遺傳演算法選擇運算元
① 遺傳演算法 運算元有哪些
選擇運算元 一般隨機選擇 賭輪選擇都可以
交叉運算元 01編碼的 ,傳統的類似於基因串的交叉方式..
實數編碼的.通常是 P(t+1,m) = aP(t,x)+(1-a)P(t,y) a∈(0,1)之間交叉,這個交叉方法基本上不收斂.我的經驗是把a改成(0,2)之間收斂的效果很好.當然(0,1.75)~(0,2)之間的貌似都可以。具體原因我還在分析中。如果你有什麼分析的結論的話,歡迎和我交流
變異運算元 每代隨便選一兩個數某位變異一下就ok..
② 請問什麼是遺傳演算法,並給兩個例子
遺傳演算法(Genetic Algorithm, GA)是近幾年發展起來的一種嶄新的全局優化演算法,它借
用了生物遺傳學的觀點,通過自然選擇、遺傳、變異等作用機制,實現各個個體的適應性
的提高。這一點體現了自然界中"物競天擇、適者生存"進化過程。1962年Holland教授首次
提出了GA演算法的思想,從而吸引了大批的研究者,迅速推廣到優化、搜索、機器學習等方
面,並奠定了堅實的理論基礎。 用遺傳演算法解決問題時,首先要對待解決問題的模型結構
和參數進行編碼,一般用字元串表示,這個過程就將問題符號化、離散化了。也有在連續
空間定義的GA(Genetic Algorithm in Continuous Space, GACS),暫不討論。
一個串列運算的遺傳演算法(Seguential Genetic Algoritm, SGA)按如下過程進行:
(1) 對待解決問題進行編碼;
(2) 隨機初始化群體X(0):=(x1, x2, … xn);
(3) 對當前群體X(t)中每個個體xi計算其適應度F(xi),適應度表示了該個體的性能好
壞;
(4) 應用選擇運算元產生中間代Xr(t);
(5) 對Xr(t)應用其它的運算元,產生新一代群體X(t+1),這些運算元的目的在於擴展有限
個體的覆蓋面,體現全局搜索的思想;
(6) t:=t+1;如果不滿足終止條件繼續(3)。
GA中最常用的運算元有如下幾種:
(1) 選擇運算元(selection/reproction): 選擇運算元從群體中按某一概率成對選擇個
體,某個體xi被選擇的概率Pi與其適應度值成正比。最通常的實現方法是輪盤賭(roulett
e wheel)模型。
(2) 交叉運算元(Crossover): 交叉運算元將被選中的兩個個體的基因鏈按概率pc進行交叉
,生成兩個新的個體,交叉位置是隨機的。其中Pc是一個系統參數。
(3) 變異運算元(Mutation): 變異運算元將新個體的基因鏈的各位按概率pm進行變異,對
二值基因鏈(0,1編碼)來說即是取反。
上述各種運算元的實現是多種多樣的,而且許多新的運算元正在不斷地提出,以改進GA的
某些性能。系統參數(個體數n,基因鏈長度l,交叉概率Pc,變異概率Pm等)對演算法的收斂速度
及結果有很大的影響,應視具體問題選取不同的值。
GA的程序設計應考慮到通用性,而且要有較強的適應新的運算元的能力。OOP中的類的繼
承為我們提供了這一可能。
定義兩個基本結構:基因(ALLELE)和個體(INDIVIDUAL),以個體的集合作為群體類TP
opulation的數據成員,而TSGA類則由群體派生出來,定義GA的基本操作。對任一個應用實
例,可以在TSGA類上派生,並定義新的操作。
TPopulation類包含兩個重要過程:
FillFitness: 評價函數,對每個個體進行解碼(decode)並計算出其適應度值,具體操
作在用戶類中實現。
Statistic: 對當前群體進行統計,如求總適應度sumfitness、平均適應度average、最好
個體fmax、最壞個體fmin等。
TSGA類在TPopulation類的基礎上派生,以GA的系統參數為構造函數的參數,它有4個
重要的成員函數:
Select: 選擇運算元,基本的選擇策略採用輪盤賭模型(如圖2)。輪盤經任意旋轉停止
後指針所指向區域被選中,所以fi值大的被選中的概率就大。
Crossover: 交叉運算元,以概率Pc在兩基因鏈上的隨機位置交換子串。
Mutation: 變異運算元,以概率Pm對基因鏈上每一個基因進行隨機干擾(取反)。
Generate: 產生下代,包括了評價、統計、選擇、交叉、變異等全部過程,每運行一
次,產生新的一代。
SGA的結構及類定義如下(用C++編寫):
[code] typedef char ALLELE; // 基因類型
typedef struct{
