晶元以實現實時高速插補、計算功能,可完成空間直線、圓弧插補,大大減輕了主機負擔,還提供了程序緩沖區,降低了對主機通訊速度的要求[3]。該運動控制卡通過PC104 匯流排和計算機通訊,一方面將從各控制軸採集到的數據送給主機進行計算,另一方面,將主機根據工藝及數學模型進行運算生成的運動控制指令經過進一步處理送各軸伺服驅動器,完成各軸的運動控制,加工出滿足工藝要求的合格零件。由於使用標準的PC104 型工控機作
為主機,採用標准化介面,可靈活地選用電機、驅動裝置和反饋元件,支持包括乙太網甚至是Internet 網在內的多種網路協議及拓撲結構,可方便地實現遠程式控制制,組網技術十分靈活而且技術成熟[4]。適應網路化數控的未來發展要求,系統硬體控制部分結構如圖1 所示。
圖1基於開放式運動控制器的數控系統結構
2
2系統控制軟體
本系統控制軟體是在純DOS 下用C 語言開發的,DOS 系統的開放性、單任務、准確的時鍾中斷管理及其良好的穩定性,為工業化生產提供了可靠的保證。軟體框圖如圖2 所示。其中系統初始化包括自製小漢字字模的裝入,顯示器圖形方式的初始化,控制器濾波參數的整定等;系統診斷模塊的作用是監控各被控軸的運動狀態,如:各軸有無運動誤差超限、伺服報警、運動完成、限位開關動作等;實時控制模塊,由中斷服務程序實現,它在每個時鍾中斷周期內讀入各軸位置,根據加工對象的加工工藝要求計算出新的運動控制指令送運動器解釋執行。
3基於電子齒輪箱的數控滾齒系統
齒輪加工的關鍵在於實現滾刀和工件之間的展成分度運動關系,也就是要准確地滿足兩者之間的速比關系,即滾刀轉過一轉,工件轉過K/zc 轉,如下式(1)所示:
c b
c
z
K
n
n
= (1)
式中b c n n , -分別為工件軸轉速和滾刀軸轉速
k zc , -分別為工件齒數和滾刀頭數
而在加工斜齒輪和蝸輪時,要求在完成分齒運動的同時,還要完成Z軸或Y軸的附加運動,其運動學方程式如下:
p
l
p
b
c n
r
c n
z b
c
c z m
f
z m
f n
z
K
n
cos sin
± ± = (2)
式中r z f f , -分別為Z、Y軸的進給量
l b, -分別為斜齒輪的螺旋角和刀具安裝角
n m -為斜齒輪法面模數。
由式(2)可見,在加工斜齒輪和蝸輪時,輸入和輸出的關系已不再是一個簡單的單輸入、單輸出的定比傳動問題,而是一個多輸入、單輸出的問題。一般的電子齒輪方式無法解決這類問題,為此本系統成功地開發了電子齒輪箱功能,電子差動齒輪箱是指:對於任何一個通過機械差動變速機構將兩個以上(含兩個)不同運動,按一定的速比傳動關系
合成輸出的運動軸,都可以改由計算機控制的交、直流伺服電機單獨驅動,去掉原有的機械差動傳動鏈,通過計算機讀取安裝在各輸入軸上傳感器反饋回來的運動參數(如轉速,進給量等),用軟體編程的方法實時計算合成輸出軸的運動,實現機械差動傳動鏈的功能。
4應用實例
上述數控滾齒系統已成功地應用到一台寧江機床廠生產的小模數機械滾齒機YG3612B的改造中,改造前該滾齒機用於批量生產模數1,齒數4,螺旋角20 度以上的斜齒輪軸加工,由於我國尚無適應這種小模數、少齒數工件的數控滾齒機,對這種類型工件,該機械滾齒機是目前加工精度最高的滾齒設備,但是由它加工出來的零件成品率僅達80%左
右,造成了巨大的浪費,同時在更換加工品種時需要繁瑣地更換各種掛輪,使生產效率大為降低。為此生產廠家強烈要求進行數控改造以便提高加工精度,提高生產效率。經分析造成零件加工精度低的主要原因如下:
(1)滾刀至工件兩末端傳動件之間各傳動元件的加工、裝配誤差直接影響了展成分度的精度,從而影響工件的加工精度
(2)工件至Z進給軸兩末端傳動件之間各傳動元件的加工誤差直接影響了被加工工件螺旋角的准確性
