java的md5演算法實現
在Java中,使用MD5演算法對字元串進行加密的代碼如下:
首先定義一個公共靜態方法:public final static String MD5(String s) {
接著獲取字元串的位元組數組:byte[] btInput = s.getBytes();
然後創建MessageDigest實例:MessageDigest mdInst = MessageDigest.getInstance("MD5");
更新位元組數組:mdInst.update(btInput);
執行摘要演算法:byte[] md = mdInst.digest();
創建字元串緩沖區:StringBuffer sb = new StringBuffer();
遍歷摘要結果:for (int i = 0; i < md.length; i++) {
將每個位元組轉換為16進制字元串,並添加到緩沖區中:int val = (md[i]) & 0xff; if (val < 16) sb.append("0"); sb.append(Integer.toHexString(val));
最後返回生成的MD5值:return sb.toString();
處理可能出現的異常:} catch (Exception e) { return null; } }
以上代碼可以對任何給定的字元串進行MD5加密。值得注意的是,MD5演算法雖然簡單且效率高,但它存在安全性不足的問題,因此在實際應用中應謹慎使用。
在進行MD5加密時,還需注意以下幾點:
1. 輸入字元串的編碼方式,應確保與加密過程中的編碼一致。
2. MD5生成的哈希值長度為128位,通常表示為32位十六進制數。
3. MD5演算法不是加密演算法,而是一個哈希演算法,不能用於解密。
4. 為了提高安全性,建議使用更高級別的哈希演算法,如SHA-256或SHA-3。
5. 在實際項目中,可以將加密邏輯封裝為一個工具類,方便復用。
6. 對於需要長期存儲的加密數據,建議使用鹽值(Salt)機制,以增加破解難度。
總之,使用MD5演算法對數據進行加密時,需充分考慮其局限性和安全性,以確保數據的安全性。
『貳』 java 怎樣實現 64位的md5加密演算法
直接引入「commons-codec-1.10.jar」這個java包,然後調用相應方法即可
比如我們可以寫一個方法類,把常用的方法都寫進去:
publicclassEncryptionUtil{
/**
*Base64encode
**/
(Stringdata){
returnBase64.encodeBase64String(data.getBytes());
}
/**
*Base64decode
*@
**/
(Stringdata){
returnnewString(Base64.decodeBase64(data.getBytes()),"utf-8");
}
/**
*md5
**/
publicstaticStringmd5Hex(Stringdata){
returnDigestUtils.md5Hex(data);
}
/**
*sha1
**/
publicstaticStringsha1Hex(Stringdata){
returnDigestUtils.sha1Hex(data);
}
/**
*sha256
**/
publicstaticStringsha256Hex(Stringdata){
returnDigestUtils.sha256Hex(data);
}
}
(PS:純手打,望採納)
『叄』 可變MD5加密(Java實現)
可變在這里含義很簡單 就是最終的加密結果是可變的 而非必需按標准MD 加密實現 Java類庫security中的MessageDigest類就提供了MD 加密的支持 實現起來非常方便 為了實現更多效果 我們可以如下設計MD 工具類
Java代碼
package ** ** util;
import java security MessageDigest;
/**
* 標准MD 加密方法 使用java類庫的security包的MessageDigest類處理
* @author Sarin
*/
public class MD {
/**
* 獲得MD 加密密碼的方法
*/
public static String getMD ofStr(String origString) {
String origMD = null;
try {
MessageDigest md = MessageDigest getInstance( MD );
byte[] result = md digest(origString getBytes());
origMD = byteArray HexStr(result);
} catch (Exception e) {
e printStackTrace();
}
return origMD ;
}
/**
* 處理位元組數組得到MD 密碼的方法
*/
private static String byteArray HexStr(byte[] bs) {
StringBuffer *** = new StringBuffer();
for (byte b : bs) {
*** append(byte HexStr(b));
}
return *** toString();
}
/**
* 位元組標准移位轉十六進制方法
*/
private static String byte HexStr(byte b) {
String hexStr = null;
int n = b;
if (n < ) {
//若需要自定義加密 請修改這個移位演算法即可
n = b & x F + ;
}
hexStr = Integer toHexString(n / ) + Integer toHexString(n % );
return hexStr toUpperCase();
}
/**
* 提供一個MD 多次加密方法
*/
public static String getMD ofStr(String origString int times) {
String md = getMD ofStr(origString);
for (int i = ; i < times ; i++) {
md = getMD ofStr(md );
}
return getMD ofStr(md );
}
/**
* 密碼驗證方法
*/
public static boolean verifyPassword(String inputStr String MD Code) {
return getMD ofStr(inputStr) equals(MD Code);
}
/**
* 重載一個多次加密時的密碼驗證方法
*/
public static boolean verifyPassword(String inputStr String MD Code int times) {
return getMD ofStr(inputStr times) equals(MD Code);
}
/**
* 提供一個測試的主函數
*/
public static void main(String[] args) {
System out println( : + getMD ofStr( ));
System out println( : + getMD ofStr( ));
System out println( sarin: + getMD ofStr( sarin ));
System out println( : + getMD ofStr( ));
}
}
可以看出實現的過程非常簡單 因為由java類庫提供了處理支持 但是要清楚的是這種方式產生的密碼不是標準的MD 碼 它需要進行移位處理才能得到標准MD 碼 這個程序的關鍵之處也在這了 怎麼可變?調整移位演算法不就可變了么!不進行移位 也能夠得到 位的密碼 這就不是標准加密了 只要加密和驗證過程使用相同的演算法就可以了
MD 加密還是很安全的 像CMD 那些窮舉破解的只是針對標准MD 加密的結果進行的 如果自定義移位演算法後 它還有效么?可以說是無解的了 所以MD 非常安全可靠
為了更可變 還提供了多次加密的方法 可以在MD 基礎之上繼續MD 就是對 位的第一次加密結果再MD 恩 這樣去破解?沒有任何意義
這樣在MIS系統中使用 安全可靠 歡迎交流 希望對使用者有用
我們最後看看由MD 加密演算法實現的類 那是非常龐大的
Java代碼
import java lang reflect *;
/**
* **********************************************
* md 類實現了RSA Data Security Inc 在提交給IETF
* 的RFC 中的MD message digest 演算法
* ***********************************************
*/
public class MD {
/* 下面這些S S 實際上是一個 * 的矩陣 在原始的C實現中是用#define 實現的
這里把它們實現成為static final是表示了只讀 切能在同一個進程空間內的多個
Instance間共享*/
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final int S = ;
static final byte[] PADDING = {
};
/* 下面的三個成員是MD 計算過程中用到的 個核心數據 在原始的C實現中
被定義到MD _CTX結構中
*/
private long[] state = new long[ ]; // state (ABCD)
private long[] count = new long[ ]; // number of bits molo ^ (l *** first)
private byte[] buffer = new byte[ ]; // input buffer
/* digestHexStr是MD 的唯一一個公共成員 是最新一次計算結果的
進制ASCII表示
*/
public String digestHexStr;
/* digest 是最新一次計算結果的 進制內部表示 表示 bit的MD 值
*/
private byte[] digest = new byte[ ];
/*
getMD ofStr是類MD 最主要的公共方法 入口參數是你想要進行MD 變換的字元串
返回的是變換完的結果 這個結果是從公共成員digestHexStr取得的.
