粗匹配演算法
⑴ 圖像匹配的演算法
迄今為止,人們已經提出了各種各樣的圖像匹配演算法,但從總體上講,這些匹配演算法可以分成關系結構匹配方法、結合特定理論工具的匹配方法、基於灰度信息的匹配方法、基於亞像元匹配方法、基於內容特徵的匹配方法五大類型 基於內容特徵的匹配首先提取反映圖像重要信息的特徵,而後以這些特徵為模型進行匹配。局部特徵有點、邊緣、線條和小的區域,全局特徵包括多邊形和稱為結構的復雜的圖像內容描述。特徵提取的結果是一個含有特徵的表和對圖像的描述,每一個特徵由一組屬性表示,對屬性的進一步描述包括邊緣的定向和弧度,邊與線的長度和曲率,區域的大小等。除了局部特徵的屬性外,還用這些局部特徵之間的關系描述全局特徵,這些關系可以是幾何關系,例如兩個相鄰的三角形之間的邊,或兩個邊之間的距離可以是輻射度量關系,例如灰度值差別,或兩個相鄰區域之間的灰度值方差或拓撲關系,例如一個特徵受限於另一個特徵。人們一般提到的基於特徵的匹配絕大多數都是指基於點、線和邊緣的局部特徵匹配,而具有全局特徵的匹配實質上是我們上面提到的關系結構匹配方法。特徵是圖像內容最抽象的描述,與基於灰度的匹配方法比,特相對於幾何圖像和輻射影響來說更不易變化,但特徵提取方法的計算代價通常較,並且需要一些自由參數和事先按照經驗選取的閉值,因而不便於實時應用同時,在紋理較少的圖像區域提取的特徵的密度通常比較稀少,使局部特徵的提 取比較困難。另外,基於特徵的匹配方法的相似性度量也比較復雜,往往要以特徵屬性、啟發式方法及閉方法的結合來確定度量方法。基於圖像特徵的匹配方法可以克服利用圖像灰度信息進行匹配的缺點,由於圖像的特徵點比象素點要少很多,因而可以大大減少匹配過程的計算量同時,特徵點的匹配度量值對位置的變化比較敏感,可以大大提高匹配的精確程度而且,特徵點的提取過程可以減少雜訊的影響,對灰度變化,圖像形變以及遮擋等都有較好的適應能力。所以基於圖像特徵的匹配在實際中的應用越來越廣-泛。所使用的特徵基元有點特徵明顯點、角點、邊緣點等、邊緣線段等。
⑵ 演算法有哪些分類
演算法分類編輯演算法可大致分為:
基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
⑶ 有沒有好的粗匹配演算法
Robert Sedgewick的演算法第四版,在coursera上有同步的在線課堂 演算法導論不適合初學者。理論性太強,且缺乏具體實現
⑷ 數據處理
4.3.1 數據源情況
4.3.1.1 衛星影像數據情況
本項目數據源是由國土資源部信息中心提供的 2005~2007 年 SPOT 5_2.5 m 解析度影像數據。覆蓋工作區的 SPOT 5 衛星影像數據共計 79 景(圖 4-2),所接收影像均有 4% 以上的重疊區域;影像信息豐富,無明顯雜訊、斑點和壞線;雲、雪覆蓋量均小於 10%,且未覆蓋城鄉結合部等重點地區;東部平原地區大部分影像覆蓋有程度不同的霧或霾,但整體地類信息能夠區分;影像數據接收側視角一般小於 15°,平原地區不超過 25°,山區不超過 20°,基本滿足技術規范對影像接收的要求。
圖 4-2 河南省 SPOT 5 影像數據分布示意圖
圖 4-3 影像接收時間分布
由於本次 SPOT 5 衛星影像接收時間跨度大,時相接收差異大,79 景影像多集中於春季和秋季(圖 4-3),但部分影像由於接收時間不是河南地區最佳季節,存在著這樣或那樣的問題,見表 4-1:
表 4-1 影像數據接收信息及數據質量評述表
續表
4.3.1.2 DEM 數據情況
覆蓋河南全省的 1∶5 萬數字高程模型(DEM)共計 464 幅。
首先,對 DEM 是否齊全及 DEM 的現勢性等進行了全面檢查;其次,對相鄰分幅 DEM 是否有重疊區域以及重疊區域的高程是否一致、接邊後是否出現裂隙現象等信息進行了檢查;第三,項目組對每幅 DEM 是否有完整的元數據以及對數據的地理基礎、精度、格網尺寸等信息是否齊全等進行了全面檢查。
由於 1∶5 萬 DEM 原始數據是 GRID 標准格式,數學基礎為 1980 年西安坐標系,1985 年國家高程基準,6°分帶。鑒於以上數據格式和項目實施方案要求,項目組對涉及工作區的 464 幅DEM,分別按照 19°帶和 20°帶進行鑲嵌及坐標系轉換,之後再進行拼接、換帶及投影轉換處理,得到覆蓋河南全省的、滿足對項目區影像進行正射校正需求的、中央經線為 114°、1954 北京坐標系、1985 年國家高程基準的河南省 1∶5 萬 DE(M圖 4-4)。
