資料庫空間索引
A. 資料庫索引的定義
資料庫索引是一種專用數據結構,允許我們快速定位信息。它的組織方式類似於二叉樹結構,左側值較小,右側值較大。索引可以比較樹狀結構中的行值,以更快地定位所需數據,而不是強制掃描整個表。
當我們在一個或多個列上創建索引時,我們將它們的值存儲在新結構中,還存儲指行的指針。這行為會重新組織並排序信息,但不會改變信息本身。可以將資料庫索引視為書後面的索引。雖然它存儲了一些實際信息,但它還包含指針,指針指向可以找到更多詳細信息的位置。
按照我們的搜索條件對數據進行排序後,查找所需的記錄會變得更加簡單。想像一下按字母順序排序的舊電話簿。知道某人的姓氏,名字和地址意味著您可以很快找到他們的電話號碼。但是如果你只知道別人的地址和名字怎麼辦?沒有姓氏,找到電話號碼將非常困難。您可以使用反向電話簿做得更好,該目錄列出了基於地址的電話號碼。
在資料庫中,更改搜索條件通常意味著為屬性組合創建新索引。如前所述,添加這些索引需要額外的磁碟空間。添加,刪除或更新值時,還會對索引進行更改。
B. 資料庫中的索引有什麼用
先正面回答你的問題
數據是否重復不是建立索引的重要依據,甚至都不是依據。
只要不完全重復(所有元組的該元素都一樣),那麼建立索引就是有意義的。
即使當前數據完全重復,也不是不能建立索引,這種情況有點復雜,不細說了。
對於你後面的疑問,可以給你一個如何建立索引的忠告,「如何查就如何建」。
索引的建立,唯一的原因就是為了查詢(廣義的查詢),實際上建立索引會使得數據存儲所佔空間變大,有時索引所佔的空間會查過數據本身的空間。索引的建立也會使得數據插入時變慢,特殊情況下,慢的難以忍受,所以dba的重要工作之一,就是檢查索引層級並優化。
索引建立的唯一好處,就是按照索引查詢時,變快了。type,status這2個欄位是否適合建立索引,就要看你是否要按照這2個欄位進行檢索。而檢索的順序決定了如何建立索引。
對於索引類型和索引方式,我建議就
normal
和
btree
就適用於大多數情況。若你參與的是一個大數據處理項目,對數據存儲和檢索有特別要求,那麼需要分析多個層面,比如數據吞吐量、數據的方差、平均差等等很多參數才考慮是否用聚集索引等(mysql好像還沒聚集索引),至於是否是唯一索引,我建議不使用,即使能判定數據是唯一的也不要用,全文索引也沒有必要。
C. 資料庫裡面什麼是一級索引
多級索引
空間資料庫的索引是提高空間資料庫存儲效率和空間檢索性能的關鍵技術。介紹了空間資料庫中建立索引的常用技術,給出了一種多級空間索引,詳細討論了該索引的建立演算法以及應用該索引的檢索演算法,並進行了演算法分析。關鍵詞:計算機軟體;間資料庫;空間索引;空間檢索;演算法分析。
中文名
多級索引
方法
索引分割單元格網索引等
解釋
將多個索引方法組合使用
性質
計算機學
快速
導航
原理
含義
多級索引是將多個不同或相同的索引方法組合使用,對單級索引空間或者空間范圍進行多級劃分,解決超大型數據量的GIS系統檢索、分析、顯示的效率問題。多級索引由於其多級的結構特性,往往可以很好地利用計算機硬體資源的並行工作特性,如多CPU,磁碟陣列等,來提高檢索的效率。多級索引方法很多,不同的單級索引組合便可以構成不同的多級索引方法。但是由於每種索引的特性不同,所以如何將多種索引融合成一體構成一種高效的多級索引也是空間索引的一個研究方向。
D. 建立空間索引
11.4.4.1矢量數據的空間索引
在關系資料庫中,建立屬性項的索引可加快屬性數據的查詢,同樣,ArcSDE通過建立圖層的空間索引表(或S表),以減少Shape-Shape的比較運算,在ArcSDE的客戶端使用空間過濾器減少從資料庫返回的記錄數,可以避免檢索整個表,減少檢索的數據記錄數量,從而減少數據的輸入/輸出的操作,加快了空間數據查詢的速度(毛鋒等,2000)。