*/
public String getMD ofStr(String inbuf) {
md Init();
md Update(inbuf getBytes() inbuf length());
md Final();
digestHexStr = ;
for (int i = ; i < ; i++) {
digestHexStr += byteHEX(digest[i]);
}
return digestHexStr;
}
// 這是MD 這個類的標准構造函數 JavaBean要求有一個public的並且沒有參數的構造函數
public MD () {
md Init();
return;
}
/* md Init是一個初始化函數 初始化核心變數 裝入標準的幻數 */
private void md Init() {
count[ ] = L;
count[ ] = L;
///* Load magic initialization constants
state[ ] = x L;
state[ ] = xefcdab L;
state[ ] = x badcfeL;
state[ ] = x L;
return;
}
/* F G H I 是 個基本的MD 函數 在原始的MD 的C實現中 由於它們是
簡單的位運算 可能出於效率的考慮把它們實現成了宏 在java中 我們把它們
實現成了private方法 名字保持了原來C中的 */
private long F(long x long y long z) {
return (x & y) | ((~x) & z);
}
private long G(long x long y long z) {
return (x & z) | (y & (~z));
}
private long H(long x long y long z) {
return x ^ y ^ z;
}
private long I(long x long y long z) {
return y ^ (x | (~z));
}
/*
FF GG HH和II將調用F G H I進行近一步變換
FF GG HH and II transformations for rounds and
Rotation is separate from addition to prevent reputation
*/
private long FF(long a long b long c long d long x long s long ac) {
a += F(b c d) + x + ac;
a = ((int) a << s) | ((int) a >>> ( s));
a += b;
return a;
}
private long GG(long a long b long c long d long x long s long ac) {
a += G(b c d) + x + ac;
a = ((int) a << s) | ((int) a >>> ( s));
a += b;
return a;
}
private long HH(long a long b long c long d long x long s long ac) {
a += H(b c d) + x + ac;
a = ((int) a << s) | ((int) a >>> ( s));
a += b;
return a;
}
private long II(long a long b long c long d long x long s long ac) {
a += I(b c d) + x + ac;
a = ((int) a << s) | ((int) a >>> ( s));
a += b;
return a;
}
/*
md Update是MD 的主計算過程 inbuf是要變換的位元組串 inputlen是長度 這個
函數由getMD ofStr調用 調用之前需要調用md init 因此把它設計成private的
*/
private void md Update(byte[] inbuf int inputLen) {
int i index partLen;
byte[] block = new byte[ ];
index = (int) (count[ ] >>> ) & x F;
// /* Update number of bits */
if ((count[ ] += (inputLen << )) < (inputLen << ))
count[ ]++;
count[ ] += (inputLen >>> );
partLen = index;
// Transform as many times as possible
if (inputLen >= partLen) {
md Memcpy(buffer inbuf index partLen);
md Transform(buffer);
for (i = partLen; i + < inputLen; i += ) {
md Memcpy(block inbuf i );
md Transform(block);
}
index = ;
} else
i = ;
///* Buffer remaining input */
md Memcpy(buffer inbuf index i inputLen i);
}
/*
md Final整理和填寫輸出結果
*/
private void md Final() {
byte[] bits = new byte[ ];
int index padLen;
///* Save number of bits */
Encode(bits count );
///* Pad out to mod
index = (int) (count[ ] >>> ) & x f;
padLen = (index < ) ? ( index) : ( index);
md Update(PADDING padLen);
///* Append length (before padding) */
md Update(bits );
///* Store state in digest */
Encode(digest state );
}
/* md Memcpy是一個內部使用的byte數組的塊拷貝函數 從input的inpos開始把len長度的
位元組拷貝到output的outpos位置開始
*/
private void md Memcpy(byte[] output byte[] input int outpos int inpos int len) {
int i;
for (i = ; i < len; i++)
output[outpos + i] = input[inpos + i];
}
/*
md Transform是MD 核心變換程序 有md Update調用 block是分塊的原始位元組
*/
private void md Transform(byte block[]) {
long a = state[ ] b = state[ ] c = state[ ] d = state[ ];
long[] x = new long[ ];
Decode(x block );
/* Round */
a = FF(a b c d x[ ] S xd aa L); /* */
d = FF(d a b c x[ ] S xe c b L); /* */
c = FF(c d a b x[ ] S x dbL); /* */