(3)由於是加工4個齒的斜齒輪,單頭滾刀每轉1轉工件要轉過90 度,這就決定了滾刀到工件之間的末端傳動副不能像通常的滾齒機那樣使用大降速比的蝸輪-蝸桿傳動副,以便大大降低前面傳動副的誤差對展成分度的影響〔5 〕(如採用大降速比的蝸輪-蝸桿傳動副作末端傳動副,蝸桿的高速轉動將造成其迅速磨損而失去精度),因此該機床採用了一對19/76=1/4 的空間相交軸傳動的螺旋齒輪副作末端傳動副,從而使得上述(1)、(2)兩點成為影響被加工齒輪軸精度的關鍵。
針對以上問題,同時考慮生產廠家擔心改造後一旦不成功將造成機床報廢的顧慮,本文把以最少的改動、最小的投入加工出滿足精度要求的小模
圖2 控制軟體框圖
系統初始化
工藝參數修改
系統診斷
主控模塊
實時中斷控制
各軸坐標顯示
PID 參數修改
指令隊列各軸位置反饋
3
數、少齒數、大螺旋角斜齒輪作為目標,創造性地建立了如下的改造方案:
(1)徹底斷開工件軸和滾刀軸、工件軸和進給軸之間原有的機械傳動聯系,除去原有的差動傳動鏈
(2)保留滾刀軸至工件軸之間19/76 的末端傳動副,在工件軸的上一級傳動軸上直接安裝交流伺服電機,單獨驅動工件軸
(3)滾刀轉動和Z軸進給仍採用原來普通電機帶動
(4)沿Z軸絲桿進給方向加裝高解析度光柵尺A,直接從末端件提供進給量反饋,從而排除了進給傳動鏈誤差對工件螺旋角的影響
(5)在滾刀軸的上一級飛輪軸上加裝高解析度的光電編碼盤B,提供滾刀轉速反饋改造後的機械結構如圖3所示,本數控系統通過實時中斷讀取光電編碼盤B和光柵尺A的讀數,由電子差動齒輪箱自動進行合成、數據處理後,經
運動控制卡發出指令,控制伺服電機的運轉,最終加工出滿足精度要求的齒輪軸,並使產品合格率達到96%以上。
對以上改造的加工小模數、少齒數、大螺旋角數控滾齒機的進一步完善,應從以下幾個方面著手:
(1)在滾刀軸的上一級B軸上加裝直流或交流主軸電機,以滿足輸出功率大,調速范圍寬,進一步穩定轉速的加工要求〔6〕
(2)工件伺服驅動電機軸與工件軸之間,滾刀驅動電機軸與滾刀軸之間都只保留一對高精度降速齒輪傳動,這兩對齒輪傳動副要進行消隙處理,如採用兩薄片齒輪彈簧消隙裝置
(3)將軸向進給Z軸上的普通絲杠換成具有預緊、消隙功能的滾珠絲杠,並用交流伺服電機直接驅動滾珠絲杠實現勻速進給,消除進給爬行
(4)如需進一步提高該滾齒機的加工能力(加工鼓形齒、非園齒輪等),進一步提高生產效率,降低勞動強度的話,可對徑向進給X軸,切向進給Y軸和滾刀刀盤搬角度A軸,都採用單獨的伺服電機控制,但這些已不存在原理和技術上的難點,用戶只需根據需求和成本進行取捨。
5結論
(1)本數控系統經小模數機械滾齒機YG3612B改造證明是成功的實用系統,且該系統操作簡單,運行可靠
(2)本系統在國內首先提出了區別於電子齒輪的電子差動齒輪箱概念
(3)本系統採用國產開放式運動控制卡擺脫了國外進口的限制
(4)充分發揮了PC 平台上的軟硬體優勢,豐富和改善了開發環境。
(5)支持數控機床進一步向的智能化、集成化、網路化方向發展。
參考文獻
1 齒輪製造手冊編輯委員會.齒輪製造手冊.北京:機械工業出版社. 1997
2 韓彥成.金屬切削機床構造與設計. 國防工業出版社.1991
3 固高公司.GT-400-SV 四軸運動控制器用戶手冊,2001
4 毛軍紅. 機床數控軟體化結構體系. 機械工程學報.2000.36(7):48-51
5 會田俊夫〔日〕.圓柱齒輪的製造.中國農業機械出版社.北京.1984
6 孫漢卿.數控機床原理與維修.中國第一汽車集團公司.1998
A STUDY ON NUMERICAL CONTROL Gear HOBBING
SYSTEM BASED ON OPEN MOTION CONTROLLER