ArcSED採用格網索引方式。格網索引是將空間區域劃分成合適大小的正方形格網,記錄每一個格網內所包含的空間實體(對象),以及每一個實體的封裝邊界范圍,即包圍空間實體的左下角和右上角坐標。當用戶進行空間查詢時,首先計算出用戶查詢對象所在網格,然後通過格網號,就可以快速檢索到所需要的空間實體。
因此,確定合適的格網級數、單元大小是建立空間格網索引的關鍵。格網單元的大小不是一個確定的問題,需要多次嘗試方可得到。格網太大,在一個格網內有多個空間實體,查詢檢索的准確度低。格網太小,則索引數量成倍增長和冗餘,檢索的速度和效率低。為提高資料庫的工作效率,國土資源遙感綜合調查基礎資料庫中的每一個數據層採用不同大小、不同級數的空間索引網格單元。
11.4.4.2柵格數據的空間索引
柵格數據的空間索引可通過建立多級金字塔結構實現。金字塔結構是柵格數據集的解析度遞減的反映,用來提供顯示階性能。建立金字塔的目的就在於優化顯示的性能和效率。金字塔最底層的解析度總是最高,依次向上遞減。金字塔通過只取得滿足顯示要求的相應解析度的數據來提高柵格顯示階性能,當建立金字塔時,更多的柵格會被持續創建直到到達定點或者層數上限,當應用程序縮小視圖范圍(zoom out)或者柵格方格小於解析度閾值時,ArcSDE將選擇金字塔中的一個更高的層次。每一個柵格數據集可根據本身數據解析度的情況採用不同級數的金字塔結構。
E. 空間資料庫系統空間網格索引怎麼解釋
索引
可以利用索引快速訪問資料庫表中的特定信息。索引是對資料庫表中一個或多個列(例如,employee 表的姓氏 (lname) 列)的值進行排序的結構。如果想按特定職員的姓來查找他或她,則與在表中搜索所有的行相比,索引有助於更快地獲取信息。
索引提供指針以指向存儲在表中指定列的數據值,然後根據指定的排序次序排列這些指針。資料庫使用索引的方式與使用書的目錄很相似:通過搜索索引找到特定的值,然後跟隨指針到達包含該值的行。
在資料庫關系圖中,可以為選定的表創建、編輯或刪除索引/鍵屬性頁中的每個索引類型。當保存附加在此索引上的表或包含此表的資料庫關系圖時,索引同時被保存。有關詳細信息,請參見創建索引。
通常情況下,只有當經常查詢索引列中的數據時,才需要在表上創建索引。索引將佔用磁碟空間,並且降低添加、刪除和更新行的速度。不過在多數情況下,索引所帶來的數據檢索速度的優勢大大超過它的不足之處。然而,如果應用程序非常頻繁地更新數據,或磁碟空間有限,那麼最好限制索引的數量。
F. 資料庫索引是什麼,有什麼用,怎麼用
1、資料庫索引是什麼,有什麼用
資料庫索引是對資料庫表中一列或多列的值進行排序的一種結構,使用索引可快速訪問資料庫表中的特定信息。如果想按特定職員的姓來查找他或她,則與在表中搜索所有的行相比,索引有助於更快地獲取信息。
索引的一個主要目的就是加快檢索表中數據的方法,亦即能協助信息搜索者盡快的找到符合限制條件的記錄ID的輔助數據結構。
2、資料庫索引的用法
當表中有大量記錄時,若要對表進行查詢,第一種搜索信息方式是全表搜索,是將所有記錄一一取出,和查詢條件進行一一對比,然後返回滿足條件的記錄,這樣做會消耗大量資料庫系統時間,並造成大量磁碟I/O操作;
第二種就是在表中建立索引,然後在索引中找到符合查詢條件的索引值,最後通過保存在索引中的ROWID(相當於頁碼)快速找到表中對應的記錄。
索引是一個單獨的、物理的資料庫結構,它是某個表中一列或若干列值的集合和相應的指向表中物理標識值的數據頁的邏輯指針清單。
(6)資料庫空間索引擴展閱讀:
一、索引的原理:
對要查詢的欄位建立索引其實就是把該欄位按照一定的方式排序;建立的索引只對該欄位有用,如果查詢的欄位改變,那麼這個索引也就無效了,比如圖書館的書是按照書名的第一個字母排序的,那麼你想要找作者叫張三的就不能用改索引了;還有就是如果索引太多會降低查詢的速度。
二、資料庫索引的特點:
1、避免進行資料庫全表的掃描,大多數情況,只需要掃描較少的索引頁和數據頁,而不是查詢所有數據頁。而且對於非聚集索引,有時不需要訪問數據頁即可得到數據。
2、聚集索引可以避免數據插入操作,集中於表的最後一個數據頁面。
3、在某些情況下,索引可以避免排序操作。
G. 資料庫索引是什麼,有什麼優點和缺點
資料庫中索引的優缺點
為什麼要創建索引呢?這是因為,創建索引可以大大提高系統的性能。第一,通過創建唯一性索引,可以保證資料庫表中每一行數據的唯一性。第二,可以大大加快數據的檢索速度,這也是創建索引的最主要的原因。第三,可以加速表和表之間的連接,特別是在實現數據的參考完整性方面特別有意義。第四,在使用分組和排序子句進行數據檢索時,同樣可以顯著減少查詢中分組和排序的時間。第五,通過使用索引,可以在查詢的過程中,使用優化隱藏器,提高系統的性能。
也許會有人要問:增加索引有如此多的優點,為什麼不對表中的每一個列創建一個索引呢?這種想法固然有其合理性,然而也有其片面性。雖然,索引有許多優點,但是,為表中的每一個列都增加索引,是非常不明智的。這是因為,增加索引也有許多不利的一個方面。第一,創建索引和維護索引要耗費時間,這種時間隨著數據量的增加而增加。第二,索引需要佔物理空間,除了數據表占數據空間之外,每一個索引還要佔一定的物理空間,如果要建立聚簇索引,那麼需要的空間就會更大。第三,當對表中的數據進行增加、刪除和修改的時候,索引也要動態的維護,這樣就降低了數據的維護速度。
索引是建立在資料庫表中的某些列的上面。因此,在創建索引的時候,應該仔細考慮在哪些列上可以創建索引,在哪些列上不能創建索引。一般來說,應該在這些列上創建索引,例如:在經常需要搜索的列上,可以加快搜索的速度;在作為主鍵的列上,強制該列的唯一性和組織表中數據的排列結構;在經常用在連接的列上,這些列主要是一些外鍵,可以加快連接的速度;在經常需要根據范圍進行搜索的列上創建索引,因為索引已經排序,其指定的范圍是連續的;在經常需要排序的列上創建索引,因為索引已經排序,這樣查詢可以利用索引的排序,加快排序查詢時間;在經常使用在WHERE子句中的列上面創建索引,加快條件的判斷速度。
同樣,對於有些列不應該創建索引。一般來說,不應該創建索引的的這些列具有下列特點:第一,對於那些在查詢中很少使用或者參考的列不應該創建索引。這是因為,既然這些列很少使用到,因此有索引或者無索引,並不能提高查詢速度。相反,由於增加了索引,反而降低了系統的維護速度和增大了空間需求。第二,對於那些只有很少數據值的列也不應該增加索引。這是因為,由於這些列的取值很少,例如人事表的性別列,在查詢的結果中,結果集的數據行佔了表中數據行的很大比例,即需要在表中搜索的數據行的比例很大。增加索引,並不能明顯加快檢索速度。第三,對於那些定義為text,
image和bit數據類型的列不應該增加索引。這是因為,這些列的數據量要麼相當大,要麼取值很少。第四,當修改性能遠遠大於檢索性能時,不應該創建索引。這是因為,修改性能和檢索性能是互相矛盾的。當增加索引時,會提高檢索性能,但是會降低修改性能。當減少索引時,會提高修改性能,降低檢索性能。因此,當修改性能遠遠大於檢索性能時,不應該創建索引。
H. 資料庫索引有哪幾種,怎樣建立索引
資料庫索引的種類:
1、按照索引列值的唯一性,索引可分為唯一索引和非唯一索引
非唯一索引:B樹索引
create index 索引名 on 表名(列名) tablespace 表空間名;
唯一索引:建立主鍵或者唯一約束時會自動在對應的列上建立唯一索引