圖 4-4 河南省 1∶5 萬 DEM
經過對拼接好的 DEM 進行全面檢查,本項目使用的 DEM 數據覆蓋河南全省,不存在缺失、黑邊等現象,基本滿足本項目影像數據正射校正的需要。
4.3.2 數據配准
目前影像配准技術大致分為兩大類,基於灰度的方法和基於特徵的方法。大多數基於灰度的方法採用互相關技術或傅立葉變換技術來實現。影像配准採用的是 ERDAS 9.1 中的自動配准模塊(AutoSync)。在自動檢測結束後,將其在參考圖像上尋找出來同樣需要很大的工作量。在不能完全自動實現匹配的情況下,如果能夠大致計算出需要尋找和精確調整標注的區域,同樣能夠減少很大工作量。通過使用多項式粗略計算出兩張影像的對應關系就可以解決這一問題。
根據 ERDAS 系統要求,我們最少需要 3 個點就可以在兩張衛星影像間建立一個粗略的對應關系。使用至少 3 個點建立起正算多項式模型後,便可以將自動檢測出來的控制點迅速對應到參考影像上,只需要在很小的范圍內調整就可以精確標注出其在參考影像上的位置。圖 4-5 左側為原始影像上自動檢測點,右側為參考影像上粗定位點,需要進行調整。
圖 4-5 配准
雖然計算機的引入可以大量節約勞動,但是因為技術所限,並不能解決矯正和配准所有環節的全部問題,從而將測繪工作者徹底解放出來。
本次項目生產過程中,針對 SPOT 5_10 m 多光譜數據重采樣成間隔為 2.5 m,重采樣方法採用雙線性內插法。以景為配准單元,以 SPOT 5_2.5 m 全色數據為配准基礎,將 SPOT 5 多光譜數據與之配准。隨機選擇配准後全色與多光譜數據上的同名點,要求配准誤差平原和丘陵地區不超過 0.5 個像元,山區適當放寬至 1 個像元。配准控制點文件命名使用「景號 + MULTI 和 PAN」,如「287267MULTI」。配准文件命名使用「景號 + MATCH」,如「287267MATCH」。
影像配准採用的是 ERDAS 9.1 中的自動配准模塊(AutoSync)。首先,在單景影像的四角部位手動選取四個配准控制同名點,然後由軟體生成自動配准控制點,剔除其中誤差較大的控制點後,進行自動配准(圖 4-6)。配准完成後,採用軟體提供的「拉窗簾」的方式對整景影像自上而下、自左至右進行配准精度檢查(圖 4-7)。
總結配準的工作,可以看到基本上分為如下幾步:①標注至少 3 個粗匹配控制點;②設置檢測參數;③進行自動檢測;④人工調整和保存控制點;⑤進行配准。其中第 4 步仍然需要人工參與,主要的問題在於兩點:一是精度是否真正是人感官上的特徵點方面存在問題;二是參考圖像上的控制點僅僅是粗略對應標注,人工無法手動調整至精確對應位置,因此,暫時的配准工作僅僅部分減輕了人工工作量,但不可能完全由計算機完成配准工作。
圖 4-6 影像配准
圖 4-7 影像配准精度「拉窗簾」檢查
4.3.3 數據融合
4.3.3.1 融合前數據的預處理
獲取完整項目區的衛星影像數據時,由於接收時間跨度較大,數據時相差別較大,加上空中雲、霧或霾的干擾以及地面光照不均勻等因素,造成景與景之間的影像光譜和紋理特徵差別較大。為使影像紋理清晰,細節突出,提高目視解譯精度等,在數據融合前必須對數據進行預處理。
SPOT 5 全色波段數據處理的目的是增強局部灰度反差、突出紋理、加強紋理能量和通過濾波來提高紋理細節。
(1)線性變換。經過線性拉伸處理的影像數據,既增強局部灰度反差又保持原始灰度間的相對關系。
圖 4-8 線性變換
設A1、A2為輸入影像的嵌位控制值,B1、B2為變換後影像最低、最高亮度值(圖4-8),輸入影像的亮度值A1~A2被拉伸為B1~B2范圍,其中輸入亮度0~A1及A2~255分別被變換為B1、B2,如果賦值B1=0、B2=255,則拉大了輸入影像的動態范圍,從而反差得到增強,保持了輸入影像灰度間的線性關系。通過線性拉伸將位移A1變換為0,而將A2變為255;這樣既沒有改變A1到A2之間灰度值的相對關系,又擴展了直方圖的動態范圍,從而增強影像結構的細微突變信息。
(2)紋理增強。紋理能量增強目前主要靠高通濾波來實現,在空域增強中濾波器選擇是關鍵。不同影像地貌、地物選擇的濾波核各異。一般地,在地形高起伏地區,地理單元比較宏觀,採用的濾波器一般較大,能夠反映地理單元的宏觀特點,選擇較小的濾波核會破壞整體的地貌外形。在地理單元分布細碎,地貌細膩,選擇濾波器相對應較小,否則無法表現細碎的紋理結構。在紋理能量增強時應該避免增強過剩,否則影像細節會過於飽和,使紋理喪失,達不到增強細節的目的。以下濾波核是本次用到的邊緣增強濾波運算元,應用效果比較好。如圖4-9所示。