Du Jianming WuXutang
(Xi』an Jiaotong University)
Wu Hong
(Luo yang Institute of Technology)
Abstract: A numerical control gear Hobbing
圖3 機床改造後的結構
4
architecture system based on open motion controller is discussed. Through study deeply on it, an idea of electronic differential gearbox is put forward primarily in our country. The umerical control gear Hobbing software is developed. Basic software moles for motion control system and a successful instance that YG3612B model gear Hobbing machine tools is changed by the numerical control system are given.
Key word: Numerical control Gear Hobbing
machine tools Motion control
作者簡介:杜建銘,男,1963 年出生,高級工程師,博士研究生,中國第一拖拉機集團公司優秀專家,主要從事數控技術、高精度位置伺服控制和復雜曲面的研究工作
『柒』 銑1/2螺紋用梳齒刀片怎麼手工編程,華中系統
洗螺絲紋是用一種專用的工具手編程的,自己用手邊
『捌』 軸類零件的數控加工工藝設計與編程
[一]、數控加工工藝設計的主要內容
在進行數控加工工藝設計時,一般應進行以下幾方面的工作:數控加工工藝內容的選擇;數控加工工藝性分析;數控加工工藝路線的設計。
一、數控加工工藝內容的選擇
1、適於數控加工的內容
在選擇時,一般可按下列順序考慮:
(1)通用機床無法加工的內容應作為優先選擇內容;
(2)通用機床難加工,質量也難以保證的內容應作為重點選擇內容;
(3)通用機床加工效率低、工人手工操作勞動強度大的內容,可在數控機床尚存在富裕加工能力時選擇。
2、不適於數控加工的內容
(1)占機調整時間長。如以毛坯的粗基準定位加工第一個精基準,需用專用工裝協調的內容;
(2)加工部位分散,需要多次安裝、設置原點。這時,採用數控加工很麻煩,效果不明顯,可安排通用機床補加工;
(3)按某些特定的製造依據(如樣板等)加工的型面輪廓。主要原因是獲取數據困難,易於與檢驗依據發生矛盾,增加了程序編制的難度。
二、數控加工工藝性分析
1、尺寸標注應符合數控加工的特點
2、幾何要素的條件應完整、准確
3、定位基準可靠
4、統一幾何類型及尺寸
三、數控加工工藝路線的設計
1、工序的劃分
數控加工工序的劃分一般可按下列方法進行:
(1)以一次安裝、加工作為一道工序。
(2)以同一把刀具加工的內容劃分工序。
(3)以加工部位劃分工序。
(4)以粗、精加工劃分工序。
2、順序的安排
順序安排一般應按以下原則進行:
(1)上道工序的加工不能影響下道工序的定位與夾緊,中間穿插有通用機床加工工序的也應綜合考慮;
(2)先進行內腔加工,後進行外形加工;
(3)以相同定位、夾緊方式加工或用同一把刀具加工的工序,最好連續加工,以減少重復定位次數、換刀次數與挪動壓板次數。
3、數控加工工藝與普通工序的銜接
[二]、數控加工工藝設計方法
數控加工工序設計的主要任務是進一步把本工序的加工內容、切削用量、工藝裝備、定位夾緊方式及刀具運動軌跡確定下來,為編制加工程序作好准備。