2、索引列的個數:單列索引和復合索引
3、按照索引列的物理組織方式
B樹索引
create index 索引名 on 表名(列名) tablespace 表空間名;
點陣圖索引
create bitmap index 索引名 on 表名(列名) tablespace 表空間名;
反向鍵索引
create index 索引名 on 表名(列名) reverse tablespace 表空間名;
函數索引
create index 索引名 on 表名(函數名(列名)) tablespace 表空間名;
刪除索引
drop index 索引名
重建索引
alter index 索引名 rebuild
索引的創建格式:
CREATE UNIUQE | BITMAP INDEX <schema>.<index_name>
ON <schema>.<table_name>
(<column_name> | <expression> ASC | DESC,
<column_name> | <expression> ASC | DESC,...)
TABLESPACE <tablespace_name>
STORAGE <storage_settings>
LOGGING | NOLOGGING
COMPUTE STATISTICS
NOCOMPRESS | COMPRESS<nn>
NOSORT | REVERSE
PARTITION | GLOBAL PARTITION<partition_setting>
UNIQUE | BITMAP:指定UNIQUE為唯一值索引,BITMAP為點陣圖索引,省略為B-Tree索引。
<column_name> | <expression> ASC | DESC:可以對多列進行聯合索引,當為expression時即「基於函數的索引」
TABLESPACE:指定存放索引的表空間(索引和原表不在一個表空間時效率更高)
STORAGE:可進一步設置表空間的存儲參數
LOGGING | NOLOGGING:是否對索引產生重做日誌(對大表盡量使用NOLOGGING來減少佔用空間並提高效率)
COMPUTE STATISTICS:創建新索引時收集統計信息
NOCOMPRESS | COMPRESS<nn>:是否使用「鍵壓縮」(使用鍵壓縮可以刪除一個鍵列中出現的重復值)
NOSORT | REVERSE:NOSORT表示與表中相同的順序創建索引,REVERSE表示相反順序存儲索引值
PARTITION | NOPARTITION:可以在分區表和未分區表上對創建的索引進行分區
使用USER_IND_COLUMNS查詢某個TABLE中的相應欄位索引建立情況
使用DBA_INDEXES/USER_INDEXES查詢所有索引的具體設置情況。
在Oracle中的索引可以分為:B樹索引、點陣圖索引、反向鍵索引、基於函數的索引、簇索引、全局索引、局部索引等,下面逐一講解:
一、B樹索引:
最常用的索引,各葉子節點中包括的數據有索引列的值和數據表中對應行的ROWID,簡單的說,在B樹索引中,是通過在索引中保存排過續的索引列值與相對應記錄的ROWID來實現快速查詢的目的。其邏輯結構如圖:
反向鍵索引是一種特殊的B樹索引,在存儲構造中與B樹索引完全相同,但是針對數值時,反向鍵索引會先反向每個鍵值的位元組,然後對反向後的新數據進行索引。例如輸入2008則轉換為8002,這樣當數值一次增加時,其反向鍵在大小中的分布仍然是比較平均的。
反向鍵索引的創建示例:
createindex ind_t on t1(id) reverse;
註:鍵的反轉由系統自行完成。對於用戶是透明的。
四、基於函數的索引:
有的時候,需要進行如下查詢:select * from t1 where to_char(date,'yyyy')>'2007';
但是即便在date欄位上建立了索引,還是不得不進行全表掃描。在這種情況下,可以使用基於函數的索引。其創建語法如下:
create index ind_t on t1(to_char(date,'yyyy'));
註:簡單來說,基於函數的索引,就是將查詢要用到的表達式作為索引項。
五、全局索引和局部索引:
這個索引貌似很復雜,其實很簡單。總得來說一句話,就是無論怎麼分區,都是為了方便管理。
具體索引和表的關系有三種:
1、局部分區索引:分區索引和分區表1對1
2、全局分區索引:分區索引和分區表N對N
3、全局非分區索引:非分區索引和分區表1對N
創建示例:
首先創建一個分區表
createtable student
(
stuno number(5),
sname vrvhar2(10),
deptno number(5)
)
partition by hash (deptno)
(
partition part_01 tablespace A1,
partition part_02 tablespace A2
);
創建局部分區索引(1v1):
create index ind_t on student(stuno)
local(
partition part_01 tablespace A2,
partition part_02 tablespace A1
);--local後面可以不加
創建全局分區索引(NvN):
create index ind_t on student(stuno)
globalpartition by range(stuno)
(
partition p1 values less than(1000) tablespace A1,
partition p2 values less than(maxvalue) tablespace A2
);--只可以進行range分區
創建全局非分區索引(1vN)
createindex ind_t on student(stuno) GLOBAL;
I. 資料庫索引的實現原理
資料庫索引的實現原理
一、概述資料庫索引,是資料庫管理系統中一個排序的數據結構,以協助快速查詢、更新資料庫表中數據。索引的實現通常使用B樹及其變種B+樹。在數據之外,資料庫系統還維護著滿足特定查找演算法的數據結構,這些數據結構以某種方式引用(指向)數據,這樣就可以在這些數據結構上實現高級查找演算法。這種數據結構,就是索引。其實說穿了,索引問題就是一個查找問題。二、索引的原理當我們的業務產生了大量的數據時,查找數據的效率問題也就隨之而來,所以我們可以通過為表設置索引,而為表設置索引要付出代價的:一是增加了資料庫的存儲空間,二是在插入和修改數據時要花費較多的時間(因為索引也要隨之變動)。
上圖展示了一種可能的索引方式。左邊是數據表,一共有兩列七條記錄,最左邊的是數據記錄的物理地址(注意邏輯上相鄰的記錄在磁碟上也並不是一定物理相鄰的)。為了加快Col2的查找,可以維護一個右邊所示的二叉查找樹,每個節點分別包含索引鍵值和一個指向對應數據記錄物理地址的指針,這樣就可以運用二叉查找在O(log2n)的復雜度內獲取到相應數據。索引是建立在資料庫表中的某些列的上面。在創建索引的時候,應該考慮在哪些列上可以創建索引,在哪些列上不能創建索引。一般來說,應該在這些列上創建索引:在經常需要搜索的列上,可以加快搜索的速度;在作為主鍵的列上,強制該列的唯一性和組織表中數據的排列結構;在經常用在連接的列上,這些列主要是一些外鍵,可以加快連接的速度;在經常需要根據范圍進行搜索的列上創建索引,因為索引已經排序,其指定的范圍是連續的;在經常需要排序的列上創建索引,因為索引已經排序,這樣查詢可以利用索引的排序,加快排序查詢時間;在經常使用在WHERE子句中的列上面創建索引,加快條件的判斷速度。