ALLELE *chrom;
float fitness; // fitness of Chromosome
}INDIVIDUAL; // 個體定義
class TPopulation{ // 群體類定義
public:
int size; // Size of population: n
int lchrom; // Length of chromosome: l
float sumfitness, average;
INDIVIDUAL *fmin, *fmax;
INDIVIDUAL *pop;
TPopulation(int popsize, int strlength);
~TPopulation();
inline INDIVIDUAL &Indivial(int i){ return pop[i];};
void FillFitness(); // 評價函數
virtual void Statistics(); // 統計函數
};
class TSGA : public TPopulation{ // TSGA類派生於群體類
public:
float pcross; // Probability of Crossover
float pmutation; // Probability of Mutation
int gen; // Counter of generation
TSGA(int size, int strlength, float pm=0.03, float pc=0.6):
TPopulation(size, strlength)
{gen=0; pcross=pc; pmutation=pm; } ;
virtual INDIVIDUAL& Select();
virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,
INDIVIDUAL &child1, INDIVIDUAL &child2);
&child1, INDIVIDUAL &child2);
virtual ALLELE Mutation(ALLELE alleleval);
virtual void Generate(); // 產生新的一代
};
用戶GA類定義如下:
class TSGAfit : public TSGA{
public:
TSGAfit(int size,float pm=0.0333,float pc=0.6)
:TSGA(size,24,pm,pc){};
void print();
}; [/code]
由於GA是一個概率過程,所以每次迭代的情況是不一樣的;系統參數不同,迭代情況
也不同。在實驗中參數一般選取如下:個體數n=50-200,變異概率Pm=0.03, 交叉概率Pc=
0.6。變異概率太大,會導致不穩定。
參考文獻
● Goldberg D E. Genetic Algorithm in Search, Optimization, and machine
Learning. Addison-Wesley, Reading, MA, 1989
● 陳根社、陳新海,"遺傳演算法的研究與進展",《信息與控制》,Vol.23,
NO.4, 1994, PP215-222
● Vittorio Maniezzo, "Genetic Evolution of the Topology and Weight Distri
bution of the Neural Networks", IEEE, Trans. on Neural Networks, Vol.5, NO
.1, 1994, PP39-53
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅰ
l Networks, Vol.5, NO.1, 1994, PP102-119
● Xiaofeng Qi, Francesco Palmieri, "Theoretical Analysis of Evolutionary
Algorithms with an Infinite Population Size in Continuous Space. Part Ⅱ
al Networks, Vol.5, NO.1, 1994, PP102-119
● Gunter Rudolph, Convergence Analysis of Canonical Genetic Algorithms, I