圖 4-9 濾波增強
(3)多光譜數據處理。在融合影像中,多光譜數據的貢獻是其光譜信息。融合前主要以色彩增強為主,調整亮度、色度、飽和度,拉開不同地類之間的色彩反差,對局部的紋理要求不高,有時為了保證光譜色彩,還允許削弱部分紋理信息。
4.3.3.2 影像融合
目前用於多源遙感數據融合的方法很多,從技術層次來分,可以包括像元級融合、特徵級融合和決策級融合三個層次。像元級融合有HIS變換、主分量變換、假彩色合成、小波變換、加權融合等方法;特徵級融合有Bayes、決策法、神經網路法、比值運算、聚類分析等方法;決策級融合有基於知識的融合、神經網路、濾波融合等方法。從融合演算法上分,可分為對圖像直接進行代數運算的方法,如加權融合法、乘積融合法、Brovey變換融合法等;第二種是基於各種空間變換的方法,如HIS變換融合法、PCA變換融合法、Lab變換融合法等;第三種是基於金字塔式分解和重建的融合方法,如拉普拉斯金字塔融合法、小波變換融合法。
本項目所使用數據為SPOT5數據,缺少藍波段多光譜,對數據採用了自然色模擬方法,在土地利用資源調查中,多光譜信息可以突出地反映土地利用類型的要素信息,提高影像的可判讀性,便於從圖形、紋理特徵及光譜特徵進行綜合判別分析。一般遙感衛星多光譜感測器波譜范圍覆蓋整個可見光部分,即藍、綠、紅波段。而SPOT系列遙感衛星其多光譜覆蓋范圍在可見光部分僅從綠到紅波段,缺少藍波段。在利用遙感衛星影像進行土地利用資源調查時,多光譜信息要求必須以人眼可見的自然色表達,而不允許用偽彩色和紅外彩色模擬,以便於非遙感測繪人員的判讀與實地調查。對於通常的SPOT系列遙感衛星的自然色模擬方法,往往僅靠不同波段組合,以人眼目視判別、感知來調整色調。作業人員的先驗知識作色調調整,作業人員經驗欠缺時,色調調校失真較大;二是標准難以定量統一,不同調校時間、人員,不同景影像的拼接,由於感知的差異都難以達到同一或近似的標准。通過分析全省SPOT5數據特徵,本次影像融合處理主要採用了乘積變換融合和Andorre融合。
Andorre融合採用的是視寶公司提供的Andorre融合方法,具體步驟為:
步驟1 對全色影像先做正態化處理。等價於Wallis濾波及增強局部(紋理增強)與全局對比度。
步驟2 按下面公式融合(P是正態化處理後的全色影像,B1是綠波段,B2是紅波段,B3是近紅外波段)。
ERDAS 中模塊計算公式:
§ 公式一(藍通道):
§ 公式二(綠通道):
§ 公式三(紅通道):
步驟 3 按下面公式完成偽自然色轉換:
ERDAS 中模塊計算公式:
§ 公式一(紅通道):
§ 公式二(綠通道):
§ 公式三(藍通道):
步驟 4 對步驟 3 生成的各個通道執行直方圖拉伸處理。通常,線性直方圖拉伸可以滿足這種彩色影像的調整,需要根據影像目視效果定義閾值。閾值的選擇應該避免在平衡其他顏色造成的像素過飽和。或在 Photoshop 中調整影像色調、亮度及對比度等直至滿足要求。
通過 ERDAS 中 Model 實現其演算法(圖 4-10)。
4.3.3.3 融合影像後處理
後處理主要採用以下 5 種方法:
(1)直方圖調整。對反差較低、亮度偏暗的融合影像,調整輸入輸出范圍,改變反差系數進行線性拉伸,使其各色直方圖達到接近正態分布。輸出范圍一般都定為 0~255,而在輸入范圍的選擇中,對低亮度端的截去應慎重,可以消除部分雜訊。
(2)USM 銳化。通過變化閾值、半徑、銳化程度增強地物邊緣特徵。注意閾值和半徑的設定值不宜過大,銳化程度可根據不同地區影像特點適當選取。通過軟體的預覽功能可以判斷參數選擇得是否合適。城鄉結合部、居民點、道路和耕地邊界是需要重點突出的地物,必須保證清晰可辨,進一步改善總體效果。
(3)彩色平衡。經過融合運算後,影像或多或少會帶有一定程度的偏色,需要通過調整彩色平衡加以改正。
(4)色度飽和度調整。由於 SPOT 5 影像融合後存在大量的洋紅色,與實地顏色不一致的,可以通過改變色度、飽和度、明度等將其轉變為土黃色,使其更接近於真實顏色。
(5)反差增強。通過亮度和對比度調整,可以增強地物間的反差,使不同地類更易區分。
通過融合影像後處理,進一步改善影像的視覺效果,使整景影像色彩真實均勻、明暗程度適中、清晰,增強專題信息,特別是加強紋理信息。
