當前位置:首頁 » 操作系統 » 回溯導航演算法

回溯導航演算法

發布時間: 2022-08-18 08:39:45

『壹』 百度地圖的路徑搜索演算法

這個還是要問程序猿,現在比較流行A*演算法,至於網路是否開發出了新的演算法不得而知,畢竟沒有完全相同的程序。
給你看一篇文獻:
地圖中最短路徑的搜索演算法研究
學生:李小坤 導師:董巒
摘要:目前為止, 國內外大量專家學者對「最短路徑問題」進行了深入的研究。本文通過理論分析, 結合實際應用,從各個方面較系統的比較廣度優先搜索演算法(BFS)、深度優先搜索演算法(DFS)、A* 演算法的優缺點。
關鍵詞:最短路徑演算法;廣度優先演算法;深度優先演算法;A*演算法;
The shortest path of map's search algorithm
Abstract:So far, a large number of domestic and foreign experts and scholars on the" shortest path problem" in-depth study. In this paper, through theoretical analysis and practical application, comprise with the breadth-first search algorithm ( BFS ), depth-first search algorithm ( DFS ) and the A * algorithms from any aspects of systematic.
Key words: shortest path algorithm; breadth-first algorithm; algorithm; A * algorithm;
前言:
最短路徑問題是地理信息系統(GIS)網路分析的重要內容之一,而且在圖論中也有著重要的意義。實際生活中許多問題都與「最短路徑問題」有關, 比如: 網路路由選擇, 集成電路設計、布線問題、電子導航、交通旅遊等。本文應用深度優先演算法,廣度優先演算法和A*演算法,對一具體問題進行討論和分析,比較三種算的的優缺點。