EEE, Trans. on Neural Networks, Vol.5, NO.1, 1994, PP96-101
● A E Eiben, E H L Aarts, K M Van Hee. Gloable convergence of genetic alg
orithms: A Markov chain analysis. in Parallel Problem Solving from Nat
ure. H.-P.Schwefel, R.Manner, Eds. Berlin and Heidelberg: Springer, 1991
, PP4-12
● Wirt Atmar, "Notes on the Simulation of Evolution", IEEE, Trans. on Neu
ral Networks, Vol.5, NO.1, 1994, PP130-147
● Anthony V. Sebald, Jennifer Schlenzig, "Minimax Design of Neural Net Co
ntrollers for Highly Uncertain Plants", IEEE, Trans. on Neural Networks, V
ol.5, NO.1, 1994, PP73-81
● 方建安、邵世煌,"採用遺傳演算法自學習模型控制規則",《自動化理論、技術與應
用》,中國自動化學會 第九屆青年學術年會論文集,1993, PP233-238
● 方建安、邵世煌,"採用遺傳演算法學習的神經網路控制器",《控制與決策》,199
3,8(3), PP208-212
● 蘇素珍、土屋喜一,"使用遺傳演算法的迷宮學習",《機器人》,Vol.16,NO.5,199
4, PP286-289
● M.Srinivas, L.M.Patnaik, "Adaptive Probabilities of Crossover and Mutat
ion", IEEE Trans. on S.M.C, Vol.24, NO.4, 1994 of Crossover and Mutation",
IEEE Trans. on S.M.C, Vol.24, NO.4, 1994
● Daihee Park, Abraham Kandel, Gideon Langholz, "Genetic-Based New Fuzzy
Reasoning Models with Application to Fuzzy Control", IEEE Trans. S. M. C,
Vol.24, NO.1, PP39-47, 1994
● Alen Varsek, Tanja Urbancic, Bodgan Filipic, "Genetic Algorithms in Con
troller Design and Tuning", IEEE Trans. S. M. C, Vol.23, NO.5, PP1330-13
39, 1993
③ 遺傳演算法
根據問題的目標函數構造一個適值函數,對一個由多個解(每個解對應一個染色體)構成的種群進行評估、遺傳、選擇,經多代繁殖,獲得適應值最好的個體作為問題的最優解。
1,產生一個初始種群
2,根據問題的目標函數構造適值函數
3,根據適應值的好壞不斷選擇和繁殖
4,若干代後得到適應值最好的個體即為最優解
1.種群和種群大小
一般越大越好,但是規模越大運算時間越大,一般設為100~1000
2. 編碼方法 (基因表達方法
3. 遺傳運算元
包括交叉和變異,模擬了每一代中創造後代的繁殖過程。是遺傳演算法的精髓
交叉:性能在很大程度上取決於交叉運算的性能,交叉率Pc:各代中交叉產生的後與代數與種群中的個體數的比。Pc越高,解空間就越大,越耗時/
變異:Pm:種群中變異基因數在總基因數中的百分比。它控制著新基因導入種群的比例。太低,一些有用的基因就難以進入選擇;太高,後代就可能失去從雙親繼承下來的良好特性,也就失去了從過去中搜索的能力。
4.選擇策略
適者生存,優勝劣汰
5.停止准則
最大迭代數
初始種群的產生:隨機產生,具體依賴於編碼方法
編碼方法 :二進制編碼法、浮點編碼法、符號編碼法。順序編碼,實數編碼,整數編碼。
適值函數 :根據目標函數設計
遺傳運算 : 交叉 :單切點交叉,雙切點交叉,均勻交叉,算術交叉
變異 :基本位變異(Simple Mutation):對個體編碼串中以變異概率、隨機指定的某一位或某幾位僅因座上的值做變異運算。
