當前位置:首頁 » 操作系統 » rsa演算法實現

rsa演算法實現

發布時間: 2022-01-18 15:35:11

『壹』 求RSA演算法java實現源代碼(帶界面的)

import javax.crypto.Cipher;
import java.security.*;
import java.security.spec.RSAPublicKeySpec;
import java.security.spec.RSAPrivateKeySpec;
import java.security.spec.InvalidKeySpecException;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.io.*;
import java.math.BigInteger;

/**
* RSA 工具類。提供加密,解密,生成密鑰對等方法。
* 需要到http://www.bouncycastle.org下載bcprov-jdk14-123.jar。
* @author xiaoyusong
* mail: [email protected]
* msn:[email protected]
* @since 2004-5-20
*
*/
public class RSAUtil {

/**
* 生成密鑰對
* @return KeyPair
* @throws EncryptException
*/
public static KeyPair generateKeyPair() throws EncryptException {
try {
KeyPairGenerator keyPairGen = KeyPairGenerator.getInstance("RSA",
new org.bouncycastle.jce.provider.BouncyCastleProvider());
final int KEY_SIZE = 1024;//沒什麼好說的了,這個值關繫到塊加密的大小,可以更改,但是不要太大,否則效率會低
keyPairGen.initialize(KEY_SIZE, new SecureRandom());
KeyPair keyPair = keyPairGen.genKeyPair();
return keyPair;
} catch (Exception e) {
throw new EncryptException(e.getMessage());
}
}
/**
* 生成公鑰
* @param molus
* @param publicExponent
* @return RSAPublicKey
* @throws EncryptException
*/
public static RSAPublicKey generateRSAPublicKey(byte[] molus, byte[] publicExponent) throws EncryptException {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new EncryptException(ex.getMessage());
}

RSAPublicKeySpec pubKeySpec = new RSAPublicKeySpec(new BigInteger(molus), new BigInteger(publicExponent));
try {
return (RSAPublicKey) keyFac.generatePublic(pubKeySpec);
} catch (InvalidKeySpecException ex) {
throw new EncryptException(ex.getMessage());
}
}
/**
* 生成私鑰
* @param molus
* @param privateExponent
* @return RSAPrivateKey
* @throws EncryptException
*/
public static RSAPrivateKey generateRSAPrivateKey(byte[] molus, byte[] privateExponent) throws EncryptException {
KeyFactory keyFac = null;
try {
keyFac = KeyFactory.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
} catch (NoSuchAlgorithmException ex) {
throw new EncryptException(ex.getMessage());
}

RSAPrivateKeySpec priKeySpec = new RSAPrivateKeySpec(new BigInteger(molus), new BigInteger(privateExponent));
try {
return (RSAPrivateKey) keyFac.generatePrivate(priKeySpec);
} catch (InvalidKeySpecException ex) {
throw new EncryptException(ex.getMessage());
}
}
/**
* 加密
* @param key 加密的密鑰
* @param data 待加密的明文數據
* @return 加密後的數據
* @throws EncryptException
*/
public static byte[] encrypt(Key key, byte[] data) throws EncryptException {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(Cipher.ENCRYPT_MODE, key);
int blockSize = cipher.getBlockSize();//獲得加密塊大小,如:加密前數據為128個byte,而key_size=1024 加密塊大小為127 byte,加密後為128個byte;因此共有2個加密塊,第一個127 byte第二個為1個byte
int outputSize = cipher.getOutputSize(data.length);//獲得加密塊加密後塊大小
int leavedSize = data.length % blockSize;
int blocksSize = leavedSize != 0 ? data.length / blockSize + 1 : data.length / blockSize;
byte[] raw = new byte[outputSize * blocksSize];
int i = 0;
while (data.length - i * blockSize > 0) {
if (data.length - i * blockSize > blockSize)
cipher.doFinal(data, i * blockSize, blockSize, raw, i * outputSize);
else
cipher.doFinal(data, i * blockSize, data.length - i * blockSize, raw, i * outputSize);
//這裡面doUpdate方法不可用,查看源代碼後發現每次doUpdate後並沒有什麼實際動作除了把byte[]放到ByteArrayOutputStream中,而最後doFinal的時候才將所有的byte[]進行加密,可是到了此時加密塊大小很可能已經超出了OutputSize所以只好用dofinal方法。