在地圖中最短路徑的搜索演算法研究中,每種演算法的優劣的比較原則主要遵循以下三點:[1]
(1)演算法的完全性:提出一個問題,該問題存在答案,該演算法能夠保證找到相應的答案。演算法的完全性強是演算法性能優秀的指標之一。
(2)演算法的時間復雜性: 提出一個問題,該演算法需要多長時間可以找到相應的答案。演算法速度的快慢是演算法優劣的重要體現。
(3)演算法的空間復雜性:演算法在執行搜索問題答案的同時,需要多少存儲空間。演算法佔用資源越少,演算法的性能越好。
地圖中最短路徑的搜索演算法:
1、廣度優先演算法
廣度優先演算法(Breadth-First-Search),又稱作寬度優先搜索,或橫向優先搜索,是最簡便的圖的搜索演算法之一,這一演算法也是很多重要的圖的演算法的原型,Dijkstra單源最短路徑演算法和Prim最小生成樹演算法都採用了和寬度優先搜索類似的思想。廣度優先演算法其別名又叫BFS,屬於一種盲目搜尋法,目的是系統地展開並檢查圖中的所有節點,以找尋結果。換句話說,它並不考慮結果的可能位址,徹底地搜索整張圖,直到找到結果為止。BFS並不使用經驗法則演算法。
廣度優先搜索演算法偽代碼如下:[2-3]
BFS(v)//廣度優先搜索G,從頂點v開始執行
//所有已搜索的頂點i都標記為Visited(i)=1.
//Visited的初始分量值全為0
Visited(v)=1;
Q=[];//將Q初始化為只含有一個元素v的隊列
while Q not null do
u=DelHead(Q);
for 鄰接於u的所有頂點w do
if Visited(w)=0 then
AddQ(w,Q); //將w放於隊列Q之尾
Visited(w)=1;
endif
endfor
endwhile
end BFS
這里調用了兩個函數:AddQ(w,Q)是將w放於隊列Q之尾;DelHead(Q)是從隊列Q取第一個頂點,並將其從Q中刪除。重復DelHead(Q)過程,直到隊列Q空為止。
完全性:廣度優先搜索演算法具有完全性。這意指無論圖形的種類如何,只要目標存在,則BFS一定會找到。然而,若目標不存在,且圖為無限大,則BFS將不收斂(不會結束)。
時間復雜度:最差情形下,BFS必須尋找所有到可能節點的所有路徑,因此其時間復雜度為,其中|V|是節點的數目,而 |E| 是圖中邊的數目。
空間復雜度:因為所有節點都必須被儲存,因此BFS的空間復雜度為,其中|V|是節點的數目,而|E|是圖中邊的數目。另一種說法稱BFS的空間復雜度為O(B),其中B是最大分支系數,而M是樹的最長路徑長度。由於對空間的大量需求,因此BFS並不適合解非常大的問題。[4-5]
2、深度優先演算法
深度優先搜索演算法(Depth First Search)英文縮寫為DFS,屬於一種回溯演算法,正如演算法名稱那樣,深度優先搜索所遵循的搜索策略是盡可能「深」地搜索圖。[6]其過程簡要來說是沿著頂點的鄰點一直搜索下去,直到當前被搜索的頂點不再有未被訪問的鄰點為止,此時,從當前輩搜索的頂點原路返回到在它之前被搜索的訪問的頂點,並以此頂點作為當前被搜索頂點。繼續這樣的過程,直至不能執行為止。
深度優先搜索演算法的偽代碼如下:[7]
DFS(v) //訪問由v到達的所有頂點
Visited(v)=1;
for鄰接於v的每個頂點w do
if Visited(w)=0 then
DFS(w);
endif
endfor
end DFS
作為搜索演算法的一種,DFS對於尋找一個解的NP(包括NPC)問題作用很大。但是,搜索演算法畢竟是時間復雜度是O(n!)的階乘級演算法,它的效率比較低,在數據規模變大時,這種演算法就顯得力不從心了。[8]關於深度優先搜索的效率問題,有多種解決方法。最具有通用性的是剪枝,也就是去除沒有用的搜索分支。有可行性剪枝和最優性剪枝兩種。
BFS:對於解決最短或最少問題特別有效,而且尋找深度小,但缺點是內存耗費量大(需要開大量的數組單元用來存儲狀態)。
DFS:對於解決遍歷和求所有問題有效,對於問題搜索深度小的時候處理速度迅速,然而在深度很大的情況下效率不高。
3、A*演算法
1968年的一篇論文,「P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths in graphs. IEEE Trans. Syst. Sci. and Cybernetics, SSC-4(2):100-107, 1968」。[9]從此,一種精巧、高效的演算法——A*演算法問世了,並在相關領域得到了廣泛的應用。A* 演算法其實是在寬度優先搜索的基礎上引入了一個估價函數,每次並不是把所有可擴展的結點展開,而是利用估價函數對所有未展開的結點進行估價, 從而找出最應該被展開的結點,將其展開,直到找到目標節點為止。
A*演算法主要搜索過程偽代碼如下:[10]