圖 4-10 融合處理演算法
4.3.4 正射校正模型選擇與處理
4.3.4.1 正射糾正的基本模型
一般對推掃式遙感衛星影像的正射糾正有嚴密糾正模型和變換關系糾正模型兩大類。嚴密糾正模型根據衛星軌道參數、感測器攝影特徵以及成像特點,由感測器在獲取影像瞬間的位置、方位等因素,建立起像點與地面之間的共線關系,並由此共線方程解求像點或地面點的糾正。而變換關系糾正模型是一種傳統的幾何糾正方式,不考慮成像的特性,它通過地面控制點與影像同名點計算出不同變換式的變換系數,從而將變形的原始影像擬合到地面坐標中。
嚴密糾正模型有基於多項式的共線方程、基於衛星軌道參數的糾正方法、基於光束法的區域網平差等方法;變換關系糾正模型有多項式糾正、有理函數多項式、有理函數多項式區域網平差等方法。其中,區域網平差是用較少的控制點以多景影像組成區域網進行平差的糾正方法。
(1)基於多項式的共線方程糾正方法。改正原始影像的幾何變形,採用像素坐標變換,使影像坐標符合某種地圖投影和圖形表達方式和像素亮度值重采樣。在攝影瞬間,感測器、影像、地面三者之間,以共線方程反映了成像時地面點和像點之間一一對應的關系。
由於推掃式成像是當前大多數遙感衛星採用的主流成像方式,那麼整景影像為多中心投影,每條掃描線是中心投影。用共線方程表達為
推掃式成像的每一掃描線外方位元素均不同,且y值恆為0。正射糾正時必須求解每一行的外方位元素,利用共線方程得到與地面點相對應的像點坐標,加入DEM後對影像進行糾正。
一般可以認為,在一定時間內,遙感衛星在軌道運行時,空間姿態變化是穩定的,那麼6個外方位元素的變化是時間的函數。由於推掃式影像y坐標和時間之間有固定的對應關系,即每行掃描時間相同,所以可將第i行外方位元素表示為初始外方位元素(φi,wi,ki)和行數y的函數,而這個函數可以用二次多項式函數來表示,即
該方法需獲得初始外方位元素可從星歷文件中得到,如SPOTS影像星歷,在DIM,CAP格式文件中。
(2)多項式糾正方法。多項式糾正方法是一種傳統的變換關系糾正方法。多項式用二維的地面控制點計算出與像點的變換關系,設定任意像元在原始影像中坐標和對應地面點坐標分別為(x,y)和(X,Y),以x=Fx(x,y),y=Fy(x,y)數學表達式表達,如果該數學表達式採用多項式函數來表達,則像點坐標(x,y)與地面點坐標(X,Y)建立的多項式函數為
式中(:a0,a1,a2,a3,……,an)(,b0,b1,b2,b3,……,bn)——變換系數。
一般多項式階數是1階到5階的,式中表達的為3階。所需控制點數N與多項式階數n的關系為:N(=n+1)(n+2)/2,即1階需3個控制點,2階需6個控制點,3階需10個控制點。
多項式糾正考慮二維平面間的關系差,因此,對於地形起伏高差較大的區域,並不能改正由地形起伏引起的投影誤差,糾正後的精度就不高。另外考慮入射角的影響,多項式糾正對於地形起伏較大地區並不適宜。
(3)有理函數糾正方法。有理函數糾正方法是一種變換關系的幾何糾正模型,以有理函數系數(Rational Function Coefficient)將地面點P(La,Lb,Hc)與影像上的點(pIi,Sa)聯系起來。對於地面點P,其影像坐標(pIi,Sa)的計算始於經緯度的正則化,即
正則化的影像坐標(x,y)為
求得的影像坐標為
有理函數糾正不僅以較高的精度進行物方和像方的空間變換,相對於多項式糾正方法考慮了地面高程,相對於基於共線方程模型使復雜的實際感測器模型得以簡化,便於實現。
(4)區域網平差糾正方法。區域網平差,首先將三維空間模型經過相似變換縮小到影像空間,再將其以平行光投影至過原始影像中心的一個水平面上,最後將其變換至原始傾斜影像,從而進行以仿射變換建立誤差方程,包括每景影像的參數和地面影像坐標的改正,組成法方程,進行平差計算改正。基於模型的區域網平差,是通過影像之間的約束關系補償有理函數模型的系統誤差。區域網平差要合理布設控制點,在景間需有一定數量的連接點,所需控制點數量較少。
4.3.4.2 正射糾正
本次遙感影像正射糾正採用專業遙感影像處理軟體ERDAS提供的LPS正射模塊進行的,糾正過程如圖4-11所示。
圖 4-11 正射糾正流程
為了與以往的縣級土地利用資料庫相銜接,平面坐標系統仍然採用 1954 北京坐標系,高程系統採用 1985 國家高程基準,投影方式採用高斯-克呂格投影,分帶方式為 3°分帶。