i++;
}
return raw;
} catch (Exception e) {
throw new EncryptException(e.getMessage());
}
}
/**
* 解密
* @param key 解密的密鑰
* @param raw 已經加密的數據
* @return 解密後的明文
* @throws EncryptException
*/
public static byte[] decrypt(Key key, byte[] raw) throws EncryptException {
try {
Cipher cipher = Cipher.getInstance("RSA", new org.bouncycastle.jce.provider.BouncyCastleProvider());
cipher.init(cipher.DECRYPT_MODE, key);
int blockSize = cipher.getBlockSize();
ByteArrayOutputStream bout = new ByteArrayOutputStream(64);
int j = 0;

while (raw.length - j * blockSize > 0) {
bout.write(cipher.doFinal(raw, j * blockSize, blockSize));
j++;
}
return bout.toByteArray();
} catch (Exception e) {
throw new EncryptException(e.getMessage());
}
}
/**
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
File file = new File("test.html");
FileInputStream in = new FileInputStream(file);
ByteArrayOutputStream bout = new ByteArrayOutputStream();
byte[] tmpbuf = new byte[1024];
int count = 0;
while ((count = in.read(tmpbuf)) != -1) {
bout.write(tmpbuf, 0, count);
tmpbuf = new byte[1024];
}
in.close();
byte[] orgData = bout.toByteArray();
KeyPair keyPair = RSAUtil.generateKeyPair();
RSAPublicKey pubKey = (RSAPublicKey) keyPair.getPublic();
RSAPrivateKey priKey = (RSAPrivateKey) keyPair.getPrivate();

byte[] pubModBytes = pubKey.getMolus().toByteArray();
byte[] pubPubExpBytes = pubKey.getPublicExponent().toByteArray();
byte[] priModBytes = priKey.getMolus().toByteArray();
byte[] priPriExpBytes = priKey.getPrivateExponent().toByteArray();
RSAPublicKey recoveryPubKey = RSAUtil.generateRSAPublicKey(pubModBytes,pubPubExpBytes);
RSAPrivateKey recoveryPriKey = RSAUtil.generateRSAPrivateKey(priModBytes,priPriExpBytes);

byte[] raw = RSAUtil.encrypt(priKey, orgData);
file = new File("encrypt_result.dat");
OutputStream out = new FileOutputStream(file);
out.write(raw);
out.close();
byte[] data = RSAUtil.decrypt(recoveryPubKey, raw);
file = new File("decrypt_result.html");
out = new FileOutputStream(file);
out.write(data);
out.flush();
out.close();
}
}

http://book.77169.org/data/web5409/20050328/20050328__3830259.html

這個行吧
http://soft.zdnet.com.cn/software_zone/2007/0925/523319.shtml

再參考這個吧
http://topic.csdn.net/t/20040427/20/3014655.html

『貳』 求RSA演算法的源代碼(c語言

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MM 7081
#define KK 1789
#define PHIM 6912
#define PP 85
typedef char strtype[10000];
int len;
long nume[10000];
int change[126];
char antichange[37];

void initialize()
{ int i;
char c;
for (i = 11, c = 'A'; c <= 'Z'; c ++, i ++)
{ change[c] = i;
antichange[i] = c;
}
}
void changetonum(strtype str)
{ int l = strlen(str), i;
len = 0;
memset(nume, 0, sizeof(nume));
for (i = 0; i < l; i ++)
{ nume[len] = nume[len] * 100 + change[str[i]];
if (i % 2 == 1) len ++;
}
if (i % 2 != 0) len ++;
}
long binamod(long numb, long k)
{ if (k == 0) return 1;
long curr = binamod (numb, k / 2);
if (k % 2 == 0)
return curr * curr % MM;
else return (curr * curr) % MM * numb % MM;
}
long encode(long numb)
{ return binamod(numb, KK);
}
long decode(long numb)
{ return binamod(numb, PP);
}
main()
{ strtype str;
int i, a1, a2;
long curr;
initialize();
puts("Input 'Y' if encoding, otherwise input 'N':");
gets(str);
if (str[0] == 'Y')
{ gets(str);
changetonum(str);
printf("encoded: ");
for (i = 0; i < len; i ++)
{ if (i) putchar('-');
printf(" %ld ", encode(nume[i]));
}
putchar('\n');
}
else
{ scanf("%d", &len);
for (i = 0; i < len; i ++)
{ scanf("%ld", &curr);
curr = decode(curr);
a1 = curr / 100;
a2 = curr % 100;
printf("decoded: ");
if (a1 != 0) putchar(antichange[a1]);
if (a2 != 0) putchar(antichange[a2]);
}
putchar('\n');
}
putchar('\n');
system("PAUSE");
return 0;
}
測試:
輸入:
Y
FERMAT
輸出:
encoded: 5192 - 2604 - 4222
輸入
N
3 5192 2604 4222
輸出
decoded: FERMAT