b = FF(b c d a x[ ] S xc bdceeeL); /* */
a = FF(a b c d x[ ] S xf c fafL); /* */
d = FF(d a b c x[ ] S x c aL); /* */
c = FF(c d a b x[ ] S xa L); /* */
b = FF(b c d a x[ ] S xfd L); /* */
a = FF(a b c d x[ ] S x d L); /* */
d = FF(d a b c x[ ] S x b f afL); /* */
c = FF(c d a b x[ ] S xffff bb L); /* */
b = FF(b c d a x[ ] S x cd beL); /* */
a = FF(a b c d x[ ] S x b L); /* */
d = FF(d a b c x[ ] S xfd L); /* */
c = FF(c d a b x[ ] S xa eL); /* */
b = FF(b c d a x[ ] S x b L); /* */
/* Round */
a = GG(a b c d x[ ] S xf e L); /* */
d = GG(d a b c x[ ] S xc b L); /* */
c = GG(c d a b x[ ] S x e a L); /* */
b = GG(b c d a x[ ] S xe b c aaL); /* */
a = GG(a b c d x[ ] S xd f dL); /* */
d = GG(d a b c x[ ] S x L); /* */
c = GG(c d a b x[ ] S xd a e L); /* */
b = GG(b c d a x[ ] S xe d fbc L); /* */
a = GG(a b c d x[ ] S x e cde L); /* */
d = GG(d a b c x[ ] S xc d L); /* */
c = GG(c d a b x[ ] S xf d d L); /* */
b = GG(b c d a x[ ] S x a edL); /* */
a = GG(a b c d x[ ] S xa e e L); /* */
d = GG(d a b c x[ ] S xfcefa f L); /* */
c = GG(c d a b x[ ] S x f d L); /* */
b = GG(b c d a x[ ] S x d a c aL); /* */
/* Round */
a = HH(a b c d x[ ] S xfffa L); /* */
d = HH(d a b c x[ ] S x f L); /* */
c = HH(c d a b x[ ] S x d d L); /* */
b = HH(b c d a x[ ] S xfde cL); /* */
a = HH(a b c d x[ ] S xa beea L); /* */
d = HH(d a b c x[ ] S x bdecfa L); /* */
c = HH(c d a b x[ ] S xf bb b L); /* */
b = HH(b c d a x[ ] S xbebfbc L); /* */
a = HH(a b c d x[ ] S x b ec L); /* */
d = HH(d a b c x[ ] S xeaa faL); /* */
c = HH(c d a b x[ ] S xd ef L); /* */
b = HH(b c d a x[ ] S x d L); /* */
a = HH(a b c d x[ ] S xd d d L); /* */
d = HH(d a b c x[ ] S xe db e L); /* */
c = HH(c d a b x[ ] S x fa cf L); /* */
b = HH(b c d a x[ ] S xc ac L); /* */
/* Round */
a = II(a b c d x[ ] S xf L); /* */
d = II(d a b c x[ ] S x aff L); /* */
c = II(c d a b x[ ] S xab a L); /* */
b = II(b c d a x[ ] S xfc a L); /* */
a = II(a b c d x[ ] S x b c L); /* */
d = II(d a b c x[ ] S x f ccc L); /* */
c = II(c d a b x[ ] S xffeff dL); /* */
b = II(b c d a x[ ] S x dd L); /* */
a = II(a b c d x[ ] S x fa e fL); /* */
d = II(d a b c x[ ] S xfe ce e L); /* */
c = II(c d a b x[ ] S xa L); /* */
b = II(b c d a x[ ] S x e a L); /* */
a = II(a b c d x[ ] S xf e L); /* */
d = II(d a b c x[ ] S xbd af L); /* */
c = II(c d a b x[ ] S x ad d bbL); /* */
b = II(b c d a x[ ] S xeb d L); /* */
state[ ] += a;
state[ ] += b;
state[ ] += c;
state[ ] += d;
}
/*Encode把long數組按順序拆成byte數組 因為java的long類型是 bit的
只拆低 bit 以適應原始C實現的用途
*/
private void Encode(byte[] output long[] input int len) {
int i j;
for (i = j = ; j < len; i++ j += ) {
output[j] = (byte) (input[i] & xffL);
output[j + ] = (byte) ((input[i] >>> ) & xffL);
output[j + ] = (byte) ((input[i] >>> ) & xffL);
output[j + ] = (byte) ((input[i] >>> ) & xffL);
}
}
/*Decode把byte數組按順序合成成long數組 因為java的long類型是 bit的
只合成低 bit 高 bit清零 以適應原始C實現的用途
*/
private void Decode(long[] output byte[] input int len) {
int i j;
for (i = j = ; j < len; i++ j += )
output[i] = b iu(input[j]) | (b iu(input[j + ]) << ) | (b iu(input[j + ]) << )
| (b iu(input[j + ]) << );
return;
}
/*
b iu是我寫的一個把byte按照不考慮正負號的原則的"升位"程序 因為java沒有unsigned運算
*/
public static long b iu(byte b) {
return b < ? b & x F + : b;
}
/*byteHEX() 用來把一個byte類型的數轉換成十六進制的ASCII表示
因為java中的byte的toString無法實現這一點 我們又沒有C語言中的
sprintf(outbuf % X ib)
*/
