人工智慧演算法框架
㈠ 各類場景應用中涉及的AI演算法匯總
整理了各類場景應用中AI演算法
一、圖像CV
內容安全,目標檢測,圖像識別,智能視覺生產,圖像搜索,圖像分割,物體檢測,圖像分類,圖像標簽,名人識別,概念識別,場景識別,物體識別,場景分析,智能相冊,內容推薦,圖庫管理,網紅人物識別,明星人物識別,圖像搜索,商品圖片搜索,版權圖片搜索,通用圖片搜索,車牌識別,垃圾分類,車輛檢測,菜品識別,車型識別,犬類識別,實例分割,風格遷移,智能填充,智能識圖,拍照搜商品,精準廣告投放,電商導購,圖像分析,圖像理解,圖像處理,圖像質量評估,場景識別,物體識別,場所識別,圖像自訓練平台,圖像分類,目標檢測,圖像分割,關鍵點檢測,圖像生成,場景文字識別,度量學習,圖像識別,圖像比對,圖像分類使用手冊,圖像分類API文檔目標檢測使用手冊,目標檢測API文檔Logo檢測使用手冊,Logo檢測API文檔,通用圖片搜索,車牌識別,垃圾分類,車輛檢測,車型識別,犬類識別,實例分割,風格遷移,智能填充,車牌識別,相冊聚類,場景與物體識別,無限天空,圖像識別引擎,黃色圖片識別,暴力圖像識別,工業輪胎智能檢測,肋骨骨折識別,顯微識別,圖像處理,廣告識別,人臉演算法,人體演算法,圖像識別,圖像增強,OCR,圖像處理,ZoomAI,智能貼圖,智能製作,質量評價,圖像識別,智能鑒黃,圖像識別,實時手寫識別,唇語識別,通用文字識別,手寫文字識別,圖像技術,圖像識別,圖像審核,圖像搜索,圖像增強,圖像特效,車輛分析,圖像生成,繪畫機器人獨家,動漫化身獨家,像素風獨家,超清人像獨家,圖像融合,換臉技術,神奇變臉,圖像風格化,證件照生成,線稿圖像識別,寶寶檢測,圖像分類,圉像深度估計,天空分割,食物分割,貓狗臉技術,食物識別獨家,圖像美學評分,車輛分析,車型識別,車型識別(含指導價),車型識別(含配置參數),車標識別,人臉識別(活體),車牌識別,表情識別,安全帽識別,計算機影像,計算機視覺,聚焦光學字元識別、人臉識別、質檢、感知、理解、交互,圖像視頻分析,Logo檢測,內容審核,智能批改,筆記評估,思維導圖評估,物體檢測,物體識別。
二、人臉、體態、眼瞳、聲音、指紋
人臉分割人臉識別,無,人體分析HAS,識別人的年齡,性別,穿著信息,客流統計分析,智能客服,熱點區域分析,人體檢測,人臉口罩識別,人臉對比,人臉搜索,人臉檢測與屬性分析,人臉活體檢測,人體關鍵點檢測,行人重識別,細粒度人像分割,人像分割,人臉解析,3D人體姿態估計,人臉融合,人臉識別,換臉甄別,人臉支付,人臉核身,人像變換,人臉試妝,人臉融合,人體分析,手勢識別,人臉驗證與檢索,人臉比對,人臉比對sensetime,人臉水印照比對,靜默活體檢測,靜默活體檢測sensetime,人臉檢測和屬性分析,人臉特徵分析tuputech,配合式活體檢測,人臉安防,計算機視覺,智能應用服務,人臉查詢人臉分析人臉統計名單庫管理人臉布控,人臉應用,人體應用,人體查詢,車輛查詢車輛分析車輛統計車輛布控車輛名單庫管理,車輛應用,人臉圖像識別人體圖像識別車輛圖像識別,圖像識別,圖像比對,人臉比對,人體檢測,人臉口罩識別,人臉對比,人臉搜索,人臉檢測與屬性分析,人臉活體檢測,人體關鍵點檢測,行人重識別,細粒度人像分割,人像分割,人臉解析,3D人體姿態估計,人臉融合,人臉識別,人臉檢測,人臉比對,人臉搜索,人臉關鍵點,稠密關鍵點,人臉屬性,情緒識別,顏值評分,視線估計,皮膚分析,3D人臉重建,面部特徵分析人體識別,人體檢測,人體關鍵點,人體摳像,人體屬性,手勢識別人像處理,美顏美型,人臉融合,濾鏡,聲紋識別支付,語音合成,語音合成,聲紋識別,語音喚醒,人臉識別引擎,攝像頭人臉識別,圖片人臉檢測,身份識別,人臉識別,人臉屬性,人體識別,聲紋識別,衣服檢索及聚類,語音分析,聲紋識別,說話人歸檔,人臉和人體識別,人臉檢測,手勢識別,人臉與人體識別,人臉識別雲服務,人臉識別私有化,