『叄』 RSA演算法的C++實現

RSA演算法介紹及JAVA實現,其實java和c++差不多,參考一下吧

<一>基礎

RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1

這樣最終得到三個數: n d e

設消息為數M (M <n)
設c=(M**d)%n就得到了加密後的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
註:**表示次方,上面兩式中的d和e可以互換。

在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。

rsa的安全性在於對於一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。

<二>實踐

接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t並且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847

最終我們獲得關鍵的
n=2773
d=847
e=63

取消息M=244我們看看

加密:

c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密後獲得加密信息c=465

解密:

我們可以用e來對加密後的c進行解密,還原M:
m=c**e%n=465**63%2773 :
C:\Temp>perl -Mbigint -e "print 465**63%2773"
244
即用e對c解密後獲得m=244 , 該值和原始信息M相等。

<三>字元串加密

把上面的過程集成一下我們就能實現一個對字元串加密解密的示例了。
每次取字元串中的一個字元的ascii值作為M進行計算,其輸出為加密後16進制
的數的字元串形式,按3位元組表示,如01F

代碼如下:

#!/usr/bin/perl -w
#RSA 計算過程學習程序編寫的測試程序
#watercloud 2003-8-12
#
use strict;
use Math::BigInt;

my %RSA_CORE = (n=>2773,e=>63,d=>847); #p=47,q=59

my $N=new Math::BigInt($RSA_CORE{n});
my $E=new Math::BigInt($RSA_CORE{e});
my $D=new Math::BigInt($RSA_CORE{d});

print "N=$N D=$D E=$E\n";

sub RSA_ENCRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$cmess);

for($i=0;$i < length($$r_mess);$i++)
{
$c=ord(substr($$r_mess,$i,1));
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($D,$N);
$c=sprintf "%03X",$C;
$cmess.=$c;
}
return \$cmess;
}

sub RSA_DECRYPT
{
my $r_mess = shift @_;
my ($c,$i,$M,$C,$dmess);

for($i=0;$i < length($$r_mess);$i+=3)
{
$c=substr($$r_mess,$i,3);
$c=hex($c);
$M=Math::BigInt->new($c);
$C=$M->(); $C->bmodpow($E,$N);
$c=chr($C);
$dmess.=$c;
}
return \$dmess;
}

my $mess="RSA 娃哈哈哈~~~";
$mess=$ARGV[0] if @ARGV >= 1;
print "原始串:",$mess,"\n";

my $r_cmess = RSA_ENCRYPT(\$mess);
print "加密串:",$$r_cmess,"\n";

my $r_dmess = RSA_DECRYPT($r_cmess);
print "解密串:",$$r_dmess,"\n";

#EOF

測試一下:
C:\Temp>perl rsa-test.pl
N=2773 D=847 E=63
原始串:RSA 娃哈哈哈~~~
加密串:
解密串:RSA 娃哈哈哈~~~

C:\Temp>perl rsa-test.pl 安全焦點(xfocus)
N=2773 D=847 E=63
原始串:安全焦點(xfocus)
加密串:
解密串:安全焦點(xfocus)

<四>提高

前面已經提到,rsa的安全來源於n足夠大,我們測試中使用的n是非常小的,根本不能保障安全性,
我們可以通過RSAKit、RSATool之類的工具獲得足夠大的N 及D E。
通過工具,我們獲得1024位的N及D E來測試一下:

n=EC3A85F5005D
4C2013433B383B
A50E114705D7E2
BC511951

d=0x10001

e=DD28C523C2995
47B77324E66AFF2
789BD782A592D2B
1965

設原始信息
M=

完成這么大數字的計算依賴於大數運算庫,用perl來運算非常簡單:

A) 用d對M進行加密如下:
c=M**d%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x11111111111122222222222233
333333333, 0x10001,
D55EDBC4F0
6E37108DD6
);print $x->as_hex"
b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

即用d對M加密後信息為:
c=b73d2576bd
47715caa6b
d59ea89b91
f1834580c3f6d90898

B) 用e對c進行解密如下:

m=c**e%n :
C:\Temp>perl -Mbigint -e " $x=Math::BigInt->bmodpow(0x17b287be418c69ecd7c39227ab
5aa1d99ef3
0cb4764414
, 0xE760A
3C29954C5D
7324E66AFF
2789BD782A
592D2B1965, CD15F90
4F017F9CCF
DD60438941
);print $x->as_hex"

(我的P4 1.6G的機器上計算了約5秒鍾)

得到用e解密後的m= == M

C) RSA通常的實現
RSA簡潔幽雅,但計算速度比較慢,通常加密中並不是直接使用RSA 來對所有的信息進行加密,
最常見的情況是隨機產生一個對稱加密的密鑰,然後使用對稱加密演算法對信息加密,之後用
RSA對剛才的加密密鑰進行加密。

最後需要說明的是,當前小於1024位的N已經被證明是不安全的
自己使用中不要使用小於1024位的RSA,最好使用2048位的。

----------------------------------------------------------

一個簡單的RSA演算法實現JAVA源代碼:

filename:RSA.java

/*
* Created on Mar 3, 2005
*
* TODO To change the template for this generated file go to
* Window - Preferences - Java - Code Style - Code Templates
*/

import java.math.BigInteger;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.FileWriter;
import java.io.FileReader;
import java.io.BufferedReader;
import java.util.StringTokenizer;

/**
* @author Steve
*
* TODO To change the template for this generated type comment go to
* Window - Preferences - Java - Code Style - Code Templates
*/
public class RSA {

/**
* BigInteger.ZERO
*/
private static final BigInteger ZERO = BigInteger.ZERO;

/**
* BigInteger.ONE
*/
private static final BigInteger ONE = BigInteger.ONE;

/**
* Pseudo BigInteger.TWO
*/
private static final BigInteger TWO = new BigInteger("2");

private BigInteger myKey;

private BigInteger myMod;

private int blockSize;

public RSA (BigInteger key, BigInteger n, int b) {
myKey = key;
myMod = n;
blockSize = b;
}

public void encodeFile (String filename) {
byte[] bytes = new byte[blockSize / 8 + 1];
byte[] temp;
int tempLen;
InputStream is = null;
FileWriter writer = null;
try {
is = new FileInputStream(filename);
writer = new FileWriter(filename + ".enc");
}
catch (FileNotFoundException e1){
System.out.println("File not found: " + filename);
}
catch (IOException e1){
System.out.println("File not found: " + filename + ".enc");
}

/**
* Write encoded message to 'filename'.enc
*/
try {
while ((tempLen = is.read(bytes, 1, blockSize / 8)) > 0) {
for (int i = tempLen + 1; i < bytes.length; ++i) {
bytes[i] = 0;
}
writer.write(encodeDecode(new BigInteger(bytes)) + " ");
}
}
catch (IOException e1) {
System.out

『肆』 RSA演算法的實現

RSA畢業設計論文
http://wenku..com/view/8b1804c42cc58bd63186bd77.html

『伍』 RSA演算法程序

RSA演算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t並且e與t互素(就是最大公因數為1)
取d*e%t==1

這樣最終得到三個數: n d e

『陸』 rsa演算法實現代碼

你看看這個行不行,位數可以自己改,今天在網上找到了,我也想用C生成512、1024位的大素數進行RSA加密。。如果誰有好方法麻煩共享下:[email protected],跪謝

package test;

import java.math.BigInteger;

// 生成一個隨機大整數,然後找出比這個整數大的下一個素數
public class Primes {
// 下面的 BigInteger.ZERO 和 BigInteger.ONE 在 JDK 1.1 中是無效的
private static final BigInteger ZERO = BigInteger.ZERO;
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = new BigInteger("2");