本項目涉及 79 景連片且同源影像數據,因此採用整體區域糾正,以工作區為糾正單元,利用具有區域網糾正功能的 ERDAS 中 LPS 模塊進行區域網平差,根據影像分布情況建立一個區域網文件,快速生成無縫正射鑲嵌精確的正射影像,如圖 4-12 所示。因本工作區涉及 37°、38°、39°三個 3°分帶,考慮到全省數據鑲嵌等問題,整個工程採用 38°帶,其中央經線為 114°。
本次糾正中採用 SPOT 5 物理模型,控制點均勻分布於整景影像,控制點個數 25 個,相鄰景影像重疊區有 2 個以上共用控制點。
工作區控制點分布如圖 4-13 所示。
影像正射糾正以實測控制點和 1∶5 萬 DEM 為糾正基礎,以工作區為糾正單元,采樣間隔為 2.5 m。
對控制點和連接點超過限差的要進行檢查、剔除,發現誤差超限的點位,應先通過設置其為檢查點方式重新解算,如解算通過,則通過平差解算;如果糾正精度超限,查找超限原因,則應考慮在誤差較大的點位附近換點或增補點加以解決,並進行必要的返工,直至滿足要求為止。控制點採集如圖 4-14 所示。
對整景利用 DEM 數據在 LPS 中選取 SPOT 5 Orbital Pushbroom 感測器模型,投影選取 Gauss Kruger,橢球體採用 Krasovsky,進行正射糾正,糾正精度滿足 SPOT 5_2.5 m 數字正射影像圖糾正精度要求,糾正後的圖面點位中誤差見表 4-2。
圖 4-12 整體區域糾正控制點選取示意圖
圖 4-13 區域網平差糾正工程圖
圖 4-14 控制點採集
表 4-2 正射糾正控制點中誤差
續表
4.3.5 鑲嵌
以項目區為單位,對相鄰景正射影像的接邊精度進行檢查。經檢查接邊精度合格後,以項目區為單位,對正射影像進行鑲嵌。
由於項目區採用的是 ERDAS 提供的 LPS 正射模塊區域網平差糾正,相鄰兩幅影像,均採集了兩個以上的共用控制點,相應提高了影像鑲嵌精度。
在項目區相鄰景影像的重疊區域中,平原、丘陵與山區分別隨機選取了 30 對均勻分布的檢查點,檢查影像的接邊精度。根據檢查點的點位坐標,計算檢查點點位中誤差。見表 4-3。
表 4-3 影像鑲嵌誤差
本項目影像鑲嵌以工作區為單元,在景與景之間鑲嵌線盡量選取線狀地物或地塊邊界等明顯分界處,以便使鑲嵌影像中的拼接縫盡可能地消除,盡量避開雲、霧及其他質量相對較差的區域,使鑲嵌處無裂縫、模糊和重影現象,使鑲嵌處影像色彩過渡自然,使不同時相影像鑲嵌時保證同一地塊內紋理特徵一致,方便地類判讀和界線勾繪。影像鑲嵌圖如圖 4-15 所示。
⑸ KMP是什麼意思
一種由Knuth(D.E.Knuth)、Morris(J.H.Morris)和Pratt(V.R.Pratt)三人設計的線性時間字元串匹配演算法。這個演算法不用計算變遷函數δ,匹配時間為Θ(n),只用到輔助函數π[1,m],它是在Θ(m)時間內,根據模式預先計算出來的。數組π使得我們可以按需要,「現場」有效的計算(在平攤意義上來說)變遷函數δ。粗略地說,對任意狀態q=0,1,…,m和任意字元a∈Σ,π[q]的值包含了與a無關但在計算δ(q,a)時需要的信息。由於數組π只有m個元素,而δ有Θ(m∣Σ∣)個值,所以通過預先計算π而不是δ,使得時間減少了一個Σ因子。
⑹ 王者榮耀匹配規則是什麼 匹配機制到底是什麼
王者榮耀匹配規則是根據玩家的歷史戰績、排位段位、近期勝率等參數綜合判定,系統會把實力相近的玩家匹配到同一局游戲。另外,王者榮耀的排位模式還需要根據雙方玩家的平均段位進行排位匹配。
所有開黑的隊伍會優先匹配到其它開黑隊伍,當不存在其它開黑隊伍時,將會遇到個人實力稍強的路人組合隊伍。
(6)粗匹配演算法擴展閱讀:
匹配玩家的勝負情況決定賽後的加減星以及隱藏的實力分變動,玩家的表現情況只會影響勇者積分的增長數量以及舉報相關的判斷,在我們匹配機制中,幫助團隊勝利永遠是唯一的目標。MVP的次數只作為單局表現的一次評價,完全不會干預影響匹配演算法。
普通匹配賽只需要玩家滿足最低的要求即可參與匹配,系統會根據玩家的實力情況來進行匹配和己方隊伍實力相近的隊伍進行比賽,所以實力不佳的玩家完全不需要擔心被高段位碾壓。
⑺ 數據結構串匹配十大經典演算法
1。
int Index(SString S,SString T,int pos)
{
//返回子串T在主串S中第pos個字元之後的位置。若不存在,則函數值為0。
//其中,T非空,1〈=pos<=Stringlength(S).