public static String byteHEX(byte ib) {
char[] Digit = { A B C D E F };
char[] ob = new char[ ];
ob[ ] = Digit[(ib >>> ) & X F];
ob[ ] = Digit[ib & X F];
String s = new String(ob);
return s;
}
public static void main(String args[]) {
MD m = new MD ();
if (Array getLength(args) == ) { //如果沒有參數 執行標準的Test Suite
System out println( MD Test suite: );
System out println( MD ( ): + m getMD ofStr( ));
System out println( MD ( a ): + m getMD ofStr( a ));
System out println( MD ( abc ): + m getMD ofStr( abc ));
System out println( MD ( ): + m getMD ofStr( ));
System out println( MD ( ): + m getMD ofStr( ));
System out println( MD ( message digest ): + m getMD ofStr( message digest ));
System out println( MD ( abcdefghijklmnopqrstuvwxyz ): + m getMD ofStr( abcdefghijklmnopqrstuvwxyz ));
System out println( MD ( ):
+ m getMD ofStr( ));
} else
System out println( MD ( + args[ ] + )= + m getMD ofStr(args[ ]));
}
lishixin/Article/program/Java/hx/201311/26604
『肆』 MD5是如何編譯的
MD5簡介
MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc發明,經MD2、MD3和MD4發展而來。
Message-Digest泛指位元組串(Message)的Hash變換,就是把一個任意長度的位元組串變換成一定長的大整數。請注意我使用了「位元組串」而不是「字元串」這個詞,是因為這種變換只與位元組的值有關,與字元集或編碼方式無關。
MD5將任意長度的「位元組串」變換成一個128bit的大整數,並且它是一個不可逆的字元串變換演算法,換句話說就是,即使你看到源程序和演算法描述,也無法將一個MD5的值變換回原始的字元串,從數學原理上說,是因為原始的字元串有無窮多個,這有點象不存在反函數的數學函數。
MD5的典型應用是對一段Message(位元組串)產生fingerprint(指紋),以防止被「篡改」。舉個例子,你將一段話寫在一個叫readme.txt文件中,並對這個readme.txt產生一個MD5的值並記錄在案,然後你可以傳播這個文件給別人,別人如果修改了文件中的任何內容,你對這個文件重新計算MD5時就會發現。如果再有一個第三方的認證機構,用MD5還可以防止文件作者的「抵賴」,這就是所謂的數字簽名應用。
MD5還廣泛用於加密和解密技術上,在很多操作系統中,用戶的密碼是以MD5值(或類似的其它演算法)的方式保存的,用戶Login的時候,系統是把用戶輸入的密碼計算成MD5值,然後再去和系統中保存的MD5值進行比較,而系統並不「知道」用戶的密碼是什麼。
一些黑客破獲這種密碼的方法是一種被稱為「跑字典」的方法。有兩種方法得到字典,一種是日常搜集的用做密碼的字元串表,另一種是用排列組合方法生成的,先用MD5程序計算出這些字典項的MD5值,然後再用目標的MD5值在這個字典中檢索。
即使假設密碼的最大長度為8,同時密碼只能是字母和數字,共26+26+10=62個字元,排列組合出的字典的項數則是P(62,1)+P(62,2)….+P(62,8),那也已經是一個很天文的數字了,存儲這個字典就需要TB級的磁碟組,而且這種方法還有一個前提,就是能獲得目標賬戶的密碼MD5值的情況下才可以。
在很多電子商務和社區應用中,管理用戶的Account是一種最常用的基本功能,盡管很多Application Server提供了這些基本組件,但很多應用開發者為了管理的更大的靈活性還是喜歡採用關系資料庫來管理用戶,懶惰的做法是用戶的密碼往往使用明文或簡單的變換後直接保存在資料庫中,因此這些用戶的密碼對軟體開發者或系統管理員來說可以說毫無保密可言,本文的目的是介紹MD5的Java Bean的實現,同時給出用MD5來處理用戶的Account密碼的例子,這種方法使得管理員和程序設計者都無法看到用戶的密碼,盡管他們可以初始化它們。但重要的一點是對於用戶密碼設置習慣的保護。
有興趣的讀者可以從這里取得MD5也就是RFC 1321的文本。 http://www.ietf.org/rfc/rfc1321.txt
實現策略
MD5的演算法在RFC1321中實際上已經提供了C的實現,我們其實馬上就能想到,至少有兩種用Java實現它的方法,第一種是,用Java語言重新寫整個演算法,或者再說簡單點就是把C程序改寫成Java程序。第二種是,用JNI(Java Native Interface)來實現,核心演算法仍然用這個C程序,用Java類給它包個殼。
但我個人認為,JNI應該是Java為了解決某類問題時的沒有辦法的辦法(比如與操作系統或I/O設備密切相關的應用),同時為了提供和其它語言的互操作性的一個手段。使用JNI帶來的最大問題是引入了平台的依賴性,打破了SUN所鼓吹的「一次編寫到處運行」的Java好處。因此,我決定採取第一種方法,一來和大家一起嘗試一下「一次編寫到處運行」的好處,二來檢驗一下Java 2現在對於比較密集的計算的效率問題。
實現過程
限於這篇文章的篇幅,同時也為了更多的讀者能夠真正專注於問題本身,我不想就某一種Java集成開發環境來介紹這個Java Bean的製作過程,介紹一個方法時我發現步驟和命令很清晰,我相信有任何一種Java集成環境三天以上經驗的讀者都會知道如何把這些代碼在集成環境中編譯和運行。用集成環境講述問題往往需要配很多屏幕截圖,這也是我一直對集成環境很頭疼的原因。我使用了一個普通的文本編輯器,同時使用了Sun公司標準的JDK 1.3.0 for Windows NT。
其實把C轉換成Java對於一個有一定C語言基礎的程序員並不困難,這兩個語言的基本語法幾乎完全一致.我大概花了一個小時的時間完成了代碼的轉換工作,我主要作了下面幾件事:
把必須使用的一些#define的宏定義變成Class中的final static,這樣保證在一個進程空間中的多個Instance共享這些數據
刪去了一些無用的#if define,因為我只關心MD5,這個推薦的C實現同時實現了MD2 MD3和 MD4,而且有些#if define還和C不同編譯器有關
將一些計算宏轉換成final static 成員函數。
所有的變數命名與原來C實現中保持一致,在大小寫上作一些符合Java習慣的變化,計算過程中的C函數變成了private方法(成員函數)。
關鍵變數的位長調整
定義了類和方法
需要注意的是,很多早期的C編譯器的int類型是16 bit的,MD5使用了unsigned long int,並認為它是32bit的無符號整數。而在Java中int是32 bit的,long是64 bit的。在MD5的C實現中,使用了大量的位操作。這里需要指出的一點是,盡管Java提供了位操作,由於Java沒有unsigned類型,對於右移位操作多提供了一個無符號右移:>>>,等價於C中的 >> 對於unsigned 數的處理。