人臉離線識別SDK,人臉實名認證,人像特效,人體分析,人臉技不,皮膚分析獨家,頭部分割,宏觀人臉分析,人臉關鍵點檢測,微觀人臉分析獨家,頭發分析獨家,五官分割,頭發分割人體技術,人體外輪廓點檢測獨家,精細化人像摳圖,人體框檢測,肢體關鍵點檢測,人像分割,服飾識別,手勢識別,皮膚分割,人臉,說話人識別,人臉檢測識別,人臉1:1比對,人臉檢測,AI人臉/人形車輛,大數據人像圖片防偽,QoS保障,CDN,表情識別,舉手動作識別,人臉檢測,網路切片,邊緣計算,人臉分析,人臉檢測,人臉搜索,人體分析,手勢識別,著裝檢測,人臉識別,行為檢測,人臉識別,人形檢測,行為分析,人臉檢測,人臉跟蹤,人臉比對,人臉查找,人臉屬性分析,活體檢測,聲音指紋,聲紋識別。
三、視頻
視頻分割、視頻處理、視頻理解、智能視覺、多媒體,視頻內容分析,人體動作監控,視頻分類,智能交通,人/動物軌跡分析,目標計數,目標跟蹤,視頻編輯-,精彩片段提取,新聞視頻拆分,視頻摘要,視頻封面,視頻拆條,視頻標簽-,視頻推薦,視頻搜索,視頻指紋-,數字版權管理,廣告識別,視頻快速審核,視頻版權,視頻查重,視頻換臉,車輛解析, 體育 視頻摘要,視頻內容分析,顏色識別,貨架商品檢測, 時尚 搭配,危險動作識別,無,無,視頻,視頻換臉,車輛解析, 體育 視頻摘要,視頻內容分析,顏色識別,貨架商品檢測, 時尚 搭配,危險動作識別,菜品識別,視頻識別引擎,結腸息肉檢測,胃鏡評估系統,視頻標簽,場景識別,客流分析,手勢識別,視頻技術,短視頻標簽,視覺看點識別,動態封面圖自動生成,智能剪輯,新聞拆條,智能插幀,視頻技術,多模態媒資檢索公測中,媒體內容分析,媒體內容審核,視頻生成,視頻動作識別,
四、ocr文字識別
手寫識別,票據識別,通用文檔,通用卡證,保險智能理賠,財稅報銷電子化,證照電子化審批,票據類文字識別,行業類文字識別,證件類文字識別,通用類文字識別,通用文字識別,駕駛證識別,身份證識別,增值稅發票識別,行駛證識別,營業執照識別,銀行卡識別,增值稅發票核驗,營業執照核驗,智能掃碼,行業文檔識別, 汽車 相關識別,票據單據識別,卡證文字識別,通用文字識別,手寫文字識別,印刷文字識別,銀行卡識別,名片識別,身份證識別intsig,營業執照識別intsig,增值稅發票識別intsig,拍照速算識別,公式識別,指尖文字識別,駕駛證識別JD,行駛證識別JD,車牌識別JD,身份證識別,增值稅發票識別,營業執照識別,火車票識別,計程車發票識別,印刷文字識別(多語種),印刷文字識別(多語種)intsig內容審核,色情內容過濾,政治人物檢查,暴恐敏感信息過濾,廣告過濾,OCR自定義模板使用手冊,OCR自定義模板API文檔,通用文字識別,駕駛證識別,身份證識別,增值稅發票識別,行駛證識別,營業執照識別,銀行卡識別,身份證識別,駕駛證識別,行駛證識別,銀行卡識別,通用文字識別,自定義模板文字識別,文字識別引擎,身份證識別,圖片文字識別,通用文字識別,身份證識別,名片識別,光學字元識別服務,通用文字識別,手寫體文字識別,表格識別,整題識別(含公式),購物小票識別,身份證識別,名片識別,自定義模板文字識別,文字識別,通用文字識別,銀行卡識別,身份證識別,字幕識別,網路圖片識別, 游戲 直播關鍵字識別,新聞標題識別,OCR文字識別,通用場景文字識別,卡證文字識別,財務票據文字識別,醫療票據文字識別, 汽車 場景文字識別,教育場景文字識別,其他場景文字識別,iOCR自定義模板文字識別,通用類OCR,通用文本識別(中英)通用文本識別(多語言)通用表格識別,證照類OCR,身份證社保卡戶口本護照名片銀行卡結婚證離婚證房產證不動產證,車輛相關OCR,行駛證駕駛證車輛合格證車輛登記證,公司商鋪類OCR,商戶小票稅務登記證開戶許可證營業執照組織機構代碼證,票據類OCR,增值稅發票增值稅卷票火車票飛機行程單計程車發票購車發票智能技術,票據機器人證照機器人文本配置機器人表格配置機器人框選配置機器人,文字識別,行駛證識別,駕駛證識別,表單識別器,通用文本,財務票據識別,機構文檔識別,個人證件識別,車輛相關識別,通用表格,印章識別,財報識別,合同比對,識別文字識別,簽名比對,OCR識別,教育OCR,印刷識別,手寫識別,表格識別,公式識別,試卷拆錄