創建兩個表,OPEN表保存所有已生成而未考察的節點,CLOSED表中記錄已訪問過的節點。
算起點的估價值;
將起點放入OPEN表;
while(OPEN!=NULL) //從OPEN表中取估價值f最小的節點n;
if(n節點==目標節點) break;
endif
for(當前節點n 的每個子節點X)
算X的估價值;
if(X in OPEN)
if(X的估價值小於OPEN表的估價值)
把n設置為X的父親;
更新OPEN表中的估價值; //取最小路徑的估價值;
endif
endif
if(X inCLOSE)
if( X的估價值小於CLOSE表的估價值)
把n設置為X的父親;
更新CLOSE表中的估價值;
把X節點放入OPEN //取最小路徑的估價值
endif
endif
if(X not inboth)
把n設置為X的父親;
求X的估價值;
並將X插入OPEN表中; //還沒有排序
endif
end for
將n節點插入CLOSE表中;
按照估價值將OPEN表中的節點排序; //實際上是比較OPEN表內節點f的大小,從最小路徑的節點向下進行。
end while(OPEN!=NULL)
保存路徑,即 從終點開始,每個節點沿著父節點移動直至起點,這就是你的路徑;
A *演算法分析:
DFS和BFS在展開子結點時均屬於盲目型搜索,也就是說,它不會選擇哪個結點在下一次搜索中更優而去跳轉到該結點進行下一步的搜索。在運氣不好的情形中,均需要試探完整個解集空間, 顯然,只能適用於問題規模不大的搜索問題中。而A*演算法與DFS和BFS這類盲目型搜索最大的不同,就在於當前搜索結點往下選擇下一步結點時,可以通過一個啟發函數來進行選擇,選擇代價最少的結點作為下一步搜索結點而跳轉其上。[11]A *演算法就是利用對問題的了解和對問題求解過程的了解, 尋求某種有利於問題求解的啟發信息, 從而利用這些啟發信息去搜索最優路徑.它不用遍歷整個地圖, 而是每一步搜索都根據啟發函數朝著某個方向搜索.當地圖很大很復雜時, 它的計算復雜度大大優於D ijks tr a演算法, 是一種搜索速度非常快、效率非常高的演算法.但是, 相應的A*演算法也有它的缺點.啟發性信息是人為加入的, 有很大的主觀性, 直接取決於操作者的經驗, 對於不同的情形要用不同的啟發信息和啟發函數, 且他們的選取難度比較大,很大程度上找不到最優路徑。
總結:
本文描述了最短路徑演算法的一些步驟,總結了每個演算法的一些優缺點,以及演算法之間的一些關系。對於BFS還是DFS,它們雖然好用,但由於時間和空間的局限性,以至於它們只能解決規模不大的問題,而最短或最少問題應該選用BFS,遍歷和求所有問題時候則應該選用DFS。至於A*演算法,它是一種啟發式搜索演算法,也是一種最好優先的演算法,它適合於小規模、大規模以及超大規模的問題,但啟發式搜索演算法具有很大的主觀性,它的優劣取決於編程者的經驗,以及選用的啟發式函數,所以用A*演算法編寫一個優秀的程序,難度相應是比較大的。每種演算法都有自己的優缺點,對於不同的問題選擇合理的演算法,才是最好的方法。
參考文獻:
[1]陳聖群,滕忠堅,洪親,陳清華.四種最短路徑演算法實例分析[J].電腦知識與技術(學術交流),2007(16):1030-1032
[2]劉樹林,尹玉妹.圖的最短路徑演算法及其在網路中的應用[J].軟體導刊,2011(07):51-53
[3]劉文海,徐榮聰.幾種最短路徑的演算法及比較[J].福建電腦,2008(02):9-12
[4]鄧春燕.兩種最短路徑演算法的比較[J].電腦知識與技術,2008(12):511-513
[5]王蘇男,宋偉,姜文生.最短路徑演算法的比較[J].系統工程與電子技術,1994(05):43-49
[6]徐鳳生,李天志.所有最短路徑的求解演算法[J].計算機工程與科學,2006(12):83-84
[7]李臣波,劉潤濤.一種基於Dijkstra的最短路徑演算法[J].哈爾濱理工大學學報,2008(03):35-37
[8]徐鳳生.求最短路徑的新演算法[J].計算機工程與科學,2006(02).
[9] YanchunShen . An improved Graph-based Depth-First algorithm and Dijkstra algorithm program of police patrol [J] . 2010 International Conference on Electrical Engineering and Automatic Control , 2010(3) : 73-77
[10]部亞松.VC++實現基於Dijkstra演算法的最短路徑[J].科技信息(科學教研),2008(18):36-37
[11] 楊長保,王開義,馬生忠.一種最短路徑分析優化演算法的實現[J]. 吉林大學學報(信息科學版),2002(02):70-74