// 產生一個錯誤素數的概率小於 1/2 的 ERR_VAL 次方,可以將 ERR_VAL 定義為 200,降低其錯誤率
// Java 應該使用的是 Miller-Rabin 測試法,這種錯誤概率基本上可以認為是無錯誤。
private static final int ERR_VAL = 100;
private static StringBuffer[] digits = { new StringBuffer("0"), new StringBuffer("1"), new StringBuffer("2"), new StringBuffer("3"), new StringBuffer("4"), new StringBuffer("5"),
new StringBuffer("6"), new StringBuffer("7"), new StringBuffer("8"), new StringBuffer("9") };

private static StringBuffer randomDigit(boolean isZeroOK) {
// 產生一個隨機的數字(字元串形式的),isZeroOK 決定這個數字是否可以為 0
int index;
if (isZeroOK)
index = (int) Math.floor(Math.random() * 10);
else
index = 1 + (int) Math.floor(Math.random() * 9);
return (digits[index]);
}

public static BigInteger bigRandom(int numDigits) {
// 產生一個隨機大整數,各位上的數字都是隨機產生的,首位不為 0
StringBuffer s = new StringBuffer("");
for (int i = 0; i < numDigits; i++)
if (i == 0)
s.append(randomDigit(false));
else
s.append(randomDigit(true));
return (new BigInteger(s.toString()));
}

private static boolean isEven(BigInteger n) {
// 測試一個大整數是否為偶數
return (n.mod(TWO).equals(ZERO));
}

public static BigInteger nextPrime(BigInteger start) {
// 產生一個比給定大整數 start 大的素數,錯誤率低於 1/2 的 ERR_VAL 次方
if (isEven(start))
start = start.add(ONE);
else
start = start.add(TWO);
if (start.isProbablePrime(ERR_VAL))
return (start);
else
// 採用遞歸方式(遞歸的層數會是個天文數字嗎?)
return (nextPrime(start));
}

// 一個基於命令行的測試程序,如果位數錯誤,默認 150 位,輸出 20 個素數
public static void main(String[] args) {
int numDigits;
try {
numDigits = Integer.parseInt(args[0]);
} catch (Exception e) {
numDigits = 128;
}
BigInteger start = bigRandom(numDigits);

start = nextPrime(start);
BigInteger end = bigRandom(5);
end = nextPrime(end);
System.out.println("大素數" + start);
System.out.println("大素數" + end);
BigInteger result = start.multiply(end);
System.out.println("結果數" + result);

『柒』 java RSA演算法實現256位密鑰怎麼做

【下載實例】本文介紹RSA2加密與解密,RSA2是RSA的加強版本,在密鑰長度上採用2048, RSA2比RSA更安全,更可靠, 本人的另一篇文章RSA已經發表,有想了解的可以點開下面的RSA文章

『捌』 如何用C語言實現RSA演算法

RSA演算法它是第一個既能用於數據加密也能用於數字簽名的演算法。它易於理解和操作,也很流行。演算法的名字以發明者的名字
命名:Ron Rivest, Adi Shamir 和Leonard
Adleman。但RSA的安全性一直未能得到理論上的證明。它經歷了各種攻擊,至今未被完全攻破。

一、RSA演算法 :

首先, 找出三個數, p, q, r,
其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數
p, q, r 這三個數便是 private key

接著, 找出 m, 使得 rm == 1 mod (p-1)(q-1)
這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了
再來, 計算 n = pq
m, n 這兩個數便是 public key

編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n
如果 a >= n 的話, 就將 a 表成 s 進位 (s <= n, 通常取 s = 2^t),
則每一位數均小於 n, 然後分段編碼
接下來, 計算 b == a^m mod n, (0 <= b < n),
b 就是編碼後的資料

解碼的過程是, 計算 c == b^r mod pq (0 <= c < pq),
於是乎, 解碼完畢 等會會證明 c 和 a 其實是相等的 :)

如果第三者進行竊聽時, 他會得到幾個數: m, n(=pq), b
他如果要解碼的話, 必須想辦法得到 r
所以, 他必須先對 n 作質因數分解
要防止他分解, 最有效的方法是找兩個非常的大質數 p, q,
使第三者作因數分解時發生困難
<定理>
若 p, q 是相異質數, rm == 1 mod (p-1)(q-1),
a 是任意一個正整數, b == a^m mod pq, c == b^r mod pq,
則 c == a mod pq