五、自然語言NPL
文本相似度,文本摘要,文本糾錯,中心詞提取,文本信息抽取,智能文本分類,命名實體,詞性標注,多語言分詞,NLP基礎服務,地址標准化,商品評價解析智能簡訊解析,機器閱讀理解,金融研報信息識別,法律案件抽取,行業問答推理,行業知識圖譜構建,文本實體關系抽取,搜索推薦,知識問答,短文本相似度,文本實體抽取, 情感 傾向分析,興趣畫像匹配,文本分類-多標簽,文本分類-單標簽,定製自然語言處理,語言生成,語言理解,自然語言處理基礎,文本摘要,數據轉文字,文本生成,智能問答系統,內容推薦,評價分析,文本分類,對話理解,意圖理解, 情感 分析,觀點抽取,中文分詞,短文本相似度,關鍵詞提取,詞向量,命名實體,識別依存,句法分析, 情感 分析,評論觀點抽取,短文本相似度,機器翻譯,詞法分析,詞義相似度,詞向量,句法分析,文本分類,短語挖掘,閑聊,文本流暢度,同義詞,聚類,語言模型填空,新聞熱詞生成,機器閱讀理解,商品信息抽取,詞法分析, 情感 分析,關鍵詞提取,用戶評論分析,資訊熱點挖掘,AIUI人機交互,文本糾錯,詞法分析,依存句法分析,語義角色標注,語義依存分析(依存樹),語義依存分析(依存圖), 情感 分析,關鍵詞提取,NLP能力生產平台,NLP基礎技術,中文詞法分析-LAC,詞向量—Word2vec,語言模型—Language_model,NLP核心技術, 情感 分析、文本匹配、自然語言推理、詞法分析、閱讀理解、智能問答,信息檢索、新聞推薦、智能客服, 情感 分析、文本匹配、自然語言推理、詞法分析、閱讀理解、智能問答,機器問答、自然語言推斷、 情感 分析和文檔排序,NLP系統應用,問答系統對話系統智能客服,用戶消費習慣理解熱點話題分析輿情監控,自然語言處理,文本分類使用手冊,文本分類API文檔, 情感 分析,評論觀點抽取,短文本相似度,機器翻譯,詞法分析,詞義相似度,詞向量,句法分析,文本分類,短語挖掘,閑聊,文本流暢度,同義詞,聚類,語言模型填空,新聞熱詞生成,機器閱讀理解,商品信息抽取智能創作,智能寫作,搭配短文,種草標題,賣點標題,社交電商營銷文案,自然語言處理能力,基礎文本分析,分詞、詞性分析技術,詞向量表示,依存句法分析,DNN語言模型,語義解析技術,意圖成分識別, 情感 分析,對話情緒識別,文本相似度檢測,文本解析和抽取技術,智能信息抽取,閱讀理解,智能標簽,NLG,自動摘要,自動寫文章,語言處理基礎技術,文本審核, 情感 分析,機器翻譯,智能聊天,自然語言,基於標題的視頻標簽,台詞看點識別,意圖識別,詞法分析,相關詞,輿情分析,流量預測,標簽技術,自然語言處理,語義對話,自然語言處理,車型信息提取,關鍵詞提取,語義理解,語義相似度,意圖解析,中文詞向量,表示依存,句法分析,上下文理解,詞法分析,意圖分析,情緒計算,視覺 情感 ,語音 情感 , 情感 分析,沉浸式閱讀器,語言理解,文本分析,自然語言處理,在線語音識別,自然語言理解火速上線中, 情感 判別,語義角色標注,依存句法分析,詞性標注,實體識別,中文分詞,分詞,
6、知識圖譜
知識圖譜,葯學知識圖譜,智能分診,騰訊知識圖譜,無,葯學知識圖譜,智能分診,知識理解,知識圖譜Schema,圖資料庫BGraph,知識圖譜,語言與知識,語言處理基礎技術,語言處理應用技術,知識理解,文本審核,智能對話定製平台,智能文檔分析平台,智能創作平台,知識圖譜,實體鏈接,意圖圖譜,識別實體,邏輯推理,知識挖掘,知識卡片
7、對話問答機器人
