當前位置:首頁 » 編程軟體 » 與c混合編程

與c混合編程

發布時間: 2022-05-22 07:22:35

⑴ C和C++如何混合編程

在用C++的項目源碼中,經常會不可避免的會看到下面的代碼:

1
#ifdef __cplusplus

2
extern "C" {

3
#endif

4

5
/*...*/

6

7
#ifdef __cplusplus

8
}

9
#endif

它到底有什麼用呢,你知道嗎?而且這樣的問題經常會出現在面試or筆試中。下面我就從以下幾個方面來介紹它:

1、#ifdef _cplusplus/#endif _cplusplus及發散
2、extern "C"
2.1、extern關鍵字
2.2、"C"
2.3、小結extern "C"
3、C和C++互相調用 4、C和C++混合調用特別之處函數指針
3.1、C++的編譯和連接
3.2、C的編譯和連接
3.3、C++中調用C的代碼
3.4、C中調用C++的代碼

1、#ifdef _cplusplus/#endif _cplusplus及發散

在介紹extern "C"之前,我們來看下#ifdef
_cplusplus/#endif
_cplusplus的作用。很明顯#ifdef/#endif、#ifndef/#endif用於條件編譯,#ifdef
_cplusplus/#endif
_cplusplus——表示如果定義了宏_cplusplus,就執行#ifdef/#endif之間的語句,否則就不執行。

在這里為什麼需要#ifdef _cplusplus/#endif
_cplusplus呢?因為c語言中不支持extern "C"聲明,如果你明白extern
"C"的作用就知道在C中也沒有必要這樣做,這就是條件編譯的作用!在.c文件中包含了extern "C"時會出現編譯時錯誤。

既然說到了條件編譯,我就介紹它的一個重要應用——避免重復包含頭文件。還記得騰訊筆試就考過這個題目,給出類似下面的代碼(下面是我最近在研究的一個開源web伺服器——Mongoose的頭文件mongoose.h中的一段代碼):

01
#ifndef MONGOOSE_HEADER_INCLUDED

02
#define MONGOOSE_HEADER_INCLUDED

03

04
#ifdef __cplusplus

05
extern "C" {

06
#endif /* __cplusplus */

07

08
/*.................................

09
* do something here

10
*.................................

11
*/

12

13
#ifdef __cplusplus

14
}

15
#endif /* __cplusplus */

16

17
#endif /* MONGOOSE_HEADER_INCLUDED */

然後叫你說明上面宏#ifndef/#endif的作用?為了解釋一個問題,我們先來看兩個事實:

這個頭文件mongoose.h可能在項目中被多個源文件包含(#include

"mongoose.h"),而對於一個大型項目來說,這些冗餘可能導致錯誤,因為一個頭文件包含類定義或inline函數,在一個源文件中mongoose.h可能會被#include兩次(如,a.h頭文件包含了mongoose.h,而在b.c文件中#include
a.h和mongoose.h)——這就會出錯(在同一個源文件中一個結構體、類等被定義了兩次)。
從邏輯觀點和減少編譯時間上,都要求去除這些冗餘。然而讓程序員去分析和去掉這些冗餘,不僅枯燥且不太實際,最重要的是有時候又需要這種冗餘來保證各個模塊的獨立。

為了解決這個問題,上面代碼中的

#ifndef MONGOOSE_HEADER_INCLUDED
#define MONGOOSE_HEADER_INCLUDED
/*……………………………*/
#endif /* MONGOOSE_HEADER_INCLUDED */

就起作用了。如果定義了MONGOOSE_HEADER_INCLUDED,#ifndef/#endif之間的內容就被忽略掉。因此,編譯時第一次看到mongoose.h頭文件,它的內容會被讀取且給定MONGOOSE_HEADER_INCLUDED一個值。之後再次看到mongoose.h頭文件時,MONGOOSE_HEADER_INCLUDED就已經定義了,mongoose.h的內容就不會再次被讀取了。

2、extern "C"

首先從字面上分析extern "C",它由兩部分組成——extern關鍵字、"C"。下面我就從這兩個方面來解讀extern "C"的含義。

2.1、extern關鍵字

在一個項目中必須保證函數、變數、枚舉等在所有的源文件中保持一致,除非你指定定義為局部的。首先來一個例子:

1
//file1.c:

2
int x=1;

3
int f(){do something here}

4
//file2.c:

5
extern int x;

6
int f();

7
void g(){x=f();}

在file2.c中g()使用的x和f()是定義在file1.c中的。extern關鍵字表明file2.c中x,僅僅是一個變數的聲明,其並不是在定義變數x,並未為x分配內存空間。變數x在所有模塊中作為一種全局變數只能被定義一次,否則會出現連接錯誤。但是可以聲明多次,且聲明必須保證類型一致,如:

1
//file1.c:

2
int x=1;

3
int b=1;

4
extern c;

5
//file2.c:

6
int x;// x equals to default of int type 0

7
int f();

8
extern double b;

9
extern int c;

在這段代碼中存在著這樣的三個錯誤:

x被定義了兩次
b兩次被聲明為不同的類型
c被聲明了兩次,但卻沒有定義

回到extern關鍵字,extern是C/C++語言中表明函數和全局變數作用范圍(可見性)的關鍵字,該關鍵字告訴編譯器,其聲明的函數和變數可以在本模塊或其它模塊中使用。通常,在模塊的頭文件中對本模塊提供給其它模塊引用的函數和全局變數以關鍵字extern聲明。例如,如果模塊B欲引用該模塊A中定義的全局變數和函數時只需包含模塊A的頭文件即可。這樣,模塊B中調用模塊A中的函數時,在編譯階段,模塊B雖然找不到該函數,但是並不會報錯;它會在連接階段中從模塊A編譯生成的目標代碼中找到此函數。

與extern對應的關鍵字是 static,被它修飾的全局變數和函數只能在本模塊中使用。因此,一個函數或變數只可能被本模塊使用時,其不可能被extern 「C」修飾。

2.2、"C"

典型的,一個C++程序包含其它語言編寫的部分代碼。類似的,C++編寫的代碼片段可能被使用在其它語言編寫的代碼中。不同語言編寫的代碼互相調用是困難的,甚至是同一種編寫的代碼但不同的編譯器編譯的代碼。例如,不同語言和同種語言的不同實現可能會在注冊變數保持參數和參數在棧上的布局,這個方面不一樣。

為了使它們遵守統一規則,可以使用extern指定一個編譯和連接規約。例如,聲明C和C++標准庫函數strcyp(),並指定它應該根據C的編譯和連接規約來鏈接:

1
extern "C" char* strcpy(char*,const char*);

注意它與下面的聲明的不同之處:

1
extern char* strcpy(char*,const char*);

下面的這個聲明僅表示在連接的時候調用strcpy()。

extern "C"指令非常有用,因為C和C++的近親關系。注意:extern "C"指令中的C,表示的一種編譯和連接規約,而不是一種語言。C表示符合C語言的編譯和連接規約的任何語言,如Fortran、assembler等。

還有要說明的是,extern "C"指令僅指定編譯和連接規約,但不影響語義。例如在函數聲明中,指定了extern "C",仍然要遵守C++的類型檢測、參數轉換規則。

再看下面的一個例子,為了聲明一個變數而不是定義一個變數,你必須在聲明時指定extern關鍵字,但是當你又加上了"C",它不會改變語義,但是會改變它的編譯和連接方式。

如果你有很多語言要加上extern "C",你可以將它們放到extern "C"{ }中。

2.3、小結extern "C"

通過上面兩節的分析,我們知道extern "C"的真實目的是實現類C和C++的混合編程。在C++源文件中的語句前面加上extern "C",表明它按照類C的編譯和連接規約來編譯和連接,而不是C++的編譯的連接規約。這樣在類C的代碼中就可以調用C++的函數or變數等。(註:我在這里所說的類C,代表的是跟C語言的編譯和連接方式一致的所有語言)

3、C和C++互相調用

我們既然知道extern "C"是實現的類C和C++的混合編程。下面我們就分別介紹如何在C++中調用C的代碼、C中調用C++的代碼。首先要明白C和C++互相調用,你得知道它們之間的編譯和連接差異,及如何利用extern "C"來實現相互調用。