因為Java不提供無符號數的運算,兩個大int數相加就會溢出得到一個負數或異常,因此我將一些關鍵變數在Java中改成了long類型(64bit)。我個人認為這比自己去重新定義一組無符號數的類同時重載那些運算符要方便,同時效率高很多並且代碼也易讀,OO(Object Oriented)的濫用反而會導致效率低下。
限於篇幅,這里不再給出原始的C代碼,有興趣對照的讀者朋友可以去看RFC 1321。MD5.java源代碼
測試
在RFC 1321中,給出了Test suite用來檢驗你的實現是否正確:
MD5 ("") =
MD5 ("a") =
MD5 ("abc") =
MD5 ("message digest") =
MD5 ("abcdefghijklmnopqrstuvwxyz") =
……
這些輸出結果的含義是指:空字元串」」的MD5值是,字元串」a」的MD5值是……
編譯並運行我們的程序:
javac –d . MD5.java
java beartool.MD5
為了將來不與別人的同名程序沖突,我在我的程序的第一行使用了package beartool;
因此編譯命令javac –d . MD5.java 命令在我們的工作目錄下自動建立了一個beartool目錄,目錄下放著編譯成功的 MD5.class
我們將得到和Test suite同樣的結果。當然還可以繼續測試你感興趣的其它MD5變換,例如:
java beartool.MD5 1234
將給出1234的MD5值。
可能是我的計算機知識是從Apple II和Z80單板機開始的,我對大寫十六進制代碼有偏好,如果您想使用小寫的Digest String只需要把byteHEX函數中的A、B、C、D、E、F改成a、b、 c、d、e、f就可以了。
MD5據稱是一種比較耗時的計算,我們的Java版MD5一閃就算出來了,沒遇到什麼障礙,而且用肉眼感覺不出來Java版的MD5比C版的慢。
為了測試它的兼容性,我把這個MD5.class文件拷貝到我的另一台Linux+IBM JDK 1.3的機器上,執行後得到同樣結果,確實是「一次編寫到處運行了」。
Java Bean簡述
現在,我們已經完成並簡單測試了這個Java Class,我們文章的標題是做一個Java Bean。
其實普通的Java Bean很簡單,並不是什麼全新的或偉大的概念,就是一個Java的Class,盡管 Sun規定了一些需要實現的方法,但並不是強制的。而EJB(Enterprise Java Bean)無非規定了一些必須實現(非常類似於響應事件)的方法,這些方法是供EJB Container使用(調用)的。
在一個Java Application或Applet里使用這個bean非常簡單,最簡單的方法是你要使用這個類的源碼工作目錄下建一個beartool目錄,把這個class文件拷貝進去,然後在你的程序中import beartool.MD5就可以了。最後打包成.jar或.war是保持這個相對的目錄關系就行了。
Java還有一個小小的好處是你並不需要摘除我們的MD5類中那個main方法,它已經是一個可以工作的Java Bean了。Java有一個非常大的優點是她允許很方便地讓多種運行形式在同一組代碼中共存,比如,你可以寫一個類,它即是一個控制台Application和GUI Application,同時又是一個Applet,同時還是一個Java Bean,這對於測試、維護和發布程序提供了極大的方便,這里的測試方法main還可以放到一個內部類中,有興趣的讀者可以參考: http://www.cn.ibm.com/developerWorks/java/jw-tips/tip106/index.shtml
這里講述了把測試和示例代碼放在一個內部靜態類的好處,是一種不錯的工程化技巧和途徑。
把Java Bean裝到JSP里
正如我們在本文開頭講述的那樣,我們對這個MD5 Bean的應用是基於一個用戶管理,這里我們假設了一個虛擬社區的用戶login過程,用戶的信息保存在資料庫的個名為users的表中。這個表有兩個欄位和我們的這個例子有關,userid :char(20)和pwdmd5 :char(32),userid是這個表的Primary Key,pwdmd5保存密碼的MD5串,MD5值是一個128bit的大整數,表示成16進制的ASCII需要32個字元。
這里給出兩個文件,login.html是用來接受用戶輸入的form,login.jsp用來模擬使用MD5 Bean的login過程。
為了使我們的測試環境簡單起見,我們在JSP中使用了JDK內置的JDBC-ODBC Bridge Driver,community是ODBC的DSN的名字,如果你使用其它的JDBC Driver,替換掉login.jsp中的
Connection con= DriverManager.getConnection("jdbc:odbc:community", "", "");
即可。
login.jsp的工作原理很簡單,通過post接收用戶輸入的UserID和Password,然後將Password變換成MD5串,然後在users表中尋找UserID和pwdmd5,因為UserID是users表的Primary Key,如果變換後的pwdmd5與表中的記錄不符,那麼SQL查詢會得到一個空的結果集。
這里需要簡單介紹的是,使用這個Bean只需要在你的JSP應用程序的WEB-INF/classes下建立一個beartool目錄,然後將MD5.class拷貝到那個目錄下就可以了。如果你使用一些集成開發環境,請參考它們的deploy工具的說明。在JSP使用一個java Bean關鍵的一句聲明是程序中的第2行:
<jsp:useBean id='oMD5' scope='request' class='beartool.MD5'/>
這是所有JSP規范要求JSP容器開發者必須提供的標准Tag。
id=實際上是指示JSP Container創建Bean的實例時用的實例變數名。在後面的<%和%>之間的Java程序中,你可以引用它。在程序中可以看到,通過 pwdmd5=oMD5.getMD5ofStr (password)引用了我們的MD5 Java Bean提供的唯一一個公共方法: getMD5ofStr。
Java Application Server執行.JSP的過程是先把它預編譯成.java(那些Tag在預編譯時會成為java語句),然後再編譯成.class。這些都是系統自動完成和維護的,那個.class也稱為Servlet。當然,如果你願意,你也可以幫助Java Application Server去干本該它乾的事情,自己直接去寫Servlet,但用Servlet去輸出HTML那簡直是回到了用C寫CGI程序的惡夢時代。
如果你的輸出是一個復雜的表格,比較方便的方法我想還是用一個你所熟悉的HTML編輯器編寫一個「模板」,然後在把JSP代碼「嵌入」進去。盡管這種JSP代碼被有些專家指責為「空心粉」,它的確有個缺點是代碼比較難管理和重復使用,但是程序設計永遠需要的就是這樣的權衡。我個人認為,對於中、小型項目,比較理想的結構是把數據表示(或不嚴格地稱作WEB界面相關)的部分用JSP寫,和界面不相關的放在Bean裡面,一般情況下是不需要直接寫Servlet的。
如果你覺得這種方法不是非常的OO(Object Oriented),你可以繼承(extends)它一把,再寫一個bean把用戶管理的功能包進去。
到底能不能兼容?