智能問答機器人,智能語音助手,智能對話質檢,智能話務機器人,無,電話機器人,NeuHub助力京東智能客服升級,騰訊雲小微,智能硬體AI語音助手,對話機器人,無,問答系統對話系統智能客服,Replika對話技術,客服機器人,智能問答,智能場景,個性化回復,多輪交互,情緒識別,智能客服,金融虛擬客服,電話質檢,AI語音交互機器人,中移雲客服·智能AI外呼,人機對話精準語義分析
8、翻譯
協同翻譯工具平台,電商內容多語言工具,文檔翻譯,專業版翻譯引擎,通用版翻譯引擎,無,機器翻譯,無,機器翻譯,音視頻字幕平台,機器翻譯,機器翻譯niutrans,文本翻譯,語音翻譯,拍照翻譯,機器翻譯,機器翻譯,文本翻譯,語音翻譯,通用翻譯,自然語言翻譯服務,文本翻譯,圖片翻譯,語音翻譯,實時語音翻譯,文檔翻譯(開發版,機器翻譯,文本翻譯,語音翻譯,拍照翻譯,機器翻譯實時長語音轉寫,錄音文件長語音轉寫,翻譯工具,機器翻譯火速上線中
9、聲音
便攜智能語音一體機,語音合成聲音定製,語音合成,一句話識別,實時語音識別錄音文件識別,客服電話,語音錄入,語音指令,語音對話,語音識別,科學研究,安防監控,聲音分類,語音合成,語音識別,實時語音轉寫,定製語音合成,定製語音識別,語音合成,語音合成聲音定製,離線語音合成,短語音識別,錄音文件識別,聲紋識別,離線語音識別,實時語音識別,呼叫中心短語音識別,呼叫中心錄音文件識別,呼叫中心實時語音識別,語音識別,語音合成,聲紋識別,語音識別,語音聽寫,語音轉寫,實時語音轉寫,語音喚醒,離線命令詞識別,離線語音聽寫,語音合成,在線語音合成,離線語音合成,語音分析,語音評測,性別年齡識別,聲紋識別,歌曲識別,A.I.客服平台能力中間件,語音識別,語音交互技術,語音合成,語音合成聲音定製,離線語音合成,短語音識別,錄音文件識別,聲紋識別,離線語音識別,實時語音識別,呼叫中心短語音識別,呼叫中心錄音文件識別,呼叫中心實時語音識別,遠場語音識別,語音識別,一句話識別,實時語音識別,錄音文件識別,語音合成,實時語音識別,長語音識別,語音識別,語音合成,波束形成,聲源定位,去混響,降噪,回聲消除,分布式拾音,語音識別,語音喚醒,語音合成,聲紋識別,智能語音服務,語音合成,短語音識別,實時語音識別,語音理解與交互,離線喚醒詞識別,語音識別,一句話識別,實時語音識別,錄音文件識別,電話語音識別,語音喚醒,離線語音識別,離線命令詞識別,遠場語音識別,語音合成,通用語音合成,個性化語音合成,語音技術,短語音識別,實時語音識別,音頻文件轉寫,在線語音合成,離線語音合成,語音自訓練平台,語音交互,語音合成,語音識別,一句話識別,實時短語音識別,語音合成,語音喚醒,本地語音合成,語音翻譯,語音轉文本,短語音聽寫,長語音轉寫,實時語音轉寫,語音內容審核,會議超極本,語音交互技術,語音識別,語義理解,語音合成,音頻轉寫,音視頻類產品,語音通知/驗證碼,訂單小號,撥打驗證,點擊撥號,數據語音,統一認證,語音會議,企業視頻彩鈴,語音識別,語音文件轉錄,實時語音識別,一句話語音識別,語音合成,通用語音合成,個性化語音合成,語音評測,通用語音評測,中英文造句評測,在線語音識別,語音識別,語音喚醒,語音合成,語音合成,語音識別,語音聽寫,語音轉寫,短語音轉寫(同步),語音識別,語音 情感 識別
十、數據挖掘AI硬體
演算法類型:包括二分類、多分類和回歸,精準營銷,表格數據預測,銷量預測,交通流量預測,時序預測,大數據,無,機器學習使用手冊,機器學習API文檔,大數據處理,大數據傳輸,數據工廠,大數據分析,數據倉庫,數據採集與標注,數據採集服務,數據標注服務,AI開發平台,全功能AI開發平台BML,零門檻AI開發平台EasyDL,AI硬體與平台,GPU雲伺服器,機器人平台,度目視頻分析盒子,度目AI鏡頭模組,度目人臉應用套件,度目人臉抓拍機,人臉識別攝像機,昆侖AI加速卡,智能預測,購車指數,數據科學虛擬機,平台效率,雲與AI,抗DDoS,天盾,網站漏洞掃描,網頁防篡改,入侵檢測防護,彈性雲伺服器,對象存儲服務,雲專線(CDA,AI計算機平台—360net深度學習基礎模型,AI演算法訓練適配主流AI框架