均勻變異(Uniform Mutation):分別用符合某一范圍內均勻分布的隨機數,以某一較小的概率來替換個體編碼串中各個基因座上的原有基因值。(特別適用於在演算法的初級運行階段)
邊界變異(Boundary Mutation):隨機的取基因座上的兩個對應邊界基因值之一去替代原有基因值。特別適用於最優點位於或接近於可行解的邊界時的一類問題。
非均勻變異:對原有的基因值做一隨機擾動,以擾動後的結果作為變異後的新基因值。對每個基因座都以相同的概率進行變異運算之後,相當於整個解向量在解空間中作了一次輕微的變動。
高斯近似變異:進行變異操作時用符號均值為P的平均值,方差為P**2的正態分布的一個隨機數來替換原有的基因值。
選擇策略 :1.輪盤賭選擇(Roulette Wheel Selection):是一種回放式隨機采樣方法。每個個體進入下一代的概率等於它的適應度值與整個種群中個體適應度值和的比例。選擇誤差較大。
2.隨機競爭選擇(Stochastic Tournament):每次按輪盤賭選擇一對個體,然後讓這兩個個體進行競爭,適應度高的被選中,如此反復,直到選滿為止。
3.最佳保留選擇:首先按輪盤賭選擇方法執行遺傳演算法的選擇操作,然後將當前群體中適應度最高的個體結構完整地復制到下一代群體中。
4.無回放隨機選擇(也叫期望值選擇Excepted Value Selection):根據每個個體在下一代群體中的生存期望來進行隨機選擇運算。方法如下:
(1) 計算群體中每個個體在下一代群體中的生存期望數目N。
(2) 若某一個體被選中參與交叉運算,則它在下一代中的生存期望數目減去0.5,若某一個體未 被選中參與交叉運算,則它在下一代中的生存期望數目減去1.0。
(3) 隨著選擇過程的進行,若某一個體的生存期望數目小於0時,則該個體就不再有機會被選中。
5.確定式選擇:按照一種確定的方式來進行選擇操作。具體操作過程如下:
(1) 計算群體中各個個體在下一代群體中的期望生存數目N。
(2) 用N的整數部分確定各個對應個體在下一代群體中的生存數目。
(3) 用N的小數部分對個體進行降序排列,順序取前M個個體加入到下一代群體中。至此可完全確定出下一代群體中M個個體。
6.無回放余數隨機選擇:可確保適應度比平均適應度大的一些個體能夠被遺傳到下一代群體中,因而選擇誤差比較小。
7.均勻排序:對群體中的所有個體按期適應度大小進行排序,基於這個排序來分配各個個體被選中的概率。
8.最佳保存策略:當前群體中適應度最高的個體不參與交叉運算和變異運算,而是用它來代替掉本代群體中經過交叉、變異等操作後所產生的適應度最低的個體。
9.隨機聯賽選擇:每次選取幾個個體中適應度最高的一個個體遺傳到下一代群體中。
10.排擠選擇:新生成的子代將代替或排擠相似的舊父代個體,提高群體的多樣性。
之前在網上看到的一個比方,覺得很有趣:
{
既然我們把函數曲線理解成一個一個山峰和山谷組成的山脈。那麼我們可以設想所得到的每一個解就是一隻袋鼠,我們希望它們不斷的向著更高處跳去,直到跳到最高的山峰。所以求最大值的過程就轉化成一個「袋鼠跳」的過程。
下面介紹介紹「袋鼠跳」的幾種方式。
爬山演算法:一隻袋鼠朝著比現在高的地方跳去。它找到了不遠處的最高的山峰。但是這座山不一定是最高峰。這就是爬山演算法,它不能保證局部最優值就是全局最優值。
模擬退火:袋鼠喝醉了。它隨機地跳了很長時間。這期間,它可能走向高處,也可能踏入平地。但是,它漸漸清醒了並朝最高峰跳去。這就是模擬退火演算法。
遺傳演算法:有很多袋鼠,它們降落到喜瑪拉雅山脈的任意地方。這些袋鼠並不知道它們的任務是尋找珠穆朗瑪峰。但每過幾年,就在一些海拔高度較低的地方射殺一些袋鼠。於是,不斷有袋鼠死於海拔較低的地方,而越是在海拔高的袋鼠越是能活得更久,也越有機會生兒育女。就這樣經過許多年,這些袋鼠們竟然都不自覺地聚攏到了一個個的山峰上,可是在所有的袋鼠中,只有聚攏到珠穆朗瑪峰的袋鼠被帶回了美麗的澳洲。
}
(把那些總是愛走下坡路的袋鼠射殺,這就是遺傳演算法的精粹!)
遺傳演算法並不保證你能獲得問題的最優解,但是使用遺傳演算法的最大優點在於你不必去了解和操心如何去「找」最優解。(你不必去指導袋鼠向那邊跳,跳多遠。)而只要簡單的「否定」一些表現不好的個體就行了。(把那些總是愛走下坡路的袋鼠射殺,這就是遺傳演算法的精粹!)
改進與變形
編碼方法:
④ 遺傳演算法運算元
選擇運算元 一般隨機選擇 賭輪選擇都可以
交叉運算元 01編碼的 ,傳統的類似於基因串的交叉方式..