『貳』 誰能解釋一下回溯演算法

回溯演算法也叫試探法,它是一種系統地搜索問題的解的方法。回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。
初識回溯演算法是在解決8皇後問題時候,第一步按照順序放一個皇後,然後第二步符合要求放第2個皇後,如果沒有符合位置符合要求,那麼就要改變第一個皇後的位置,重新放第2個皇後的位置,直到找到符合條件的位置就可以了
回溯在迷宮搜索中使用很常見,就是這條路走不通,然後返回前一個路口,繼續下一條路。

『叄』 什麼是回溯演算法

回溯演算法也叫試探法,它是一種系統地搜索問題的解的方法。回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。用回溯演算法解決問題的一般步驟為: 1、定義一個解空間,它包含問題的解。 2、利用適於搜索的方法組織解空間。 3、利用深度優先法搜索解空間。 4、利用限界函數避免移動到不可能產生解的子空間。 問題的解空間通常是在搜索問題的解的過程中動態產生的,這是回溯演算法的一個重要特性。 1.跳棋問題: 33個方格頂點擺放著32枚棋子,僅中央的頂點空著未擺放棋子。下棋的規則是任一棋子可以沿水平或成垂直方向跳過與其相鄰的棋子,進入空著的頂點並吃掉被跳過的棋子。試設計一個演算法找出一種下棋方法,使得最終棋盤上只剩下一個棋子在棋盤中央。 演算法實現提示 利用回溯演算法,每次找到一個可以走的棋子走動,並吃掉。若走到無子可走還是剩餘多顆,則回溯,走下一顆可以走動的棋子。當吃掉31顆時說明只剩一顆,程序結束。 2.中國象棋馬行線問題: 中國象棋半張棋盤如圖1(a)所示。馬自左下角往右上角跳。今規定只許往右跳,不許往左跳。比如 圖4(a)中所示為一種跳行路線,並將所經路線列印出來。列印格式為: 0,0->2,1->3,3->1,4->3,5->2,7->4,8… 演算法分析: 如圖1(b),馬最多有四個方向,若原來的橫坐標為j、縱坐標為i,則四個方向的移動可表示為: 1: (i,j)→(i+2,j+1); (i<3,j<8) 2: (i,j)→(i+1,j+2); (i<4,j<7) 3: (i,j)→(i-1,j+2); (i>0,j<7) 4: (i,j)→(i-2,j+1); (i>1,j<8) 搜索策略: S1:A[1]:=(0,0); S2:從A[1]出發,按移動規則依次選定某個方向,如果達到的是(4,8)則轉向S3,否則繼續搜索下 一個到達的頂點; S3:列印路徑。 演算法設計: procere try(i:integer); {搜索} var j:integer; begin for j:=1 to 4 do {試遍4個方向} if 新坐標滿足條件 then begin 記錄新坐標; if 到達目的地 then print {統計方案,輸出結果} else try(i+1); {試探下一步} 退回到上一個坐標,即回溯; end; end;

『肆』 回溯演算法的基本思想

回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。八皇後問題就是回溯演算法的典型,第一步按照順序放一個皇後,然後第二步符合要求放第2個皇後,如果沒有位置符合要求,那麼就要改變第一個皇後的位置,重新放第2個皇後的位置,直到找到符合條件的位置就可以了。回溯在迷宮搜索中使用很常見,就是這條路走不通,然後返回前一個路口,繼續下一條路。回溯演算法說白了就是窮舉法。不過回溯演算法使用剪枝函數,剪去一些不可能到達 最終狀態(即答案狀態)的節點,從而減少狀態空間樹節點的生成。回溯法是一個既帶有系統性又帶有跳躍性的的搜索演算法。它在包含問題的所有解的解空間樹中,按照深度優先的策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任一結點時,總是先判斷該結點是否肯定不包含問題的解。如果肯定不包含,則跳過對以該結點為根的子樹的系統搜索,逐層向其祖先結點回溯。否則,進入該子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根結點的所有子樹都已被搜索遍才結束。而回溯法在用來求問題的任一解時,只要搜索到問題的一個解就可以結束。這種以深度優先的方式系統地搜索問題的解的演算法稱為回溯法,它適用於解一些組合數較大的問題。

『伍』 回溯演算法的介紹

回溯演算法也叫試探法,它是一種系統地搜索問題的解的方法。回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。用回溯演算法解決問題的一般步驟為:1、定義一個解空間,它包含問題的解。2、利用適於搜索的方法組織解空間。3、利用深度優先法搜索解空間。4、利用限界函數避免移動到不可能產生解的子空間。問題的解空間通常是在搜索問題的解的過程中動態產生的,這是回溯演算法的一個重要特性。

『陸』 回溯演算法的來源

回溯演算法也叫試探法,它是一種系統地搜索問題的解的方法。
用回溯演算法解決問題的一般步驟:
1 針對所給問題,定義問題的解空間,它至少包含問題的一個(最優)解。
2 確定易於搜索的解空間結構,使得能用回溯法方便地搜索整個解空間 。
3 以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索。
問題的解空間通常是在搜索問題解的過程中動態產生的,這是回溯演算法的一個重要特性。
確定了解空間的組織結構後,回溯法就從開始結點(根結點)出發,以深度優先的方式搜索整個解空間。這個開始結點就成為一個活結點,同時也成為當前的擴展結點。在當前的擴展結點處,搜索向縱深方向移至一個新結點。這個新結點就成為一個新的活結點,並成為當前擴展結點。如果在當前的擴展結點處不能再向縱深方向移動,則當前擴展結點就成為死結點。此時,應往回移動(回溯)至最近的一個活結點處,並使這個活結點成為當前的擴展結點。回溯法即以這種工作方式遞歸地在解空間中搜索,直至找到所要求的解或解空間中已沒有活結點時為止。