十一、其他
內容審核,智能鑒黃,特定人物識別,通用圖片審核,文本智能審核,廣告檢測,Logo檢測,商品理解,拍照購,商品圖片搜索,通用商品識別,疫情物資識別,酒標識別,細分市場劃分,品牌競爭力分析,老品升級,新品定製,商品競爭力分析,商品銷量預測,商品營銷,用戶評論佔比預測,商品命名實體識別,商品顏色識別,強化學習,智能地圖引擎,內容審核,智能鑒黃,特定人物識別,通用圖片審核,文本智能審核,廣告檢測,Logo檢測商品理解,拍照購,商品圖片搜索,通用商品識別,疫情物資識別,酒標識別,細分市場劃分,品牌競爭力分析,老品升級,新品定製,商品競爭力分析,商品銷量預測,商品營銷,用戶評論佔比預測,商品命名實體識別,商品顏色識別,個性化與推薦系統,推薦系統,輿情分析,輿情標簽,智慧教育,智能語音評測,拍照搜題,題目識別切分,整頁拍搜批改,作文批改,學業大數據平台,文檔校審系統,會議同傳系統,文檔翻譯系統,視頻翻譯系統,教育學習,口語評測,朗讀聽書,增強現實,3D肢體關鍵點SDK,美顏濾鏡SDK,短視頻SDK,基礎服務,私有雲部署,多模態交互,多模態 情感 分析,多模態意圖解析,多模態融合,多模態語義,內容審查器,Microsoft基因組學,醫學人工智慧開放平台,數據查驗介面,身份驗證(公安簡項),銀行卡驗證,發票查驗,設備接入服務Web/H5直播消息設備託管異常巡檢電話提醒,音視頻,視頻監控服務雲廣播服務雲存儲雲錄制,司乘體驗,智能地圖引擎,消息類產品,視頻簡訊,簡訊通知/驗證碼,企業掛機彩信,來去電身份提示,企業固話彩印,模板閃信,異網簡訊,內容生產,試卷拆錄解決方案,教學管理,教學質量評估解決方案,教學異常行為監測,授課質量分析解決方案,路況識別,人車檢測,視覺SLAM,高精地圖,免費SDK,智能診後隨訪管理,用葯管家,智能預問診,智能導診,智能自診,智能問葯,智能問答,裁判文書近義詞計算,法條推薦,案由預測,
㈡ 人工智慧需要什麼基礎
當下,人工智慧成了新時代的必修課,其重要性已無需贅述,但作為一個跨學科產物,它包含的內容浩如煙海,各種復雜的模型和演算法更是讓人望而生畏。對於大多數的新手來說,如何入手人工智慧其實都是一頭霧水,比如到底需要哪些數學基礎、是否要有工程經驗、對於深度學習框架應該關注什麼等等。
那麼,學習人工智慧該從哪裡開始呢?人工智慧的學習路徑又是怎樣的?
本文節選自王天一教授在極客時間 App 開設的「人工智慧基礎課」,已獲授權。更多相關文章,請下載極客時間 App,訂閱專欄獲取。
數學基礎知識蘊含著處理智能問題的基本思想與方法,也是理解復雜演算法的必備要素。今天的種種人工智慧技術歸根到底都建立在數學模型之上,要了解人工智慧,首先要掌握必備的數學基礎知識,具體來說包括:
線性代數:如何將研究對象形式化?
概率論:如何描述統計規律?
數理統計:如何以小見大?
最優化理論: 如何找到最優解?
資訊理論:如何定量度量不確定性?
形式邏輯:如何實現抽象推理?
線性代數:如何將研究對象形式化?
事實上,線性代數不僅僅是人工智慧的基礎,更是現代數學和以現代數學作為主要分析方法的眾多學科的基礎。從量子力學到圖像處理都離不開向量和矩陣的使用。而在向量和矩陣背後,線性代數的核心意義在於提供了⼀種看待世界的抽象視角:萬事萬物都可以被抽象成某些特徵的組合,並在由預置規則定義的框架之下以靜態和動態的方式加以觀察。
著重於抽象概念的解釋而非具體的數學公式來看,線性代數要點如下:線性代數的本質在於將具體事物抽象為數學對象,並描述其靜態和動態的特性;向量的實質是 n 維線性空間中的靜止點;線性變換描述了向量或者作為參考系的坐標系的變化,可以用矩陣表示;矩陣的特徵值和特徵向量描述了變化的速度與方向。
總之,線性代數之於人工智慧如同加法之於高等數學,是一個基礎的工具集。
概率論:如何描述統計規律?