創建索引可以大大提高系統的性能第一,通過創建唯一性索引,可以保證資料庫表中每一行數據的唯一性。第二,可以大大加快數據的檢索速度,這也是創建索引的最主要的原因。第三,可以加速表和表之間的連接,特別是在實現數據的參考完整性方面特別有意義。第四,在使用分組和排序子句進行數據檢索時,同樣可以顯著減少查詢中分組和排序的時間。第五,通過使用索引,可以在查詢的過程中,使用優化隱藏器,提高系統的性能。也許會有人要問:增加索引有如此多的優點,為什麼不對表中的每一個列創建一個索引呢?因為,增加索引也有許多不利的方面。創建索引的弊端第一,創建索引和維護索引要耗費時間,這種時間隨著數據量的增加而增加。第二,索引需要佔物理空間,除了數據表占數據空間之外,每一個索引還要佔一定的物理空間,如果要建立聚簇索引,那麼需要的空間就會更大。第三,當對表中的數據進行增加、刪除和修改的時候,索引也要動態的維護,這樣就降低了數據的維護速度。同樣,對於有些列不應該創建索引。一般來說,不應該創建索引的的這些列具有下列特點:第一,對於那些在查詢中很少使用或者參考的列不應該創建索引。這是因為,既然這些列很少使用到,因此有索引或者無索引,並不能提高查詢速度。相反,由於增加了索引,反而降低了系統的維護速度和增大了空間需求。第二,對於那些只有很少數據值的列也不應該增加索引。這是因為,由於這些列的取值很少,例如人事表的性別列,在查詢的結果中,結果集的數據行佔了表中數據行的很大比例,即需要在表中搜索的數據行的比例很大。增加索引,並不能明顯加快檢索速度。第三,對於那些定義為text, image和bit數據類型的列不應該增加索引。這是因為,這些列的數據量要麼相當大,要麼取值很少。第四,當修改性能遠遠大於檢索性能時,不應該創建索引。這是因為,修改性能和檢索性能是互相矛盾的。當增加索引時,會提高檢索性能,但是會降低修改性能。當減少索引時,會提高修改性能,降低檢索性能。因此,當修改性能遠遠大於檢索性能時,不應該創建索引。三、索引的類型根據資料庫的功能,可以在資料庫設計器中創建三種索引:唯一索引、主鍵索引和聚集索引。唯一索引唯一索引是不允許其中任何兩行具有相同索引值的索引。當現有數據中存在重復的鍵值時,大多數資料庫不允許將新創建的唯一索引與表一起保存。資料庫還可能防止添加將在表中創建重復鍵值的新數據。例如,如果在employee表中職員的姓(lname)上創建了唯一索引,則任何兩個員工都不能同姓。主鍵索引資料庫表經常有一列或列組合,其值唯一標識表中的每一行。該列稱為表的主鍵。在資料庫關系圖中為表定義主鍵將自動創建主鍵索引,主鍵索引是唯一索引的特定類型。該索引要求主鍵中的每個值都唯一。當在查詢中使用主鍵索引時,它還允許對數據的快速訪問。聚集索引在聚集索引中,表中行的物理順序與鍵值的邏輯(索引)順序相同。一個表只能包含一個聚集索引。如果某索引不是聚集索引,則表中行的物理順序與鍵值的邏輯順序不匹配。與非聚集索引相比,聚集索引通常提供更快的數據訪問速度。四、局部性原理與磁碟預讀由於存儲介質的特性,磁碟本身存取就比主存慢很多,再加上機械運動耗費,磁碟的存取速度往往是主存的幾百分分之一,因此為了提高效率,要盡量減少磁碟I/O。為了達到這個目的,磁碟往往不是嚴格按需讀取,而是每次都會預讀,即使只需要一個位元組,磁碟也會從這個位置開始,順序向後讀取一定長度的數據放入內存。這樣做的理論依據是計算機科學中著名的局部性原理:當一個數據被用到時,其附近的數據也通常會馬上被使用。程序運行期間所需要的數據通常比較集中。