我測試了三種Java應用伺服器環境,Resin 1.2.3、Sun J2EE 1.2、IBM WebSphere 3.5,所幸的是這個Java Bean都沒有任何問題,原因其實是因為它僅僅是個計算程序,不涉及操作系統,I/O設備。其實用其它語言也能簡單地實現它的兼容性的,Java的唯一優點是,你只需提供一個形態的運行碼就可以了。請注意「形態」二字,現在很多計算結構和操作系統除了語言本身之外都定義了大量的代碼形態,很簡單的一段C語言核心代碼,轉換成不同形態要考慮很多問題,使用很多工具,同時受很多限制,有時候學習一種新的「形態」所花費的精力可能比解決問題本身還多。比如光Windows就有EXE、Service、的普通DLL、COM DLL以前還有OCX等等等等,在Unix上雖說要簡單一些,但要也要提供一個.h定義一大堆宏,還要考慮不同平台編譯器版本的位長度問題。我想這是Java對我來說的一個非常重要的魅力吧。
MD5演算法說明
一、補位
二、補數據長度
三、初始化MD5參數
四、處理位操作函數
五、主要變換過程
六、輸出結果
補位:
MD5演算法先對輸入的數據進行補位,使得數據位長度LEN對512求余的結果是448。即數據擴展至K*512+448位。即K*64+56個位元組,K為整數。
具體補位操作:補一個1,然後補0至滿足上述要求。
補數據長度:
用一個64位的數字表示數據的原始長度B,把B用兩個32位數表示。這時,數
據就被填補成長度為512位的倍數。
初始化MD5參數:
四個32位整數 (A,B,C,D) 用來計算信息摘要,初始化使用的是十六進製表
示的數字
A=0X01234567
B=0X89abcdef
C=0Xfedcba98
D=0X76543210
處理位操作函數:
X,Y,Z為32位整數。
F(X,Y,Z) = X&Y|NOT(X)&Z
G(X,Y,Z) = X&Z|Y?(Z)
H(X,Y,Z) = X xor Y xor Z
I(X,Y,Z) = Y xor (X|not(Z))
主要變換過程:
使用常數組T[1 ... 64], T[i]為32位整數用16進製表示,數據用16個32位
的整數數組M[]表示。
具體過程如下:
/* 處理數據原文 */
For i = 0 to N/16-1 do
/*每一次,把數據原文存放在16個元素的數組X中. */
For j = 0 to 15 do
Set X[j] to M[i*16+j].
end /結束對J的循環
/* Save A as AA, B as BB, C as CC, and D as DD.
*/
AA = A
BB = B
CC = C
DD = D
/* 第1輪*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA 3
22 4]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA 7
22 8]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11] [BCDA
11 22 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]
[BCDA 15 22 16]
/* 第2輪* */
/* 以 [abcd k s i]表示如下操作
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 1 5 17] [DABC 6 9 18] [CDAB 11 14 19] [BCDA
0 20 20]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23]
[BCDA 4 20 24]
[ABCD 9 5 25] [DABC 14 9 26] [CDAB 3 14 27] [BCDA
8 20 28]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31] [BCDA
12 20 32]
/* 第3輪*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35]
[BCDA 14 23 36]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39] [BCDA
10 23 40]
[ABCD 13 4 41] [DABC 0 11 42] [CDAB 3 16 43]
[BCDA 6 23 44]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47]
[BCDA 2 23 48]
/* 第4輪*/
/* 以 [abcd k s i]表示如下操作
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51]
[BCDA 5 21 52]
[ABCD 12 6 53] [DABC 3 10 54] [CDAB 10 15 55]
[BCDA 1 21 56]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59]
[BCDA 13 21 60]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63]
[BCDA 9 21 64]
/* 然後進行如下操作 */
A = A + AA
B = B + BB
C = C + CC
D = D + DD
end /* 結束對I的循環*/
輸出結果。
『伍』 java的md5的加密演算法代碼
import java.lang.reflect.*;
/*******************************************************************************
* keyBean 類實現了RSA Data Security, Inc.在提交給IETF 的RFC1321中的keyBean message-digest
* 演算法。
******************************************************************************/
public class keyBean {
/*
* 下面這些S11-S44實際上是一個4*4的矩陣,在原始的C實現中是用#define 實現的, 這里把它們實現成為static
* final是表示了只讀,切能在同一個進程空間內的多個 Instance間共享
*/
static final int S11 = 7;
static final int S12 = 12;
static final int S13 = 17;
static final int S14 = 22;
static final int S21 = 5;
static final int S22 = 9;
static final int S23 = 14;
static final int S24 = 20;
static final int S31 = 4;
static final int S32 = 11;
static final int S33 = 16;
static final int S34 = 23;
static final int S41 = 6;
static final int S42 = 10;
static final int S43 = 15;
static final int S44 = 21;
static final byte[] PADDING = { -128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0 };
/*
* 下面的三個成員是keyBean計算過程中用到的3個核心數據,在原始的C實現中 被定義到keyBean_CTX結構中
*/
private long[] state = new long[4]; // state (ABCD)
private long[] count = new long[2]; // number of bits, molo 2^64 (lsb
// first)
private byte[] buffer = new byte[64]; // input buffer
/*
* digestHexStr是keyBean的唯一一個公共成員,是最新一次計算結果的 16進制ASCII表示.
*/
public String digestHexStr;
/*
* digest,是最新一次計算結果的2進制內部表示,表示128bit的keyBean值.
*/
private byte[] digest = new byte[16];
/*
* getkeyBeanofStr是類keyBean最主要的公共方法,入口參數是你想要進行keyBean變換的字元串
* 返回的是變換完的結果,這個結果是從公共成員digestHexStr取得的.
*/
public String getkeyBeanofStr(String inbuf) {
keyBeanInit();
keyBeanUpdate(inbuf.getBytes(), inbuf.length());
keyBeanFinal();
digestHexStr = "";
for (int i = 0; i < 16; i++) {
digestHexStr += byteHEX(digest[i]);
}
return digestHexStr;
}
// 這是keyBean這個類的標准構造函數,JavaBean要求有一個public的並且沒有參數的構造函數
public keyBean() {
keyBeanInit();
return;
}
/* keyBeanInit是一個初始化函數,初始化核心變數,裝入標準的幻數 */
private void keyBeanInit() {
count[0] = 0L;
count[1] = 0L;
// /* Load magic initialization constants.
state[0] = 0x67452301L;
state[1] = 0xefcdab89L;
state[2] = 0x98badcfeL;
state[3] = 0x10325476L;
return;
}
/*
* F, G, H ,I 是4個基本的keyBean函數,在原始的keyBean的C實現中,由於它們是
* 簡單的位運算,可能出於效率的考慮把它們實現成了宏,在java中,我們把它們 實現成了private方法,名字保持了原來C中的。
*/
private long F(long x, long y, long z) {
return (x & y) | ((~x) & z);
}
private long G(long x, long y, long z) {
return (x & z) | (y & (~z));
}
private long H(long x, long y, long z) {
return x ^ y ^ z;
}
private long I(long x, long y, long z) {
return y ^ (x | (~z));
}
/*
* FF,GG,HH和II將調用F,G,H,I進行近一步變換 FF, GG, HH, and II transformations for
* rounds 1, 2, 3, and 4. Rotation is separate from addition to prevent
* recomputation.