除了線性代數之外,概率論也是人工智慧研究中必備的數學基礎。隨著連接主義學派的興起,概率統計已經取代了數理邏輯,成為人工智慧研究的主流工具。在數據爆炸式增長和計算力指數化增強的今天,概率論已經在機器學習中扮演了核心角色。
同線性代數一樣,概率論也代表了一種看待世界的方式,其關注的焦點是無處不在的可能性。頻率學派認為先驗分布是固定的,模型參數要靠最大似然估計計算;貝葉斯學派認為先驗分布是隨機的,模型參數要靠後驗概率最大化計算;正態分布是最重要的一種隨機變數的分布。
數理統計:如何以小見大?
在人工智慧的研究中,數理統計同樣不可或缺。基礎的統計理論有助於對機器學習的演算法和數據挖掘的結果做出解釋,只有做出合理的解讀,數據的價值才能夠體現。數理統計根據觀察或實驗得到的數據來研究隨機現象,並對研究對象的客觀規律做出合理的估計和判斷。
雖然數理統計以概率論為理論基礎,但兩者之間存在方法上的本質區別。概率論作用的前提是隨機變數的分布已知,根據已知的分布來分析隨機變數的特徵與規律;數理統計的研究對象則是未知分布的隨機變數,研究方法是對隨機變數進行獨立重復的觀察,根據得到的觀察結果對原始分布做出推斷。
用一句不嚴謹但直觀的話講:數理統計可以看成是逆向的概率論。 數理統計的任務是根據可觀察的樣本反過來推斷總體的性質;推斷的工具是統計量,統計量是樣本的函數,是個隨機變數;參數估計通過隨機抽取的樣本來估計總體分布的未知參數,包括點估計和區間估計;假設檢驗通過隨機抽取的樣本來接受或拒絕關於總體的某個判斷,常用於估計機器學習模型的泛化錯誤率。
最優化理論: 如何找到最優解?
本質上講,人工智慧的目標就是最優化:在復雜環境與多體交互中做出最優決策。幾乎所有的人工智慧問題最後都會歸結為一個優化問題的求解,因而最優化理論同樣是人工智慧必備的基礎知識。最優化理論研究的問題是判定給定目標函數的最大值(最小值)是否存在,並找到令目標函數取到最大值 (最小值) 的數值。 如果把給定的目標函數看成一座山脈,最優化的過程就是判斷頂峰的位置並找到到達頂峰路徑的過程。
通常情況下,最優化問題是在無約束情況下求解給定目標函數的最小值;在線性搜索中,確定尋找最小值時的搜索方向需要使用目標函數的一階導數和二階導數;置信域演算法的思想是先確定搜索步長,再確定搜索方向;以人工神經網路為代表的啟發式演算法是另外一類重要的優化方法。
資訊理論:如何定量度量不確定性?
近年來的科學研究不斷證實,不確定性就是客觀世界的本質屬性。換句話說,上帝還真就擲骰子。不確定性的世界只能使用概率模型來描述,這促成了資訊理論的誕生。
資訊理論使用「信息熵」的概念,對單個信源的信息量和通信中傳遞信息的數量與效率等問題做出了解釋,並在世界的不確定性和信息的可測量性之間搭建起一座橋梁。
總之,資訊理論處理的是客觀世界中的不確定性;條件熵和信息增益是分類問題中的重要參數;KL 散度用於描述兩個不同概率分布之間的差異;最大熵原理是分類問題匯總的常用准則。
形式邏輯:如何實現抽象推理?