實數編碼的.通常是 P(t+1,m) = aP(t,x)+(1-a)P(t,y) a∈(0,1)之間交叉,這個交叉方法基本上不收斂.我的經驗是把a改成(0,2)之間收斂的效果很好.當然(0,1.75)~(0,2)之間的貌似都可以。具體原因我還在分析中。如果你有什麼分析的結論的話,歡迎和我交流
變異運算元 每代隨便選一兩個數某位變異一下就ok..
⑤ 遺傳演算法的運算過程
遺傳操作是模擬生物基因遺傳的做法。在遺傳演算法中,通過編碼組成初始群體後,遺傳操作的任務就是對群體的個體按照它們對環境適應度(適應度評估)施加一定的操作,從而實現優勝劣汰的進化過程。從優化搜索的角度而言,遺傳操作可使問題的解,一代又一代地優化,並逼近最優解。
遺傳操作包括以下三個基本遺傳運算元(genetic operator):選擇(selection);交叉(crossover);變異(mutation)。這三個遺傳運算元有如下特點:
個體遺傳運算元的操作都是在隨機擾動情況下進行的。因此,群體中個體向最優解遷移的規則是隨機的。需要強調的是,這種隨機化操作和傳統的隨機搜索方法是有區別的。遺傳操作進行的高效有向的搜索而不是如一般隨機搜索方法所進行的無向搜索。
遺傳操作的效果和上述三個遺傳運算元所取的操作概率,編碼方法,群體大小,初始群體以及適應度函數的設定密切相關。 從群體中選擇優勝的個體,淘汰劣質個體的操作叫選擇。選擇運算元有時又稱為再生運算元(reproction operator)。選擇的目的是把優化的個體(或解)直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的,目前常用的選擇運算元有以下幾種:適應度比例方法、隨機遍歷抽樣法、局部選擇法。
其中輪盤賭選擇法 (roulette wheel selection)是最簡單也是最常用的選擇方法。在該方法中,各個個體的選擇概率和其適應度值成比例。設群體大小為n,其中個體i的適應度為,則i 被選擇的概率,為遺傳演算法
顯然,概率反映了個體i的適應度在整個群體的個體適應度總和中所佔的比例。個體適應度越大。其被選擇的概率就越高、反之亦然。計算出群體中各個個體的選擇概率後,為了選擇交配個體,需要進行多輪選擇。每一輪產生一個[0,1]之間均勻隨機數,將該隨機數作為選擇指針來確定被選個體。個體被選後,可隨機地組成交配對,以供後面的交叉操作。 在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。
交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。根據編碼表示方法的不同,可以有以下的演算法:
a)實值重組(real valued recombination)
1)離散重組(discrete recombination)
2)中間重組(intermediate recombination)
3)線性重組(linear recombination)
4)擴展線性重組(extended linear recombination)。
b)二進制交叉(binary valued crossover)
1)單點交叉(single-point crossover)
2)多點交叉(multiple-point crossover)
3)均勻交叉(uniform crossover)
4)洗牌交叉(shuffle crossover)
5)縮小代理交叉(crossover with reced surrogate)。
最常用的交叉運算元為單點交叉(one-point crossover)。具體操作是:在個體串中隨機設定一個交叉點,實行交叉時,該點前或後的兩個個體的部分結構進行互換,並生成兩個新個體。下面給出了單點交叉的一個例子:
個體A:1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新個體
個體B:0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新個體 變異運算元的基本內容是對群體中的個體串的某些基因座上的基因值作變動。依據個體編碼表示方法的不同,可以有以下的演算法:
a)實值變異
b)二進制變異。
一般來說,變異運算元操作的基本步驟如下:
a)對群中所有個體以事先設定的變異概率判斷是否進行變異
b)對進行變異的個體隨機選擇變異位進行變異。