3.1、C++的編譯和連接

C++是一個面向對象語言(雖不是純粹的面向對象語言),它支持函數的重載,重載這個特性給我們帶來了很大的便利。為了支持函數重載的這個特性,C++編譯器實際上將下面這些重載函數:

1
void print(int i);

2
void print(char c);

3
void print(float f);

4
void print(char* s);

編譯為:

1
_print_int

2
_print_char

3
_print_float

4
_pirnt_string

這樣的函數名,來唯一標識每個函數。註:不同的編譯器實現可能不一樣,但是都是利用這種機制。所以當連接是調用print(3)時,它會去查找_print_int(3)這樣的函數。下面說個題外話,正是因為這點,重載被認為不是多態,多態是運行時動態綁定(「一種介面多種實現」),如果硬要認為重載是多態,它頂多是編譯時「多態」。

C++中的變數,編譯也類似,如全局變數可能編譯g_xx,類變數編譯為c_xx等。連接是也是按照這種機制去查找相應的變數。

3.2、C的編譯和連接

C語言中並沒有重載和類這些特性,故並不像C++那樣print(int
i),會被編譯為_print_int,而是直接編譯為_print等。因此如果直接在C++中調用C的函數會失敗,因為連接是調用C中的print(3)時,它會去找_print_int(3)。因此extern
"C"的作用就體現出來了。

3.3、C++中調用C的代碼

假設一個C的頭文件cHeader.h中包含一個函數print(int i),為了在C++中能夠調用它,必須要加上extern關鍵字(原因在extern關鍵字那節已經介紹)。它的代碼如下:

1
#ifndef C_HEADER

2
#define C_HEADER

3

4
extern void print(int i);

5

6
#endif C_HEADER

相對應的實現文件為cHeader.c的代碼為:

1
#include <stdio.h>

2
#include "cHeader.h"

3
void print(int i)

4
{

5
printf("cHeader %d\n",i);

6
}

現在C++的代碼文件C++.cpp中引用C中的print(int i)函數:

1
extern "C"{

2
#include "cHeader.h"

3
}

4

5
int main(int argc,char** argv)

6
{

7
print(3);

8
return 0;

9
}

執行程序輸出:

3.4、C中調用C++的代碼

現在換成在C中調用C++的代碼,這與在C++中調用C的代碼有所不同。如下在cppHeader.h頭文件中定義了下面的代碼:

1
#ifndef CPP_HEADER

2
#define CPP_HEADER

3

4
extern "C" void print(int i);

5

6
#endif CPP_HEADER

相應的實現文件cppHeader.cpp文件中代碼如下:

1
#include "cppHeader.h"

2

3
#include <iostream>

4
using namespace std;

5
void print(int i)

6
{

7
cout<<"cppHeader "<<i<<endl;

8
}

在C的代碼文件c.c中調用print函數:

1
extern void print(int i);

2
int main(int argc,char** argv)

3
{

4
print(3);

5
return 0;

6
}

注意在C的代碼文件中直接#include "cppHeader.h"頭文件,編譯出錯。而且如果不加extern int print(int i)編譯也會出錯。

4、C和C++混合調用特別之處函數指針

當我們C和C++混合編程時,有時候會用一種語言定義函數指針,而在應用中將函數指針指向另一中語言定義的函數。如果C和C++共享同一中編譯和連接、函數調用機制,這樣做是可以的。然而,這樣的通用機制,通常不然假定它存在,因此我們必須小心地確保函數以期望的方式調用。

而且當指定一個函數指針的編譯和連接方式時,函數的所有類型,包括函數名、函數引入的變數也按照指定的方式編譯和連接。如下例:

01
typedef int (*FT) (const void* ,const void*);//style of C++

02

03
extern "C"{

04
typedef int (*CFT) (const void*,const void*);//style of C

05
void qsort(void* p,size_t n,size_t sz,CFT cmp);//style of C

06
}

07

08
void isort(void* p,size_t n,size_t sz,FT cmp);//style of C++

09
void xsort(void* p,size_t n,size_t sz,CFT cmp);//style of C

10

11
//style of C

12
extern "C" void ysort(void* p,size_t n,size_t sz,FT cmp);