i=pos;j=1;
while(i<=S[0] && j<=T[0])
{
if (S[i]== T[i]) {++i;++j;}
else { i=i-j+2;j=1;}
}
if(j>T[0]) return i-T[0];
else return 0;
}//Index
2。
int Index-KMP(SString S,SString T,int pos)
{
//利用模式串T的next函數值求T在主串S中第pos 個字元之後的位置的KMP演算法。其中,T非空,1<=pos<=Stringlength(S)
i=pos;
j=1;
while(i<=S[0] && j<=T[0])
{
if (j==0 || S[i]==T[j]) {++i; ++j;}
else j=next[j];
}
if (j>T[0]) return i-T[0];
else return 0;
//Index}
下面是next函數:
void next(SString S,ing next[])
{
i=1;
next[1]=0;
j=0;
while (i<T[0])
{
if (j==0 || T[i]==T[j]){ ++i; ++j;
next[j]=i;}
else j=next[j];
}
}//next
我現在只有這兩個答案。
⑻ 論淘寶搜索推薦演算法排序機制及2021年搜索的方向。
[寫在前面]淘寶搜索引擎至今反復多次,搜索順序也從最初的統計模型升級到機械學習模型,到2010年為止沒有標簽沒有基礎標簽,隨著計算能力的提高,2010年後開始挖掘用戶的基礎標簽,從3年到2013年開始使用大規模的機械學習和實時特徵
但你有沒有想過為什麼2016-2017年的兩年是各種各樣的黑搜索盛行的一年,為什麼今天幾乎消失了?
最根本的原因是從統計演算法模型到機械學習模型的轉型期。
說白了,這時不收割就沒有收割的機會。因為統計模型即將退出歷史舞台。
因此,各路大神各自擴大了統計模型演算法中的影響因素。統計演算法無論在哪裡,點擊率和坑產都很容易搜索。
那兩年成了中小賣家的狂歡盛宴,很多大神的煙火也是旺盛的。
今天推薦演算法的第三代使用後,加上疫情的影響進行了鮮明的比較,真的很感慨。
淘寶真的沒有流量了嗎?電器商務真的做不到嗎?還是大家的思維沒有改變,停留在2016-2017年的黑搜宴會上不想醒來?
2017年、2018年、2019年是淘寶推薦演算法反復最快的3年,每年的演算法升級都不同,整體上到2019年9月為止統計演算法模型的影響因素還很大,從2019年下半年開始第三代推薦演算法後,全面的真正意義進入了以機械學習模型為中心的推薦演算法時代。
各路大神也無法驗證,加上百年疫情的影響,很多大神的隱蔽布也泄露了。
基本上以統計模型為主,訓練基本上沒有聲音,典型的是坑產游戲。
如果現在還能看到的話,基本上可以判斷他不是在訓練,而是在製作印刷用紙,一定會推薦使用資源,資源是多麼安全。
刷子的生產增加真的沒有效果嗎?不是我以前的文章說:不是不行,而是從坑產的角度思考,而是從改變競爭環境的角度思考,用補充書改變競爭環境,改變場地,有新的天地,任何手段都要為商業本質服務。
正文
概述統計演算法模型時代。
統計模型時代搜索引擎的排名是最原始的排名思考,如果你的類別不錯,關鍵詞比較正確,就能得到很大的流量,當時產品需求少,只要上下架的優化就能使產品上升。
到2016年為止沒有坑產游戲嗎?黑色搜索的效果不好嗎?其實,什麼時候坑產是最核心的機密,誰來教大家,什麼時候教的最多的是類別優化,關鍵詞優化,大部分優化都圍繞關鍵詞,電器商的老人想起了你什麼時候得到關鍵詞的人得到了世界。
有人告訴我做坑產,關鍵詞找到生意也來了。什麼時候知道坑產也沒有人給你刷子,大規模的補充書也出現在黑色搜索盛行的時期。
為什麼關鍵詞者得天下?