證明的過程, 會用到費馬小定理, 敘述如下:
m 是任一質數, n 是任一整數, 則 n^m == n mod m
(換另一句話說, 如果 n 和 m 互質, 則 n^(m-1) == 1 mod m)
運用一些基本的群論的知識, 就可以很容易地證出費馬小定理的

<證明>
因為 rm == 1 mod (p-1)(q-1), 所以 rm = k(p-1)(q-1) + 1, 其中 k 是整數
因為在 molo 中是 preserve 乘法的
(x == y mod z and u == v mod z => xu == yv mod z),
所以, c == b^r == (a^m)^r == a^(rm) == a^(k(p-1)(q-1)+1) mod pq

1. 如果 a 不是 p 的倍數, 也不是 q 的倍數時,
則 a^(p-1) == 1 mod p (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod p
a^(q-1) == 1 mod q (費馬小定理) => a^(k(p-1)(q-1)) == 1 mod q
所以 p, q 均能整除 a^(k(p-1)(q-1)) - 1 => pq | a^(k(p-1)(q-1)) - 1
即 a^(k(p-1)(q-1)) == 1 mod pq
=> c == a^(k(p-1)(q-1)+1) == a mod pq

2. 如果 a 是 p 的倍數, 但不是 q 的倍數時,
則 a^(q-1) == 1 mod q (費馬小定理)
=> a^(k(p-1)(q-1)) == 1 mod q
=> c == a^(k(p-1)(q-1)+1) == a mod q
=> q | c - a
因 p | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod p
=> p | c - a
所以, pq | c - a => c == a mod pq

3. 如果 a 是 q 的倍數, 但不是 p 的倍數時, 證明同上

4. 如果 a 同時是 p 和 q 的倍數時,
則 pq | a
=> c == a^(k(p-1)(q-1)+1) == 0 mod pq
=> pq | c - a
=> c == a mod pq
Q.E.D.

這個定理說明 a 經過編碼為 b 再經過解碼為 c 時, a == c mod n (n = pq)
但我們在做編碼解碼時, 限制 0 <= a < n, 0 <= c < n,
所以這就是說 a 等於 c, 所以這個過程確實能做到編碼解碼的功能

二、RSA 的安全性

RSA的安全性依賴於大數分解,但是否等同於大數分解一直未能得到理論上的證明,因為沒有證明破解
RSA就一定需要作大數分解。假設存在一種無須分解大數的演算法,那它肯定可以修改成為大數分解演算法。目前, RSA
的一些變種演算法已被證明等價於大數分解。不管怎樣,分解n是最顯然的攻擊方法。現在,人們已能分解多個十進制位的大素數。因此,模數n
必須選大一些,因具體適用情況而定。

三、RSA的速度

由於進行的都是大數計算,使得RSA最快的情況也比DES慢上倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。

四、RSA的選擇密文攻擊

RSA在選擇密文攻擊面前很脆弱。一般攻擊者是將某一信息作一下偽裝( Blind),讓擁有私鑰的實體簽署。然後,經過計算就可得到它所想要的信息。實際上,攻擊利用的都是同一個弱點,即存在這樣一個事實:乘冪保留了輸入的乘法結構:

( XM )^d = X^d *M^d mod n

前面已經提到,這個固有的問題來自於公鑰密碼系統的最有用的特徵--每個人都能使用公鑰。但從演算法上無法解決這一問題,主要措施有兩條:一條是採用好的公
鑰協議,保證工作過程中實體不對其他實體任意產生的信息解密,不對自己一無所知的信息簽名;另一條是決不對陌生人送來的隨機文檔簽名,簽名時首先使用
One-Way HashFunction 對文檔作HASH處理,或同時使用不同的簽名演算法。在中提到了幾種不同類型的攻擊方法。

五、RSA的公共模數攻擊

若系統中共有一個模數,只是不同的人擁有不同的e和d,系統將是危險的。最普遍的情況是同一信息用不同的公鑰加密,這些公鑰共模而且互質,那末該信息無需私鑰就可得到恢復。設P為信息明文,兩個加密密鑰為e1和e2,公共模數是n,則:

C1 = P^e1 mod n

C2 = P^e2 mod n

密碼分析者知道n、e1、e2、C1和C2,就能得到P。

因為e1和e2互質,故用Euclidean演算法能找到r和s,滿足:

r * e1 + s * e2 = 1

假設r為負數,需再用Euclidean演算法計算C1^(-1),則

( C1^(-1) )^(-r) * C2^s = P mod n

另外,還有其它幾種利用公共模數攻擊的方法。總之,如果知道給定模數的一對e和d,一是有利於攻擊者分解模數,一是有利於攻擊者計算出其它成對的e』和d』,而無需分解模數。解決辦法只有一個,那就是不要共享模數n。

RSA的小指數攻擊。 有一種提高 RSA速度的建議是使公鑰e取較小的值,這樣會使加密變得易於實現,速度有
所提高。但這樣作是不安全的,對付辦法就是e和d都取較大的值。

RSA演算法是
第一個能同時用於加密和數字簽名的演算法,也易於理解和操作。RSA是被研究得最廣泛的公鑰演算法,從提出到現在已近二十年,經歷了各種攻擊的考驗,逐漸為人
們接受,普遍認為是目前最優秀的公鑰方案之一。RSA的安全性依賴於大數的因子分解,但並沒有從理論上證明破譯RSA的難度與大數分解難度等價。即RSA
的重大缺陷是無法從理論上把握它的保密性能
如何,而且密碼學界多數人士傾向於因子分解不是NPC問題。
RSA的缺點主要有:A)產生密鑰很麻煩,受到素數產生技術的限制,因而難以做到一次一密。B)分組長度太大,為保證安全性,n 至少也要 600
bits
以上,使運算代價很高,尤其是速度較慢,較對稱密碼演算法慢幾個數量級;且隨著大數分解技術的發展,這個長度還在增加,不利於數據格式的標准化。目
前,SET( Secure Electronic Transaction )協議中要求CA採用比特長的密鑰,其他實體使用比特的密鑰。

C語言實現

#include <stdio.h>
int candp(int a,int b,int c)
{ int r=1;
b=b+1;
while(b!=1)
{
r=r*a;
r=r%c;
b--;
}
printf("%d\n",r);
return r;
}
void main()
{
int p,q,e,d,m,n,t,c,r;
char s;
printf("please input the p,q: ");
scanf("%d%d",&p,&q);
n=p*q;
printf("the n is %3d\n",n);
t=(p-1)*(q-1);
printf("the t is %3d\n",t);
printf("please input the e: ");
scanf("%d",&e);
if(e<1||e>t)
{
printf("e is error,please input again: ");
scanf("%d",&e);
}
d=1;
while(((e*d)%t)!=1) d++;
printf("then caculate out that the d is %d\n",d);
printf("the cipher please input 1\n");
printf("the plain please input 2\n");
scanf("%d",&r);
switch(r)
{
case 1: printf("input the m: "); /*輸入要加密的明文數字*/
scanf("%d",&m);
c=candp(m,e,n);
printf("the cipher is %d\n",c);break;
case 2: printf("input the c: "); /*輸入要解密的密文數字*/
scanf("%d",&c);
m=candp(c,d,n);
printf("the cipher is %d\n",m);break;
}
getch();
}

『玖』 RSA演算法的實現細節

首先要使用概率演算法來驗證隨機產生的大的整數是否質數,這樣的演算法比較快而且可以消除掉大多數非質數。假如有一個數通過了這個測試的話,那麼要使用一個精確的測試來保證它的確是一個質數。
除此之外這樣找到的p和q還要滿足一定的要求,首先它們不能太靠近,此外p-1或q-1的因子不能太小,否則的話N也可以被很快地分解。
此外尋找質數的演算法不能給攻擊者任何信息,這些質數是怎樣找到的,尤其產生隨機數的軟體必須非常好。要求是隨機和不可預測。這兩個要求並不相同。一個隨機過程可能可以產生一個不相關的數的系列,但假如有人能夠預測出(或部分地預測出)這個系列的話,那麼它就已經不可靠了。比如有一些非常好的隨機數演算法,但它們都已經被發表,因此它們不能被使用,因為假如一個攻擊者可以猜出p和q一半的位的話,那麼他們就已經可以輕而易舉地推算出另一半。
此外密鑰d必須足夠大,1990年有人證明假如p大於q而小於2q(這是一個很經常的情況)而,那麼從N和e可以很有效地推算出d。此外e = 2永遠不應該被使用。 由於進行的都是大數計算,使得RSA最快的情況也比DES慢上好幾倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。RSA的速度比對應同樣安全級別的對稱密碼演算法要慢1000倍左右。
比起DES和其它對稱演算法來說,RSA要慢得多。實際上Bob一般使用一種對稱演算法來加密他的信息,然後用RSA來加密他的比較短的對稱密碼,然後將用RSA加密的對稱密碼和用對稱演算法加密的消息送給Alice。
這樣一來對隨機數的要求就更高了,尤其對產生對稱密碼的要求非常高,因為否則的話可以越過RSA來直接攻擊對稱密碼。 1995年有人提出了一種非常意想不到的攻擊方式:假如Eve對Alice的硬體有充分的了解,而且知道它對一些特定的消息加密時所需要的時間的話,那麼她可以很快地推導出d。這種攻擊方式之所以會成立,主要是因為在進行加密時所進行的模指數運算是一個位元一個位元進行的而位元為1所花的運算比位元為0的運算要多很多,因此若能得到多組訊息與其加密時間,就會有機會可以反推出私鑰的內容。