13

14
int compare(const void*,const void*);//style of C++

15
extern "C" ccomp(const void*,const void*);//style of C

16

17
void f(char* v,int sz)

18
{

19
//error,as qsort is style of C

20
//but compare is style of C++

21
qsort(v,sz,1,&compare);

22
qsort(v,sz,1,&ccomp);//ok

23

24
isort(v,sz,1,&compare);//ok

25
//error,as isort is style of C++

26
//but ccomp is style of C

27
isort(v,sz,1,&ccopm);

28
}

注意:typedef int (*FT) (const void* ,const void*),表示定義了一個函數指針的別名FT,這種函數指針指向的函數有這樣的特徵:返回值為int型、有兩個參數,參數類型可以為任意類型的指針(因為為void*)。

最典型的函數指針的別名的例子是,信號處理函數signal,它的定義如下:

1
typedef void (*HANDLER)(int);

2
HANDLER signal(int ,HANDLER);

上面的代碼定義了信函處理函數signal,它的返回值類型為HANDLER,有兩個參數分別為int、HANDLER。 這樣避免了要這樣定義signal函數:

1
void (*signal (int ,void(*)(int) ))(int)

比較之後可以明顯的體會到typedef的好處。

python和C語言混編的幾種方式

C語言設計一個完整的可執行文件,然後python通過subprocess來執行該可執行文件,本質上是fork+execve。
C語言使用popen/system或者直接以系統調用級fork+exec來運行python程序也是一種混編的手段了。