遺傳演算法引入變異的目的有兩個:一是使遺傳演算法具有局部的隨機搜索能力。當遺傳演算法通過交叉運算元已接近最優解鄰域時,利用變異運算元的這種局部隨機搜索能力可以加速向最優解收斂。顯然,此種情況下的變異概率應取較小值,否則接近最優解的積木塊會因變異而遭到破壞。二是使遺傳演算法可維持群體多樣性,以防止出現未成熟收斂現象。此時收斂概率應取較大值。
遺傳演算法中,交叉運算元因其全局搜索能力而作為主要運算元,變異運算元因其局部搜索能力而作為輔助運算元。遺傳演算法通過交叉和變異這對相互配合又相互競爭的操作而使其具備兼顧全局和局部的均衡搜索能力。所謂相互配合.是指當群體在進化中陷於搜索空間中某個超平面而僅靠交叉不能擺脫時,通過變異操作可有助於這種擺脫。所謂相互競爭,是指當通過交叉已形成所期望的積木塊時,變異操作有可能破壞這些積木塊。如何有效地配合使用交叉和變異操作,是目前遺傳演算法的一個重要研究內容。
基本變異運算元是指對群體中的個體碼串隨機挑選一個或多個基因座並對這些基因座的基因值做變動(以變異概率P.做變動),(0,1)二值碼串中的基本變異操作如下:
基因位下方標有*號的基因發生變異。
變異率的選取一般受種群大小、染色體長度等因素的影響,通常選取很小的值,一般取0.001-0.1。 當最優個體的適應度達到給定的閾值,或者最優個體的適應度和群體適應度不再上升時,或者迭代次數達到預設的代數時,演算法終止。預設的代數一般設置為100-500代。
⑥ 求問基因遺傳演算法
摘要 您好,很高興為您解答問題。
⑦ 遺傳演算法怎麼回事
遺傳演算法(Genetic Algorithm)是一類借鑒生物界的進化規律(適者生存,優勝劣汰遺傳機制)演化而來的隨機化搜索方法。它是由美國的J.Holland教授1975年首先提出,其主要特點是直接對結構對象進行操作,不存在求導和函數連續性的限定;具有內在的隱並行性和更好的全局尋優能力;採用概率化的尋優方法,能自動獲取和指導優化的搜索空間,自適應地調整搜索方向,不需要確定的規則。遺傳演算法的這些性質,已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等領域。它是現代有關智能計算中的關鍵技術。對於一個求函數最大值的優化問題(求函數最小值也類同),一般可以描述為下列數學規劃模型: 遺傳演算法式中為決策變數,為目標函數式,式2-2、2-3為約束條件,U是基本空間,R是U的子集。滿足約束條件的解X稱為可行解,集合R表示所有滿足約束條件的解所組成的集合,稱為可行解集合。遺傳演算法的基本運算過程如下:a)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。b)個體評價:計算群體P(t)中各個個體的適應度。c)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。d)交叉運算;將交叉運算元作用於群體。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。遺傳演算法中起核心作用的就是交叉運算元。e)變異運算:將變異運算元作用於群體。即是對群體中的個體串的某些基因座上的基因值作變動。群體P(t)經過選擇、交叉、變異運算之後得到下一代群體P(t 1)。f)終止條件判斷:若tT,則以進化過程中所得到的具有最大適應度個體作為最優解輸出,終止計算
⑧ 在遺傳演算法中,什麼是選擇運算元,什麼是交叉運算元,什麼是變異運算元遺傳演算法到底是個什麼情況
運算元英文為operator,意思是「運算符」,加減乘除、與或非這些均屬於運算符。
因此可以稱選擇運算元為選擇運算,即通過某種「公式」運算得出一個結果。
遺傳演算法是什麼這個問題太廣,你可以查閱相關資料。
⑨ 遺傳演算法中選擇運算元中選擇次數的問題!看圖
選擇操作是從初始群體(群體規模為N,即N個個體)或當代進化群體(群體規模為N)中選擇N個個體,根據選擇所採用的方法,劣質個體必然會被丟棄(未選擇到),而為了保證群體規模不變,優質個體就必然會被選到多次。
題中產生了4個[0,1]隨機數,其中有兩個隨機數落在了4#區間內,其餘兩個隨機數分別落在了1# 2#區間內。
⑩ 遺傳演算法的基本原理
遺傳演算法本質上是對染色體模式所進行的一系列運算,即通過選擇運算元將當前種群中的優良模式遺傳到下一代種群中,利用交叉運算元進行模式重組,利用變異運算元進行模式突變。