1956 年召開的達特茅斯會議宣告了人工智慧的誕生。在人工智慧的襁褓期,各位奠基者們,包括約翰·麥卡錫、赫伯特·西蒙、馬文·閔斯基等未來的圖靈獎得主,他們的願景是讓「具備抽象思考能力的程序解釋合成的物質如何能夠擁有人類的心智。」通俗地說,理想的人工智慧應該具有抽象意義上的學習、推理與歸納能力,其通用性將遠遠強於解決國際象棋或是圍棋等具體問題的演算法。
如果將認知過程定義為對符號的邏輯運算,人工智慧的基礎就是形式邏輯;謂詞邏輯是知識表示的主要方法;基於謂詞邏輯系統可以實現具有自動推理能力的人工智慧;不完備性定理向「認知的本質是計算」這一人工智慧的基本理念提出挑戰。
《人工智慧基礎課》全年目錄
本專欄將圍繞機器學習與神經網路等核心概念展開,並結合當下火熱的深度學習技術,勾勒出人工智慧發展的基本輪廓與主要路徑。點擊我獲取學習資源
充分了解數據及其特性,有助於我們更有效地選擇機器學習演算法。採用以上步驟在一定程度上可以縮小演算法的選擇范圍,使我們少走些彎路,但在具體選擇哪種演算法方面,一般並不存在最好的演算法或者可以給出最好結果的演算法,在實際做項目的過程中,這個過程往往需要多次嘗試,有時還要嘗試不同演算法。不過先用一種簡單熟悉的方法,然後,在這個基礎上不斷優化,時常能收獲意想不到的效果。
㈢ 人工智慧演算法
推薦教程:python教程
人工智慧英文簡稱AI。它是研究、開發用於模擬、延伸和擴展人的智能的理論、方法、技術及應用系統的一門新的技術科學。
人工智慧演算法也被稱之為軟計算 ,它是人們受自然界規律的啟迪,根據其原理模擬求解問題的演算法。
目前的人工智慧演算法有人工神經網路遺傳演算法、模擬退火演算法、群集智能蟻群演算法和例子群算等等。
隨著人工智慧演算法的不斷優化,可以不僅可以幫助我們提高工作效率、改善我們的生活水平,同時也能為我們在龐大的現代信息資源中迅速的找到我們所需要的信息。
㈣ 人工智慧開發機器學習的常用演算法
我們在學習人工智慧以及智能AI技術的時候曾經給大家介紹過不同的機器學習的方法,而今天我們就著重介紹一下,關於機器學習的常用演算法都有哪些類型。
支持向量機是什麼?
支持向量機是一種有監督的機器學習演算法,可以用於分類或回歸問題。它使用一種稱為核技巧的技術來轉換數據,然後根據這些轉換在可能的輸出之間找到一個邊界。簡單地說,它做一些非常復雜的數據轉換,然後根據定義的標簽或輸出來劃分數據。
那麼是什麼讓它如此偉大呢?
支持向量機既能進行分類又能進行回歸。在本文中,我將重點介紹如何使用SVM進行分類。我將特別關注非線性支持向量機,或者說是使用非線性核的支持向量機。非線性支持向量機意味著演算法計算的邊界不一定是直線。好處是您可以捕獲數據點之間更復雜的關系,而不必自己做困難的轉換。缺點是訓練時間更長,因為它需要更多的計算。
那麼核技巧是什麼?
核技巧對你獲得的數據進行轉換。有一些很好的特性,你認為可以用來做一個很好的分類器,然後出來一些你不再認識的數據。這有點像解開一條DNA鏈。你從這個看起來很難看的數據向量開始,在通過核技巧之後,它會被解開並自我復合,直到它現在是一個更大的數據集,通過查看電子表格無法理解。但是這里有魔力,在擴展數據集時,你的類之間現在有更明顯的界限,SVM演算法能夠計算出更加優化的超平面。
接下來,假設你是一個農民,你有一個問題-你需要設置一個圍欄,以保護你的奶牛免受狼的攻擊。但是你在哪裡建造籬笆?好吧,如果你是一個真正的數據驅動農民,你可以做的一件事就是建立一個基於你牧場中奶牛和狼的位置的分類器。昆明北大青鳥http://www.kmbdqn.com/建議通過幾種不同類型的分類器,我們看到SVM在從狼群中分離你的奶牛方面做得很好。我認為這些圖也很好地說明了使用非線性分類器的好處。您可以看到邏輯和決策樹模型都只使用直線。
㈤ 庫內人工智慧怎麼理解
以柏睿數據自主研發的資料庫內人工智慧演算法框架為例,採用庫內並行AI演算法,支持對實時數據進行互動式分析和挖掘,可以這樣理解,庫內通用人工智慧為AI技術實現提供強有力的通用性平台,首先是優化,庫內通用人工智慧技術,實現了在資料庫內直接並行運行機器學習演算法,最簡單高速實現了人工智慧,其次是簡捷,任何人員都可以通過庫內人工智慧技術獲得精準的數據集,使用者無需具備專業技能,人人都是數據分析師,網路有相關資訊!