『拾』 什麼是RSA演算法,求簡單解釋。

RSA公鑰加密演算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美國麻省理工學院)開發的。RSA取名來自開發他們三者的名字。RSA是目前最有影響力的公鑰加密演算法,它能夠
抵抗到目前為止已知的所有密碼攻擊,已被ISO推薦為公鑰數據加密標准。RSA演算法基於一個十分簡單的數論事實:將兩個大素數相乘十分容易,但那時想要對其乘積進行因式分解卻極其困難,因此可以將乘積公開作為加密密鑰。由於進行的都是大數計算,使得RSA最快的情況也比DES慢上好幾倍,無論是軟體還是硬體實現。速度一直是RSA的缺陷。一般來說只用於少量數據加密。RSA的速度比對應同樣安全級別的對稱密碼演算法要慢1000倍左右。
基礎
大數分解和素性檢測——將兩個大素數相乘在計算上很容易實現,但將該乘積分解為兩個大素數因子的計算量是相當巨大的,以至於在實際計算中是不能實現的。
1.RSA密碼體制的建立:
(1)選擇兩個不同的大素數p和q;
(2)計算乘積n=pq和Φ(n)=(p-1)(q-1);
(3)選擇大於1小於Φ(n)的隨機整數e,使得gcd(e,Φ(n))=1;
(4)計算d使得de=1mod Φ(n);
(5)對每一個密鑰k=(n,p,q,d,e),定義加密變換為Ek(x)=xemodn,解密變換為Dk(x)=ydmodn,這里x,y∈Zn;
(6)以{e,n}為公開密鑰,{p,q,d}為私有密鑰。
2.RSA演算法實例:
下面用兩個小素數7和17來建立一個簡單的RSA演算法:
(1)選擇兩個素數p=7和q=17;
(2)計算n=pq=7 17=119,計算Φ(n)=(p-1)(q-1)=6 16=96;
(3)選擇一個隨機整數e=5,它小於Φ(n)=96並且於96互素;
(4)求出d,使得de=1mod96且d<96,此處求出d=77,因為 77 5=385=4 96+1;
(5)輸入明文M=19,計算19模119的5次冪,Me=195=66mod119,傳出密文C=66;(6)接收密文66,計算66模119的77次冪;Cd=6677≡19mod119得到明文19。

熱點內容
emojijava 發布:2024-07-27 12:57:07 瀏覽:156
編程培訓福州 發布:2024-07-27 12:28:06 瀏覽:876
哈弗h6女生適合哪個配置 發布:2024-07-27 12:10:52 瀏覽:954
memcached啟動腳本 發布:2024-07-27 11:55:41 瀏覽:558
電動車怎麼看配置 發布:2024-07-27 11:55:05 瀏覽:238
mfc打開默認文件夾 發布:2024-07-27 11:41:23 瀏覽:648
電腦找不到伺服器的原因 發布:2024-07-27 11:33:58 瀏覽:864
sql2005操作 發布:2024-07-27 11:33:19 瀏覽:437
安卓什麼app軟體可以代替藍牙 發布:2024-07-27 11:24:50 瀏覽:745
vb編譯運行 發布:2024-07-27 11:14:42 瀏覽:754