『柒』 回溯演算法的基本思想及其在軟體開發中的應用

回溯演算法其實就是簡單的枚舉,只不過是加了一點技巧。回溯演算法一般是已經完成的都是合法的,後續的操作不需要考慮先前已經完成的。短時間內通過文字也說不太明白,建議從一些題目去體會,八皇後、全排列。並綜合遞歸去理解這樣的話應該會有比較深刻的理解。
至於在軟體開發中的應用,演算法思想可以用在任何方面,最近甚至比較流行,將一些演算法用到硬體中,演算法提供的是一種思想,認真體會就會發現它會應用在任何方面。
希望能幫助到你。

『捌』 請問什麼是回溯演算法

回溯(backtracking)是一種系統地搜索問題解答的方法。為了實現回溯,首先需要為問題定義一個解空間(solution space),這個空間必須至少包含問題的一個解(可能是最優的)。
下一步是組織解空間以便它能被容易地搜索。典型的組織方法是圖(迷宮問題)或樹(N皇後問題)。
一旦定義了解空間的組織方法,這個空間即可按深度優先的方法從開始節點進行搜索。

回溯方法的步驟如下:
1) 定義一個解空間,它包含問題的解。
2) 用適於搜索的方式組織該空間。
3) 用深度優先法搜索該空間,利用限界函數避免移動到不可能產生解的子空間。
回溯演算法的一個有趣的特性是在搜索執行的同時產生解空間。在搜索期間的任何時刻,僅保留從開始節點到當前節點的路徑。因此,回溯演算法的空間需求為O(從開始節點起最長路徑的長度)。這個特性非常重要,因為解空間的大小通常是最長路徑長度的指數或階乘。所以如果要存儲全部解空間的話,再多的空間也不夠用。

『玖』 簡述回溯法的2種演算法框架,並分別舉出適合用這兩種框架解決的一個問題實例

回溯法(探索與回溯法)是一種選優搜索法,又稱為試探法,按選優條件向前搜索,以達到目標。但當探索到某一步時,發現原先選擇並不優或達不到目標,就退回一步重新選擇,這種走不通就退回再走的技術為回溯法,而滿足回溯條件的某個狀態的點稱為「回溯點」。
基本思想
在包含問題的所有解的解空間樹中,按照深度優先搜索的策略,從根結點出發深度探索解空間樹。當探索到某一結點時,要先判斷該結點是否包含問題的解,如果包含,就從該結點出發繼續探索下去,如果該結點不包含問題的解,則逐層向其祖先結點回溯。(其實回溯法就是對隱式圖的深度優先搜索演算法)。 若用回溯法求問題的所有解時,要回溯到根,且根結點的所有可行的子樹都要已被搜索遍才結束。 而若使用回溯法求任一個解時,只要搜索到問題的一個解就可以結束

一般表達
可用回溯法求解的問題P,通常要能表達為:對於已知的由n元組(x1,x2,…,xn)組成的一個狀態空間E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},給定關於n元組中的一個分量的一個約束集D,要求E中滿足D的全部約束條件的所有n元組。其中Si是分量xi的定義域,且 |Si| 有限,i=1,2,…,n。我們稱E中滿足D的全部約束條件的任一n元組為問題P的一個解。
解問題P的最樸素的方法就是枚舉法,即對E中的所有n元組逐一地檢測其是否滿足D的全部約束,若滿足,則為問題P的一個解。但顯然,其計算量是相當大的。