⑶ 匯編語言和c/c++的混合編程通常有哪四種方式

1、在C和C++代碼中內聯匯編
2、使用C、C++程序調用匯編庫
3、反匯編C和C++代碼,在匯編碼上進行優化,最後編譯
4、匯編調用C庫

⑷ 如何利用C和匯編語言混合編程實現DSP軟體設計

其中絕大部分功能不屬於標准C語言,因此被稱為C語言擴展。下面列出的是其中有益於DSP編程的一些功能。 內聯匯編(inline assembly):該功能可以幫助編程人員將匯編指令插入C代碼。 硬體寄存器綁定C變數:該功能經常與匯編指令內聯功能結合在一起,幫助內聯匯編代碼訪問C語言級的變數(見圖3)。圖3:結合內聯匯編和硬體寄存器綁定功能的代碼示例。 存儲區屬性:該功能允許編程人員將上述變數和函數分配到獨特的用戶定義存儲區,可以讓編程人員將C語言級單元分配到實際的存儲器位置,這對DSP應用來說非常關鍵。 用戶定義的調用約定:在某些情況下,匯編函數可以通過用戶定義的調用約定取得更好的優化效果。 編譯器內部函數(Compiler intrinsics):是指能夠使用專門的宏或函數調用觸發的內建編譯器功能總稱。沒有內部函數支持的編譯器必須調用用戶定義的函數,這樣做可能會令用戶定義函數可能會在一個環路里產生函數調用和返回(見圖4),從而產生巨大的開銷。圖4:ETSI的mult_r(乘法和取整)基本操作的C代碼實現(左)和對應的由CEVA-TeakLite-III編譯器生成的匯編代碼(右)。 匯編內部函數:是將匯編代碼內聯進C代碼的一種先進方法,下文將有詳細介紹。把匯編指令當作C語句一樣來編寫內聯匯編功能具有顯著的缺點。它會破壞各種編譯器優化操作,因為編譯器不了解內聯代碼的內容,會使用最壞假設;以及它可能迫使編程人員處理底層問題,如寄存器分配和指令調度。匯編內部函數可以幫助編程人員實現內聯匯編代碼,並且不存在這些缺點。從編程人員的角度看,匯編內部函數就像是C語言宏或函數。它們接收C語言變數,返回C語言輸出結果,同時表現為單個匯編指令。由於涉及該功能的所有代碼都在C語言等級,因此編程人員不必擔心寄存器分配、指令調度和其它底層問題。匯編內部函數不僅不會妨礙編譯器優化操作,還會參與優化過程,就像它們是編譯器正常產生的匯編指令一樣。這些特徵使得匯編內部函數的功能非常強大。利用匯編內部函數,編程人員可以從編譯器不可能產生的獨特匯編指令中受益。例如,CEVA-X1641的bitrev(位反向)指令就是為FFT等演算法定製的。由於編譯器不太可能把一個程序看作一個FFT並使用bitrev指令,因此編程人員可以完全把bitrev匯編內部功能嵌入到C代碼中。結合對應用的透徹了解,編程人員還可以使用C應用程序的性能決定段里的精確序列匯編內部函數,從而能夠確保編譯器生成的代碼效率就像手工編寫的一樣高。圖5是CEVA-X1641編譯器與匯編內部函數一起使用的例子。匯編內部函數還受益於由CEVA-X1641編譯器處理的問題所決定的機器,如寄存器分配、指令調度和硬體單元分配。圖5:CEVA-X1641編譯器支持的匯編內部函數的使用。 調試混合代碼的應用程序匯編代碼的調試需要對延遲和存儲器對齊限制等架構和機器級問題有深入的了解。只是簡單地把C代碼和匯編代碼放在一起會使事情更麻煩,因為編程人員現在還必須調試C代碼和匯編代碼之間的連接。調試混合代碼應用程序的第一步就是分隔問題。假設保持匯編代碼的C語言實現不變以及C語言實現方案工作正常,那麼將匯編函數轉換成C語言實現並重新測試應用程序就相對比較容易。為了迅速檢測出問題,編程人員可以在每一步把受懷疑函數的一半轉換為相應的C語言實現方案。一旦有問題的匯編函數被確定,它就應該同時作為獨立的匯編問題和C與匯編的連接問題加以分析。調試獨立的匯編問題對匯編編程人員來說十分簡單明了,但C與匯編的連接問題就有點麻煩。在考慮匯編函數本身時,C與匯編的連接問題是不可見的,這與獨立的匯編問題有所不同。為了找出這些問題,編程人員必須檢查編譯器的約定,比如調用約定和寄存器使用約定。編程人員還必須檢查編譯器假設,比如匯編指令的行蹤。為了節省調試時間,編程人員應該在第一次實現匯編函數時驗證是否遵循所有的編譯器約定和假設。

⑸ c/c++混合編程

extern "C" int func(); //聲明fun為外部的C函數
經過的聲明處理,編譯器就知道這個函數必須按照C語言的方式調用,從而為其生成相應的目標代碼。如果有很多,就一起去聲明:
extern "C" {
int func();
void func2(int ,int);
}
如果編程時間足夠長,換句話說,就是經驗足夠豐富,就應該知道模塊函數的介面通常都是放到頭文件中去聲明,這樣就可以保證供多個源文件引用。那新的問題又來了,如果一個頭文件既被C++源文件引用又被C源文件引用,則上述聲明就出現了問題,因為C編譯器不認識extern後的字元串 C。解決這個問題的方法就是在頭文件加入如下代碼,使之對C和C++編譯器通用:
#ifdef __cplusplus
extern "C" { //C編譯器看不到這一行
#endif
int func1();
void func2(int ,int);
#ifdef __cplusplus
} //C編譯器看不到這一行
#endif
這里用到一個宏定義__cplusplus,如果是通過C編譯器進行預處理,則它沒有定義。只有用C++編譯器進行預處理,則它有定義。這樣就可以把代碼分為兩種情況進行編譯,從而實現對C和C++編譯器的通用性。

⑹ python怎麼和C或者C++混合編程

我不知道你有沒有基礎,沒有基礎的人一般學C獲取有點難度。在C ++的要求很高。在我們學校的課程是從C語言開始教,但由於很多學生都沒有基礎,所以效果很不好。去年,我們的課程進行了調整,現在教授從簡單的語句JAVA命令,然後深入到SQL資料庫的C#一點點.......效果還不錯。基本的小學課結束後,他們將盡一切努力用QQ聊天。點擊看詳細所以我想學習編程,有什麼好介紹的科學,這取決於你自己的情況。對你有好處。