搜索關鍵詞是用戶目前意圖最直觀的表達,也是用戶表達意圖最直接的方式。
搜索的用戶購物意圖最強,成交意願也最強,現在搜索也是轉化率最高的流量來源。
統計時代關鍵詞背後直接依賴的是類別商品,只要製作類別和關鍵詞分詞即可,哪個時代最出現的黑馬通常是類別機會、關鍵詞機會、黑科學技術機會。
最基本的是商業本質,什麼時候產品需求少,沒有很多現在的類別,自己找類別,現在想想什麼概念。
記得什麼時候類別錯了,搜索也可以來。如果你的商品點擊反饋好的話,錯誤的類別沒有什麼影響,現在試試吧
搜索類是搜索的基礎。
什麼時候能稱霸,背後有商業邏輯,用戶行為數據好就行了。
但無論如何發展檢索都離不開關鍵詞。例如,上述關鍵詞是用戶表達意圖的最直接的方法,是當前消費者的檢索行為和購買行為發生了根本性的變化。
檢索依然根據消費者的行為數據和關鍵詞來判斷需求,這就是機械學習模型時代。
機器學習模式時代-推薦搜索演算法。
現在的商品體積和消費者購物行為的豐富性,統計演算法不能滿足檢索的本質要求。
所以現在搜索引擎開始發展深度學習模式更精細的建模-推薦搜索演算法,搜索排名更智能。
在此重點討論推薦檢索演算法,
2017、2018、2019是推薦檢索演算法真正意義發展的3年,3年3個系統版本每年更換一次,很多電器商人都不知道頭腦。
推薦檢索演算法和統計演算法模型的最大區別在於,Query的處理能力和演算法有召回機制
簡單表示推薦演算法的程序:
1:對檢索關鍵詞進行分詞、重寫的處理進行類別預判
2:根據用戶信息,即用戶以前的行為數據記錄和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作等信息存檔
3:根據檢索用戶信息,根據檢索用戶以前的行為數據檢索引擎和預測的性別、年齡、購買力、店鋪喜好、品牌喜好、實時行動作為等信息存檔3:根據檢索用戶信息的檢索用戶信息
也就是說,在第一關召回階段基本上與統計模型時代的最佳化途徑相同,核心是標題分詞和類別,現在最大的區別是根據用戶信息推薦最佳化,這是標簽和正確人群標簽圖像最佳化的基本意義。
為什麼現在一直在談論標簽,談論人標簽圖像?入池實際上是為了匹配真正的消費者用戶信息,通過直通車測試來判斷人群也是為了通過性別、年齡和購買力來優化匹配真正的消費者。
召回機制:
通過構建子單元索引方式加快商品檢索,不必經歷平台上億級的所有商品。該索引是搜索引擎中的倒置索引,利用倒置索引初始篩選商品的過程是召回階段。
在這個階段,不會進行復雜的計算,主要是根據現在的搜索條件進行商品候選集的快速圈定。
之後再進行粗排和精排,計算的復雜程度越來越高,計算的商品集合逐漸減少,最後完成整個排序過程。
主要召迴路徑分為
1:語言召回
2:向量召回
這些都是商業秘密不方便的說明,有興趣的是學習我們的在線會員課程標簽重疊游戲6是基於語言和向量召回的基礎邏輯實戰落地的課程。
下一階段進入粗行列,粗行列受這些因素的影響:
粗行列作為召回後的第一個門檻,希望用戶體驗以時間低的模型快速排序和篩選商品,第一關系將過濾到不適合本次檢索詞要求的商品
為了實現這個目的,首先要明確影響粗排名得分的因素
1:類別匹配得分和文本匹配得分,
2:商品信息質量(商品發布時間、商品等級、商品等級)
3:商品組合得分
點擊得分
交易得分賣方服務商業得分
在粗排列框架下,系統粗排列演算法根據商品類別的預測得分進行得分
點擊得分交易得分
交易得分賣方服務商業得分粗排列框架下,系統粗排列的大排列
最後是精排,檢索順序的主要目標是高相關性、高個性化的正確性。
每個用戶的喜好不同,系統會根據每個用戶的Query結合用戶信息進行召回。然後通過粗排後,商品數量從萬級下降到千級。
千級商品經排後直接向用戶展示,搜索過程中商品集合的思考和具體變化如下圖
前面的召回、粗排主要解決主題相關性,通過主題相關性的限制,首先縮小商品集合和我們的在線會員課程標簽
精排階段系是真正系統推薦演算法發揮真正威力時,應根據用戶行為反饋迅速進行機械學習建模,判斷用戶真實性、准確性和可持續控制性。
為什麼現在的游戲和黑色技術暫時出現,核心是系統演算法模型機械學習模型,系統分析用戶有問題,不正確,不穩定,維持性差,可以迅速調整。
也就是說,即使發現脆弱性,研究快速有效的方法,系統也會根據你精排階段的用戶行為迅速分析學習建模,發現模型有問題,你的玩法就結束了。
猜機器學習建模的速度有多快?
想玩黑色的東西早點死去吧。
現在使用的檢索順序模型主要是
CTR模型和CVR模型,具體模型過於復雜也不需要深入,但影響這兩種模型的最基本因素是用戶行為數據
真的不能假的,假的也不能假的演算法模型越來越智能化,演算法越來越強,只有回歸商業本質才能真正解決演算法模型背後真正想解決的問題,演算法基於商業邏輯。
2021年搜索向哪個方向發生變化:
2020年電器商人和螞蟻是不平凡的一年。2020年也是螞蟻從神壇上拉下來的元年,現在螞蟻有各種各樣的黑色。
基於中小賣家的走勢無疑是阿里必須正面面對的現實。
如何讓中小賣家迴流或留在平台上,搜索該怎麼做?