㈥ 人工智慧服務技術有哪些
《智能技術服務》關注如何搭建人工智慧技術平台,提供與人工智慧相關的服務。這些製造商是人工智慧產業鏈的關鍵參與者。依託基礎設施和海量數據,為各類人工智慧應用提供關鍵技術平台、解決方案和服務。目前,從提供的服務類型來看,技術服務提供商包括以下幾類:
1、人工智慧服務技術——提供人工智慧技術平台和演算法模型。
這些廠商主要為用戶或行業需求提供人工智慧技術平台和演算法模型。用戶可以在人工智慧平台上通過一系列演算法模型開發人工智慧應用程序。這些廠商專注於AI的關鍵領域,比如通用計算框架、演算法模型和通用技術。
2、人工智慧服務技術——提供人工智慧整體解決方案。
這些製造商主要為用戶或行業設計和提供集成的工業AI解決方案。各種AI演算法模型和軟硬體環境集成到整體解決方案中,幫助用戶或行業解決具體問題。這些廠商專注於特定領域或行業的人工智慧應用。
3、人工智慧服務技術——提供人工智慧在線服務。
此類廠商一般都是傳統的雲服務提供商,主要依靠自身現有的雲計算和大數據應用用戶資源,收集用戶需求和行業屬性,為客戶提供各類人工智慧服務。從針對各種模型演算法和計算框架的api等特定應用平台,到針對特定行業的整體解決方案,它將進一步吸引大量用戶進一步完善其人工智慧服務。這些供應商主要提供通用的人工智慧服務,但也關注關鍵行業和部門。
以上就是人工智慧服務技術是什麼的全部內容,智能技術服務關注如何搭建人工智慧技術平台,提供與人工智慧相關的服務。這些製造商在人工智慧產業鏈中處於關鍵地位,如果你想知道更多的人工智慧相關知識,也可以點擊本站的其他文章進行學習。
㈦ 人工智慧的基礎層是什麼發展前景如何
人工智慧行業主要上市公司:目前國內人工智慧行業的上市公司主要有網路網路(BAIIDU)、騰訊(TCTZF)、阿里巴巴(BAIBAI)、科大訊飛(002230)等。
本文核心數據:人工智慧基礎層分類,人工智慧基礎層市場規模,人工智慧基礎層融資情況,人工智慧基礎層融資輪次分布情況,工智能基礎層細分賽道融資情況
1、人工智慧基礎層規模增長較快
人工智慧基礎層是支撐各類分工智能應用開發與運行的資源平台,主要包括演算法、算力和數據三大要素。人工智慧基礎層主要包括智能計算集群、智能模型敏捷開發工具、數據基礎服務與治理平台三個板塊。
智能計算集群提供支AI模型開發、訓練或推理的算力資源,包括系統級AI晶元和異構智能計算伺服器,以及下游的人工智慧計算中心等;
智能模型敏捷開發工具模塊主要實現AI應用模型的生產,包括開源演算法框架,提供語音、圖像等AI技術能力調用的AI開放平台和AI應用模型效率化生產平台;
數據基礎服務與治理平台模塊則實現應用所需的數據資源生產與治理,提供AI基礎數據服務及面向AI的數據治理平台。AI基礎層企業通過提供AI算力、開發工具或數據資源助力人工智慧應用在各行業領堿、各應用場景落地,支撐人工智慧產業健康穩定發展。
以上數據參考前瞻產業研究院《中國人工智慧行業市場前瞻與投資戰略規劃分析報告》。
㈧ 人工智慧要學哪些技術
基礎是數學,入門AI必須掌握一些必要的數學基礎,比如是微積分、概率論、線性代數、凸優化等這些。
數據分析里需要應用到的內容也需要掌握,比如要知道計算機裡面怎麼挖掘數據、相關的數據挖掘工具等等補足了以上數學和數據挖掘基本知識,才可以正式進行機器學習演算法原理的學習。
演算法方面需要掌握一些基本的框架:python、spark、mllib、scikit-learning、pytorch、TensorFlow,數據方面需要懂得HQL、numpy、pandas,如果你本身是後台開發、app開發、數據分析、項目管理,則是一個學習演算法的一個加分項。
最後需要對人工智慧有全局的認知,包括機器學習、深度學習兩大模塊,相關的演算法原理、推導和應用的掌握,以及最重要的演算法思想。
㈨ 人工智慧演算法有哪些
人工智慧演算法有:決策樹、隨機森林演算法、邏輯回歸、SVM、樸素貝葉斯、K最近鄰演算法、K均值演算法、Adaboost演算法、神經網路、馬爾可夫。
㈩ 人工智慧是什麼 人工智慧演算法是什麼
人工智慧和人工智慧演算法的官方定義相信你已經看過了。
就我個人理解。人工智慧,是人類賦予了本身不具備思考學習能力的機器/演算法一些學習和思考的能力。人工智慧演算法沒有統一定義,其實就是神經網路演算法和機器學習演算法的統稱。同時,注意人工智慧演算法和智能演算法大不一樣,智能演算法主要是指一系列的啟發式演算法。
希望對你有幫助