規律
我們發現,對於許多問題,所給定的約束集D具有完備性,即i元組(x1,x2,…,xi)滿足D中僅涉及到x1,x2,…,xi的所有約束意味著j(j<=i)元組(x1,x2,…,xj)一定也滿足d中僅涉及到x1,x2,…,xj的所有約束,i=1,2,…,n。換句話說,只要存在0≤j≤n-1,使得(x1,x2,…,xj)違反d中僅涉及到x1,x2,…,xj的約束之一,則以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)一定也違反d中僅涉及到x1,x2,…,xi的一個約束,n≥i≥j。因此,對於約束集d具有完備性的問題p,一旦檢測斷定某個j元組(x1,x2,…,xj)違反d中僅涉及x1,x2,…,xj的一個約束,就可以肯定,以(x1,x2,…,xj)為前綴的任何n元組(x1,x2,…,xj,xj+1,…,xn)都不會是問題p的解,因而就不必去搜索它們、檢測它們。回溯法正是針對這類問題,利用這類問題的上述性質而提出來的比枚舉法效率更高的演算法。

『拾』 Free Pascal 中的回溯演算法,具體講一下

1 回溯演算法也叫試探法,它是一種系統地搜索問題的解的方法。回溯演算法的基本思想是:從一條路往前走,能進則進,不能進則退回來,換一條路再試。用回溯演算法解決問題的一般步驟為: 一、定義一個解空間,它包含問題的解。 二、利用適於搜索的方法組織解空間。 三、利用深度優先法搜索解空間。 四、利用限界函數避免移動到不可能產生解的子空間。 問題的解空間通常是在搜索問題的解的過程中動態產生的,這是回溯演算法的一個重要特性。 回溯法是一個既帶有系統性又帶有跳躍性的的搜索演算法。它在包含問題的所有解的解空間樹中,按照深度優先的策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任一結點時,總是先判斷該結點是否肯定不包含問題的解。如果肯定不包含,則跳過對以該結點為根的子樹的系統搜索,逐層向其祖先結點回溯。否則,進入該子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根結點的所有子樹都已被搜索遍才結束。而回溯法在用來求問題的任一解時,只要搜索到問題的一個解就可以結束。這種以深度優先的方式系統地搜索問題的解的演算法稱為回溯法,它適用於解一些組合數較大的問題.遞歸回溯:由於回溯法是對解空間的深度優先搜索,因此在一般情況下可用遞歸函數來實現回溯法如下:procere try(i:integer);varbeginif i>n then 輸出結果else for j:=下界 to 上界 dobeginx:=h[j];if 可行{滿足限界函數和約束條件} then begin 置值;try(i+1); end;end;end; 說明:i是遞歸深度; n是深度控制,即解空間樹的的高度;可行性判斷有兩方面的內容:不滿約束條件則剪去相應子樹;若限界函數越界,也剪去相應子樹;兩者均滿足則進入下一層;搜索:全面訪問所有可能的情況,分為兩種:不考慮給定問題的特有性質,按事先頂好的順序,依次運用規則,即盲目搜索的方法;另一種則考慮問題給定的特有性質,選用合適的規則,提高搜索的效率,即啟發式的搜索。回溯即是較簡單、較常用的搜索策略。基本思路:若已有滿足約束條件的部分解,不妨設為(x1,x2,x3,……xi),I<n,則添加x(i+1)屬於s(i+2),檢查(x1,x2,……,xi,x(i+1))是否滿足條件,滿足了就繼續添加x(i+2)、s(i+2),若所有的x(i+1)屬於s(i+1)都不能得到部分解,就去掉xi,回溯到(xi,x2,……x(i-1)),添加那些未考察過的x1屬於s1,看其是否滿足約束條件,為此反復進行,直至得到解或證明無解。

熱點內容
30w安卓快充頭哪個最好 發布:2022-09-27 16:49:14 瀏覽:512
抖音小店的密碼在哪裡設置 發布:2022-09-27 16:47:30 瀏覽:512
工作站和伺服器ip沖突會怎麼樣 發布:2022-09-27 16:45:51 瀏覽:430
上傳到考勤機 發布:2022-09-27 16:42:54 瀏覽:612
電商緩存方案 發布:2022-09-27 16:41:52 瀏覽:958
粉末葯品存儲 發布:2022-09-27 16:41:41 瀏覽:203
apriori演算法matlab 發布:2022-09-27 16:41:33 瀏覽:805
android讀取xml 發布:2022-09-27 16:38:15 瀏覽:719
藝人腳本 發布:2022-09-27 16:37:10 瀏覽:187
安卓70編譯教程 發布:2022-09-27 16:37:01 瀏覽:348