一、確定走刀路線和安排加工順序
走刀路線就是刀具在整個加工工序中的運動軌跡,它不但包括了工步的內容,也反映出工步順序。走刀路線是編寫程序的依據之一。確定走刀路線時應注意以下幾點:
1、尋求最短加工路線
2、最終輪廓一次走刀完成
3、選擇切入切出方向
4、選擇使工件在加工後變形小的路線
二、確定定位和夾緊方案
在確定定位和夾緊方案時應注意以下幾個問題:
(1)盡可能做到設計基準、工藝基準與編程計算基準的統一;
(2)盡量將工序集中,減少裝夾次數,盡可能在一次裝夾後能加工出全部待加工表面;
(3)避免採用占機人工調整時間長的裝夾方案;
(4)夾緊力的作用點應落在工件剛性較好的部位。
三、確定刀具與工件的相對位置
對刀點是指通過對刀確定刀具與工件相對位置的基準點。,對刀點往往就選擇在零件的加工原點。對刀點的選擇原則如下:
(1)所選的對刀點應使程序編制簡單;
(2)對刀點應選擇在容易找正、便於確定零件加工原點的位置;
(3)對刀點應選在加工時檢驗方便、可靠的位置;
(4)對刀點的選擇應有利於提高加工精度。
換刀點是為加工中心、數控車床等採用多刀進行加工的機床而設置的,因為這些機床在加工過程中要自動換刀。對於手動換刀的數控銑床,也應確定相應的換刀位置。為防止換刀時碰傷零件、刀具或夾具,換刀點常常設置在被加工零件的輪廓之外,並留有一定的安全量。
四、確定切削用量
編程人員在確定切削用量時,要根據被加工工件材料、硬度、切削狀態、背吃刀量、進給量,刀具耐用度,最後選擇合適的切削速度。
以下是一個編程實例(所用的華中數控系統)
程序說明
G92X80Z100建立工件坐標系(原點在工件左端面幾何中心點處),設起刀點為(80,100)。
M03S500主軸正轉,轉速500轉/分。
M06T0101換第1號刀(外圓粗車刀),准備粗車外圓面。
G00X32Z2刀具從起刀點快速移至循環起點(32,2)。(毛坯直徑Ф30)
G71U1R1P100Q200X0.6Z0.3F200G71復合循環粗車工件外圓表面,每次吃刀量1mm(半徑值),每次退刀量1mm(半徑值),X方向留0.6mm餘量(直徑值),Z方向留0.3mm餘量,精加工程序從N100至N200。
G00X80Z100粗車外圓表面結束,快速退刀至起刀點(即換刀點)。
T0100取消1號刀的刀偏值。
M06T0202換第2號刀(外圓精車刀),准備精車外圓面。
S800轉速調高至800轉/分。(精車時轉速S應提高,進給F應降低)
N100G00X6Z2精車開始,刀具從起刀點移至(6,2)處。註:將倒角Z向延長2,則X=12-2-4=6(X為直徑值)
G01X11.8Z-1F100直線進給加工倒角。註:M12螺紋處外圓加工至11.8(較螺紋外徑小0.2),進給降為F100。
Z-20精車螺紋處外圓(螺紋退刀槽暫不加工)。
X14精車端面
X16Z-21精車倒角
Z-28.5精車Ф16外圓
X24Z-43.428精車30度錐面。註:錐面左端節點坐標(24,-43.428)
N200Z-70精車Ф24外圓至-70處(較工件延長5mm)。(中間槽和左端外圓及倒角暫不加工)。精加工結束。
G00X80快速退刀至X80處
Z100快速退刀至起刀點。
T0200取消2號刀的刀偏值。
M06T0404換第4號刀(切槽刀)。設刀頭寬為3mm(具體加工應測量刀寬)。
准備切螺紋槽和中間槽。
S500轉速調為500
G00X18Z-20快速移至螺紋槽左側(18,-20)處。
G01X9.3F50加工螺紋槽至X9.3(槽底直徑9,留下0.3餘量)。
G00X18快速退刀至X18處。
X14Z-17快速移至(14,-17)處,此時右刀尖在(14,-14處),准備加工倒角。