⑺ c與c++ 如何同時混編

c++支持c的編程思想。在c++使用c的頭文件要加extern 「c」來約束

⑻ c語言和匯編語言的混合編程方法主要有哪些

C語言在實際應用中,為了完成某種特定的功能,或需要縮短程序的運行時間,或需要對硬體進行直接操作,或需要利用操作系統的某些功能模塊,這時就會使用到匯編語言程序,即要採用C語言與匯編語言的混合編程技術實現。

C與匯編語言的混合編程方法,為C語言應用開發人員提供方便。匯編語言開發的程序代碼短、執行速度快,而C語言是應用廣泛的面向過程的開發語言。通過給出混合編程的方法、約定規則以及實現的具體步驟,說明了混合編程需要注意的問題,最後給出了相應的實例。

(8)與c混合編程擴展閱讀:

匯編語言具有更高的機器相關性,更加便於記憶和書寫,但又同時保留了機器語言高速度和高效率的特點。匯編語言仍是面向機器的語言,很難從其代碼上理解程序設計意圖,設計出來的程序不易被移植,故不像其他大多數的高級計算機語言一樣被廣泛應用。所以在高級語言高度發展的今天,它通常被用在底層,通常是程序優化或硬體操作的場合。

⑼ 怎麼實現c語言與匯編語言的混合編程

這個問題有很多做法。如果你的匯編語句比較簡單可以採用樓上的做法。
如果的你的匯編比較大,可以寫成另外一個匯編文件*.asm。然後根據你的編譯器給你的指令,把你的匯編函數抽象出C語言聲明。做成*.h文件,供其他人調用。這是現在比較流行的底層API開發模式。
如 我把需要用匯編語句寫的功能寫一個匯編文件 asm_main.asm,我在該文件的前面 加一句 XDEF asm_main(這是我的編譯器的規定,用XDEF),然後在asm_main.h里聲明(就是典型的C聲明 如 U16 asm_main())。這樣你在你的C程序中如果用到匯編功能,只要#include "asm_main.h" 就可以調用用匯編寫的函數了。對於大規模的軟體開發,這是個很重要的方法。它提供了二次介面供上層調用。你可以把所有硬體驅動或底層API都寫成這樣子。C語言開發者就不需要了解底層硬體細節了。而且底層匯編的改動也不會影響C。這樣你開發的C程序可移植性就高了。當然,你還需要些編譯原理的知識。如,在匯編里,asm_main函數只是個標號,寫成asm_main: 對吧,但是如果你需要些入口參數怎麼辦?比如你要抽象出U16 asm_main(char ,char *),這個時候你要考慮參數是怎樣入棧的,一般是從右到左依次壓棧的,等等還有些問題。
現在的大學本科教育只教一些單片機開發的小技能,沒有一個系統的概念。我很願意把我工作中得來的經驗與大家分享。

⑽ C與C++混合編程的問題

問題出在主函數你對add函數的調用上。
void main()
{
void add();//調用cExample.c中的add函數,是你的本意,可編譯器在這里認為你是聲明了一個函數void add()正確使用方法是add();不要前面的void.
printf("x=%d\n",x);//引用c語言中定義的全局變數x
}

熱點內容
java返回this 發布:2025-10-20 08:28:16 瀏覽:705
製作腳本網站 發布:2025-10-20 08:17:34 瀏覽:968
python中的init方法 發布:2025-10-20 08:17:33 瀏覽:676
圖案密碼什麼意思 發布:2025-10-20 08:16:56 瀏覽:828
怎麼清理微信視頻緩存 發布:2025-10-20 08:12:37 瀏覽:737
c語言編譯器怎麼看執行過程 發布:2025-10-20 08:00:32 瀏覽:1076
郵箱如何填寫發信伺服器 發布:2025-10-20 07:45:27 瀏覽:308
shell腳本入門案例 發布:2025-10-20 07:44:45 瀏覽:188
怎麼上傳照片瀏覽上傳 發布:2025-10-20 07:44:03 瀏覽:875
python股票數據獲取 發布:2025-10-20 07:39:44 瀏覽:829