檢索一定是基於三方的考慮,買方、賣方和平台本身,現在市場上又開始提倡坑產搜索邏輯,坑產妖風又開始,根據推薦搜索演算法邏輯來談這個問題。
為什麼坑產思維是不死的小強,每次危機都會跳出來。
以統計模型為中心的坑產時代是淘寶從2003年到2015年一直使用的搜索演算法模型長達13年。
同時也是淘寶和中國網分紅的野蠻生長期,統計演算法模式讓太多電商賺錢。除了
之外,十年的奴役思維已經習慣了,在電器商圈,坑產游戲一定有人相信,其他人不一定被認可。所以,我們夾著尾巴發展的原因,時間真的可以證明一切,不用多說,做自己。
習慣性思維加上特殊時期的賺錢蝴蝶效應,使許多電器商人活在歷史的長夢中。正確地說,統計演算法模型的真正廢除是在2019年下半年。
同學說坑產永遠有效,我也這么想。
永遠有效的是起爆模型坑產權重驅動和統計演算法模型中的坑產排名不同。
起爆模型的坑產要素永遠有效,這永遠不會改變。
但是,如何有效地加上這個起爆模型的坑產權重,並不像模仿購物的意圖那麼簡單。
坑產游戲在2021年絕對不行。淘寶不會把現在的演算法系統換成15年前的。
基於三方利益:
購買者體驗
賣方利益
平台的發展
搜索肯定會向高精度和高控制性發展。以標簽為中心的用戶標簽圖像仍然是影響流量精度的基本因素。
必須從標簽的角度考慮和優化種子組的圖像。
通過種子組的圖像向相似人擴展到葉類人,業界喜好人最後向相關人擴展也是擴大流量的過程渠道。
基於推薦搜索演算法邏輯:
精密排列階段演算法更強,精度更高,轉化率更高,持續穩定性更強。
基於中小賣方流通的現狀,優化精排階段並非中小賣方能夠簡單接觸。
推薦演算法從搜索排名階段出現在哪個階段?
個人判斷
一是召回階段
二是粗排階段
上述提到召回階段的演算法簡單復蓋商品為萬級,排序規則也比較簡單,中小賣方在召回階段提高精度尤為重要。
在這個萬級商品庫中,如上下架的權重上升,中小賣方有機會上升到主頁,從子單元的索引召回中尋找機會。
或者根據中小賣方的新產品和中小賣方的店鋪水平進行特別優先搜索推薦,使中小賣方的新產品在低銷售狀態下顯示,可以實現錦囊演算法。
中小賣方有機會搜索主頁,不調用用戶信息直接打開主頁的展示權可能是中小賣方最大的支持。
根據召回階段的用戶行為數據,在粗排階段以比例融入用戶信息,即標簽的影響。
在初始召回階段,類別和分詞權重,看業者主圖場景反應背後的人們反饋,用系統引導,給中小賣方真正參考的流量方向和成交方向。
誰瘋狂地印刷用紙直接關閉黑屋,理解印刷用紙優化競爭場景,從優化人群的角度出發,適當放寬處罰。
通過召回階段,得到的用戶信息會影響粗體結果。在這個階段,用戶信息的權重比例不應該太大,流量卡也不應該太死。
在各檢索順序階段用戶信息,即用戶標簽對檢索的影響權重的問題。
這個方向我的個人觀點是可能的。
⑼ 跪求matlab圖像配准幫助,本人用harris粗匹配求得幾何變換模型的參變數編寫ransac演算法,進行精配准。
基於小波變換的多尺度圖像邊緣檢測matlab源代碼(在Matlab7.0下運行)
clear all;
load wbarb;
I = ind2gray(X,map);imshow(I);
I1 = imadjust(I,stretchlim(I),[0,1]);figure;imshow(I1);
[N,M] = size(I);
h = [0.125,0.375,0.375,0.125];
g = [0.5,-0.5];
delta = [1,0,0];
J = 3;
a(1:N,1:M,1,1:J+1) = 0;
dx(1:N,1:M,1,1:J+1) = 0;
dy(1:N,1:M,1,1:J+1) = 0;
d(1:N,1:M,1,1:J+1) = 0;
a(:,:,1,1) = conv2(h,h,I,'same');
dx(:,:,1,1) = conv2(delta,g,I,'same');
dy(:,:,1,1) = conv2(g,delta,I,'same');
x = dx(:,:,1,1);
y = dy(:,:,1,1);
d(:,:,1,1) = sqrt(x.^2+y.^2);
I1 = imadjust(d(:,:,1,1),stretchlim(d(:,:,1,1)),[0 1]);figure;imshow(I1);
lh = length(h);
lg = length(g);
for j = 1:J+1
lhj = 2^j*(lh-1)+1;
lgj = 2^j*(lg-1)+1;
hj(1:lhj)=0;
gj(1:lgj)=0;
for n = 1:lh
hj(2^j*(n-1)+1)=h(n);
end
for n = 1:lg
gj(2^j*(n-1)+1)=g(n);
end
a(:,:,1,j+1) = conv2(hj,hj,a(:,:,1,j),'same');
dx(:,:,1,j+1) = conv2(delta,gj,a(:,:,1,j),'same');
dy(:,:,1,j+1) = conv2(gj,delta,a(:,:,1,j),'same');
x = dx(:,:,1,j+1);
y = dy(:,:,1,j+1);
dj(:,:,1,j+1) = sqrt(x.^2+y.^2);
I1 = imadjust(dj(:,:,1,j+1),stretchlim(dj(:,:,1,j+1)),[0 1]);figure;imshow(I1);
end