由於磁碟順序讀取的效率很高(不需要尋道時間,只需很少的旋轉時間),因此對於具有局部性的程序來說,預讀可以提高I/O效率。預讀的長度一般為頁(page)的整倍數。頁是計算機管理存儲器的邏輯塊,硬體及操作系統往往將主存和磁碟存儲區分割為連續的大小相等的塊,每個存儲塊稱為一頁(在許多操作系統中,頁得大小通常為4k),主存和磁碟以頁為單位交換數據。當程序要讀取的數據不在主存中時,會觸發一個缺頁異常,此時系統會向磁碟發出讀盤信號,磁碟會找到數據的起始位置並向後連續讀取一頁或幾頁載入內存中,然後異常返回,程序繼續運行。五、B樹和B+樹數據結構1、B樹B樹中每個節點包含了鍵值和鍵值對於的數據對象存放地址指針,所以成功搜索一個對象可以不用到達樹的葉節點。成功搜索包括節點內搜索和沿某一路徑的搜索,成功搜索時間取決於關鍵碼所在的層次以及節點內關鍵碼的數量。在B樹中查找給定關鍵字的方法是:首先把根結點取來,在根結點所包含的關鍵字K1,…,kj查找給定的關鍵字(可用順序查找或二分查找法),若找到等於給定值的關鍵字,則查找成功;否則,一定可以確定要查的關鍵字在某個Ki或Ki+1之間,於是取Pi所指的下一層索引節點塊繼續查找,直到找到,或指針Pi為空時查找失敗。2、B+樹B+樹非葉節點中存放的關鍵碼並不指示數據對象的地址指針,非也節點只是索引部分。所有的葉節點在同一層上,包含了全部關鍵碼和相應數據對象的存放地址指針,且葉節點按關鍵碼從小到大順序鏈接。如果實際數據對象按加入的順序存儲而不是按關鍵碼次數存儲的話,葉節點的索引必須是稠密索引,若實際數據存儲按關鍵碼次序存放的話,葉節點索引時稀疏索引。B+樹有2個頭指針,一個是樹的根節點,一個是最小關鍵碼的葉節點。所以 B+樹有兩種搜索方法:一種是按葉節點自己拉起的鏈表順序搜索。一種是從根節點開始搜索,和B樹類似,不過如果非葉節點的關鍵碼等於給定值,搜索並不停止,而是繼續沿右指針,一直查到葉節點上的關鍵碼。所以無論搜索是否成功,都將走完樹的所有層。B+ 樹中,數據對象的插入和刪除僅在葉節點上進行。這兩種處理索引的數據結構的不同之處:1、B樹中同一鍵值不會出現多次,並且它有可能出現在葉結點,也有可能出現在非葉結點中。而B+樹的鍵一定會出現在葉結點中,並且有可能在非葉結點中也有可能重復出現,以維持B+樹的平衡。2、因為B樹鍵位置不定,且在整個樹結構中只出現一次,雖然可以節省存儲空間,但使得在插入、刪除操作復雜度明顯增加。B+樹相比來說是一種較好的折中。3、B樹的查詢效率與鍵在樹中的位置有關,最大時間復雜度與B+樹相同(在葉結點的時候),最小時間復雜度為1(在根結點的時候)。而B+樹的時候復雜度對某建成的樹是固定的。六、B/+Tree索引的性能分析到這里終於可以分析B-/+Tree索引的性能了。上文說過一般使用磁碟I/O次數評價索引結構的優劣。先從B-Tree分析,根據B-Tree的定義,可知檢索一次最多需要訪問h個節點。資料庫系統的設計者巧妙利用了磁碟預讀原理,將一個節點的大小設為等於一個頁,這樣每個節點只需要一次I/O就可以完全載入。為了達到這個目的,在實際實現B-Tree還需要使用如下技巧:每次新建節點時,直接申請一個頁的空間,這樣就保證一個節點物理上也存儲在一個頁里,加之計算機存儲分配都是按頁對齊的,就實現了一個node只需一次I/O。B-Tree中一次檢索最多需要h-1次I/O(根節點常駐內存),漸進復雜度為O(h)=O(logdN)。一般實際應用中,出度d是非常大的數字,通常超過100,因此h非常小(通常不超過3)。而紅黑樹這種結構,h明顯要深的多。由於邏輯上很近的節點(父子)物理上可能很遠,無法利用局部性,所以紅黑樹的I/O漸進復雜度也為O(h),效率明顯比B-Tree差很多。綜上所述,用B-Tree作為索引結構效率是非常高的。