*/
private long FF(long a, long b, long c, long d, long x, long s, long ac) {
a += F(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long GG(long a, long b, long c, long d, long x, long s, long ac) {
a += G(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long HH(long a, long b, long c, long d, long x, long s, long ac) {
a += H(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
private long II(long a, long b, long c, long d, long x, long s, long ac) {
a += I(b, c, d) + x + ac;
a = ((int) a << s) | ((int) a >>> (32 - s));
a += b;
return a;
}
/*
* keyBeanUpdate是keyBean的主計算過程,inbuf是要變換的位元組串,inputlen是長度,這個
* 函數由getkeyBeanofStr調用,調用之前需要調用keyBeaninit,因此把它設計成private的
*/
private void keyBeanUpdate(byte[] inbuf, int inputLen) {
int i, index, partLen;
byte[] block = new byte[64];
index = (int) (count[0] >>> 3) & 0x3F;
// /* Update number of bits */
if ((count[0] += (inputLen << 3)) < (inputLen << 3))
count[1]++;
count[1] += (inputLen >>> 29);
partLen = 64 - index;
// Transform as many times as possible.
if (inputLen >= partLen) {
keyBeanMemcpy(buffer, inbuf, index, 0, partLen);
keyBeanTransform(buffer);
for (i = partLen; i + 63 < inputLen; i += 64) {
keyBeanMemcpy(block, inbuf, 0, i, 64);
keyBeanTransform(block);
}
index = 0;
} else
i = 0;
// /* Buffer remaining input */
keyBeanMemcpy(buffer, inbuf, index, i, inputLen - i);
}
/*
* keyBeanFinal整理和填寫輸出結果
*/
private void keyBeanFinal() {
byte[] bits = new byte[8];
int index, padLen;
// /* Save number of bits */
Encode(bits, count, 8);
// /* Pad out to 56 mod 64.
index = (int) (count[0] >>> 3) & 0x3f;
padLen = (index < 56) ? (56 - index) : (120 - index);
keyBeanUpdate(PADDING, padLen);
// /* Append length (before padding) */
keyBeanUpdate(bits, 8);
// /* Store state in digest */
Encode(digest, state, 16);
}
/*
* keyBeanMemcpy是一個內部使用的byte數組的塊拷貝函數,從input的inpos開始把len長度的
* 位元組拷貝到output的outpos位置開始
*/
private void keyBeanMemcpy(byte[] output, byte[] input, int outpos,
int inpos, int len) {
int i;
for (i = 0; i < len; i++)
output[outpos + i] = input[inpos + i];
}
/*
* keyBeanTransform是keyBean核心變換程序,有keyBeanUpdate調用,block是分塊的原始位元組
*/
private void keyBeanTransform(byte block[]) {
long a = state[0], b = state[1], c = state[2], d = state[3];
long[] x = new long[16];
Decode(x, block, 64);
/* Round 1 */
a = FF(a, b, c, d, x[0], S11, 0xd76aa478L); /* 1 */
d = FF(d, a, b, c, x[1], S12, 0xe8c7b756L); /* 2 */
c = FF(c, d, a, b, x[2], S13, 0x242070dbL); /* 3 */
b = FF(b, c, d, a, x[3], S14, 0xc1bdceeeL); /* 4 */
a = FF(a, b, c, d, x[4], S11, 0xf57c0fafL); /* 5 */
d = FF(d, a, b, c, x[5], S12, 0x4787c62aL); /* 6 */
c = FF(c, d, a, b, x[6], S13, 0xa8304613L); /* 7 */
b = FF(b, c, d, a, x[7], S14, 0xfd469501L); /* 8 */
a = FF(a, b, c, d, x[8], S11, 0x698098d8L); /* 9 */
d = FF(d, a, b, c, x[9], S12, 0x8b44f7afL); /* 10 */
c = FF(c, d, a, b, x[10], S13, 0xffff5bb1L); /* 11 */
b = FF(b, c, d, a, x[11], S14, 0x895cd7beL); /* 12 */
a = FF(a, b, c, d, x[12], S11, 0x6b901122L); /* 13 */
d = FF(d, a, b, c, x[13], S12, 0xfd987193L); /* 14 */
c = FF(c, d, a, b, x[14], S13, 0xa679438eL); /* 15 */
b = FF(b, c, d, a, x[15], S14, 0x49b40821L); /* 16 */
/* Round 2 */
a = GG(a, b, c, d, x[1], S21, 0xf61e2562L); /* 17 */
d = GG(d, a, b, c, x[6], S22, 0xc040b340L); /* 18 */
c = GG(c, d, a, b, x[11], S23, 0x265e5a51L); /* 19 */
b = GG(b, c, d, a, x[0], S24, 0xe9b6c7aaL); /* 20 */
a = GG(a, b, c, d, x[5], S21, 0xd62f105dL); /* 21 */
d = GG(d, a, b, c, x[10], S22, 0x2441453L); /* 22 */
c = GG(c, d, a, b, x[15], S23, 0xd8a1e681L); /* 23 */
b = GG(b, c, d, a, x[4], S24, 0xe7d3fbc8L); /* 24 */
a = GG(a, b, c, d, x[9], S21, 0x21e1cde6L); /* 25 */
d = GG(d, a, b, c, x[14], S22, 0xc33707d6L); /* 26 */
c = GG(c, d, a, b, x[3], S23, 0xf4d50d87L); /* 27 */
b = GG(b, c, d, a, x[8], S24, 0x455a14edL); /* 28 */
a = GG(a, b, c, d, x[13], S21, 0xa9e3e905L); /* 29 */