G01X10Z-19加工倒角
X9切槽至槽底
Z-20往左加工去除前面切槽所留下的0.3餘量,這樣整個槽底不會因兩刀切槽而留下接刀痕。
G00X26快速退刀至X26,准備加工中間槽。
Z-55快速移至Z-35(中間槽左側面處)。
G01X20.3切槽至X20.3(槽底直徑19.975,留下0.325餘量)。註:不對稱公差取中間值。
G00X26快速退刀至X26
Z-53快速移至Z-33(中間槽右側面處,此時右刀尖在(26,-30處)。
G01X19.975切槽至槽底(X19.975)
Z-55往左加工去除前面切槽所留下的0.325餘量,這樣整個槽底不會因兩刀切槽而留下接刀痕。
G00X80快速退刀至X80處
Z100快速退刀至起刀點。
T0400取消4號刀的刀偏值。
M06T0303換第3號刀(螺紋刀),准備加工螺紋。
註:M12螺紋為粗牙螺紋,經查表螺距為1.75,牙深=1.75×1.3=2.275(直徑值),分四刀加工,每刀吃刀深度的直徑值分別為:1、0.8、0.4、0.18。
S400轉速調為400。註:螺紋加工時轉速S=1200/螺距-80(經驗公式)。
G00X14Z2快速移至螺紋加工循環起點(14,2)處。
G82X11Z-17F1.75第一刀螺紋加工,吃刀深度的直徑值為:1mm。
G82X10.2第二刀螺紋加工,吃刀深度的直徑值為:0.8mm。
G82X9.8第三刀螺紋加工,吃刀深度的直徑值為:0.4mm。
G82X9.62第四刀螺紋加工,吃刀深度的直徑值為:0.18mm。
G82X9.62走一刀螺紋加工空刀。
G00X80Z100快速退刀至起刀點。
T0300取消3號刀的刀偏值。
M06T0404換第4號刀(切槽刀),准備加工左端Ф20圓柱面、倒角和切斷工件。
S500轉速調為500。
G00X26Z-68快速移至(26,-68)處,此時右刀尖在Z-65處,即工件右端面處。
G01X16F30切槽至X16,為後面倒角作準備。
G00X26快退至X26
Z-65快移至Z-65(即右移一個刀寬位)。
G01X20.3切槽至X20.3(槽底直徑20.025,留下0.275餘量)。註:不對稱公差取中間值。
G00X26快退至X26
Z-63快移至Z-63,此時右刀尖在Z-60處,即肩台處。
G01X20.025切槽至槽底X20.025
Z-67往左加工至Z-67,此時右刀尖在Z-64處,准備加工倒角。
X18Z-68加工倒角
X0切斷工件
G00X80快退至X80
Z100快退至起刀點
T0400取消4號刀的刀偏值
M05主軸停轉
M02程序結束
『玖』 請問UG怎麼四軸編程加工啊附圖片請大神指導,(圖片是個花鍵軸,需要用UG加工六個鍵槽,怎麼弄啊
T型刀加分度頭,或四軸,量大用滾齒機。
『拾』 數控銑床銑傘齒怎樣編程
一般操作的話,發那科系統銑床 在手動編輯裡面編製程序就行了 G02順時針方向圓弧切削 G03逆時針方向圓弧切削 一般基本都用G03逆時針切削視為順銑切削 比如利用直徑30銑刀加工一個直徑為40的圓 相對坐標設置圓心為X0Y0 G91G01X-5.F**** G03I5. X5. M30 有深度的循環加工 可以利用主程序調用子程序,(M98) 主程序O0001 M3S*****(M3主軸正轉) G91G01X-***(X-***:加工圓孔的半徑與刀具半徑的差值) M98P2L***(M98:調用子程序 P2:被調用子程序號為O0002 L***:循環次數,依圓孔深度與切削量指定) G91G01X***(X***:加工圓孔的半徑與刀具半徑的差值) M30 子程序O0002 G91G03I***(I***:I是指定半徑,即I後面跟的數值是加工圓孔的半徑與刀具半徑的差值) M99(M99為重復循環)