d = GG(d, a, b, c, x[2], S22, 0xfcefa3f8L); /* 30 */
c = GG(c, d, a, b, x[7], S23, 0x676f02d9L); /* 31 */
b = GG(b, c, d, a, x[12], S24, 0x8d2a4c8aL); /* 32 */
/* Round 3 */
a = HH(a, b, c, d, x[5], S31, 0xfffa3942L); /* 33 */
d = HH(d, a, b, c, x[8], S32, 0x8771f681L); /* 34 */
c = HH(c, d, a, b, x[11], S33, 0x6d9d6122L); /* 35 */
b = HH(b, c, d, a, x[14], S34, 0xfde5380cL); /* 36 */
a = HH(a, b, c, d, x[1], S31, 0xa4beea44L); /* 37 */
d = HH(d, a, b, c, x[4], S32, 0x4bdecfa9L); /* 38 */
c = HH(c, d, a, b, x[7], S33, 0xf6bb4b60L); /* 39 */
b = HH(b, c, d, a, x[10], S34, 0xbebfbc70L); /* 40 */
a = HH(a, b, c, d, x[13], S31, 0x289b7ec6L); /* 41 */
d = HH(d, a, b, c, x[0], S32, 0xeaa127faL); /* 42 */
c = HH(c, d, a, b, x[3], S33, 0xd4ef3085L); /* 43 */
b = HH(b, c, d, a, x[6], S34, 0x4881d05L); /* 44 */
a = HH(a, b, c, d, x[9], S31, 0xd9d4d039L); /* 45 */
d = HH(d, a, b, c, x[12], S32, 0xe6db99e5L); /* 46 */
c = HH(c, d, a, b, x[15], S33, 0x1fa27cf8L); /* 47 */
b = HH(b, c, d, a, x[2], S34, 0xc4ac5665L); /* 48 */
/* Round 4 */
a = II(a, b, c, d, x[0], S41, 0xf4292244L); /* 49 */
d = II(d, a, b, c, x[7], S42, 0x432aff97L); /* 50 */
c = II(c, d, a, b, x[14], S43, 0xab9423a7L); /* 51 */
b = II(b, c, d, a, x[5], S44, 0xfc93a039L); /* 52 */
a = II(a, b, c, d, x[12], S41, 0x655b59c3L); /* 53 */
d = II(d, a, b, c, x[3], S42, 0x8f0ccc92L); /* 54 */
c = II(c, d, a, b, x[10], S43, 0xffeff47dL); /* 55 */
b = II(b, c, d, a, x[1], S44, 0x85845dd1L); /* 56 */
a = II(a, b, c, d, x[8], S41, 0x6fa87e4fL); /* 57 */
d = II(d, a, b, c, x[15], S42, 0xfe2ce6e0L); /* 58 */
c = II(c, d, a, b, x[6], S43, 0xa3014314L); /* 59 */
b = II(b, c, d, a, x[13], S44, 0x4e0811a1L); /* 60 */
a = II(a, b, c, d, x[4], S41, 0xf7537e82L); /* 61 */
d = II(d, a, b, c, x[11], S42, 0xbd3af235L); /* 62 */
c = II(c, d, a, b, x[2], S43, 0x2ad7d2bbL); /* 63 */
b = II(b, c, d, a, x[9], S44, 0xeb86d391L); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
}
/*
* Encode把long數組按順序拆成byte數組,因為java的long類型是64bit的, 只拆低32bit,以適應原始C實現的用途
*/
private void Encode(byte[] output, long[] input, int len) {
int i, j;
for (i = 0, j = 0; j < len; i++, j += 4) {
output[j] = (byte) (input[i] & 0xffL);
output[j + 1] = (byte) ((input[i] >>> 8) & 0xffL);
output[j + 2] = (byte) ((input[i] >>> 16) & 0xffL);
output[j + 3] = (byte) ((input[i] >>> 24) & 0xffL);
}
}
/*
* Decode把byte數組按順序合成成long數組,因為java的long類型是64bit的,
* 只合成低32bit,高32bit清零,以適應原始C實現的用途
*/
private void Decode(long[] output, byte[] input, int len) {
int i, j;
for (i = 0, j = 0; j < len; i++, j += 4)
output[i] = b2iu(input[j]) | (b2iu(input[j + 1]) << 8)
| (b2iu(input[j + 2]) << 16) | (b2iu(input[j + 3]) << 24);
return;
}
/*
* b2iu是我寫的一個把byte按照不考慮正負號的原則的」升位」程序,因為java沒有unsigned運算
*/
public static long b2iu(byte b) {
return b < 0 ? b & 0x7F + 128 : b;
}
/*
* byteHEX(),用來把一個byte類型的數轉換成十六進制的ASCII表示,
* 因為java中的byte的toString無法實現這一點,我們又沒有C語言中的 sprintf(outbuf,"%02X",ib)
*/
public static String byteHEX(byte ib) {
char[] Digit = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A',
'B', 'C', 'D', 'E', 'F' };
char[] ob = new char[2];
ob[0] = Digit[(ib >>> 4) & 0X0F];
ob[1] = Digit[ib & 0X0F];
String s = new String(ob);
return s;
}
public static void main(String args[]) {
keyBean m = new keyBean();
if (Array.getLength(args) == 0) { // 如果沒有參數,執行標準的Test Suite
System.out.println("keyBean Test suite:");
System.out.println("keyBean(\"):" + m.getkeyBeanofStr(""));
System.out.println("keyBean(\"a\"):" + m.getkeyBeanofStr("a"));
System.out.println("keyBean(\"abc\"):" + m.getkeyBeanofStr("abc"));
System.out.println("keyBean(\"message digest\"):"
+ m.getkeyBeanofStr("message digest"));
System.out.println("keyBean(\"abcdefghijklmnopqrstuvwxyz\"):"
+ m.getkeyBeanofStr("abcdefghijklmnopqrstuvwxyz"));
System.out
.println("keyBean(\"\"):"
+ m
.getkeyBeanofStr(""));
} else
System.out.println("keyBean(" + args[0] + ")="
+ m.getkeyBeanofStr(args[0]));
}
}