當前位置:首頁 » 操作系統 » 智能編碼演算法

智能編碼演算法

發布時間: 2022-10-29 14:52:29

❶ idea30天試用到期後還能用嗎

不能了。

idea全稱IntelliJ IDEA,是java語言開發的集成環境,是JetBrains公司的產品。

idea提倡的是智能編碼,目的是減少程序員的工作,其特色功能有智能的選取、豐富的導航模式、歷史記錄功能等,最突出的功能是調試(Debug),可以對Java代碼、JavaScript、JQuery等技術進行調試。



加密演算法

是旅居瑞士中國青年學者來學嘉和著名密碼專家J.Massey於1990年提出的。它在1990年正式公布並在以後得到增強。這種演算法是在DES演算法的基礎上發展出來的,類似於三重DES,和DES一樣IDEA也是屬於對稱密鑰演算法。發展IDEA也是因為感到DES具有密鑰太短等缺點,已經過時。

IDEA的密鑰為128位,這么長的密鑰在今後若干年內應該是安全的。

類似於DES,IDEA演算法也是一種數據塊加密演算法,它設計了一系列加密輪次,每輪加密都使用從完整的加密密鑰中生成的一個子密鑰。與DES的不同處在於,它採用軟體實現和採用硬體實現同樣快速。

由於IDEA是在美國之外提出並發展起來的,避開了美國法律上對加密技術的諸多限制,因此,有關IDEA演算法和實現技術的書籍都可以自由出版和交流,可極大地促進IDEA的發展和完善。

❷ 電視劇中出現智能碼率是什麼意思

碼率控制實際上是一種編碼的優化演算法,它用於實現對視頻流碼流大小的控制。那麼它控制的目的是什麼呢?

我們可以試想一下,同樣的視頻編碼格式,碼流大,它包含的信息也就越多,那麼對應的圖像也就越清晰,反之亦然。目前常用的兩種碼流控制方式是VBR和CBR,VBR是動態比特率,CBR是固定比特率。那麼他們是怎麼來實現的呢?

我們首先看視頻編碼的目的,它是為了在有限的帶寬中傳輸盡可能清晰的視頻,我們以每秒25/幀的圖像舉例,25幀圖像中定義了GOP組,目前主要是有I,B,P幀三種幀格式,I幀是關鍵幀,你可以想像它就是一幅JPEG壓縮圖像,而B,P幀是依靠I幀存在的,如果丟失了I幀,B,P幀是看不到圖像的,B,P幀描述的不是實際的圖像像素內容,而是每個相關像素的變化量,他們相對於I幀信息量會很小。GOP組是指一個關鍵幀I幀所在的組的長度,每個GOP組只有1個I幀。

我們再來看,一組畫面的碼流大小跟什麼有關?當視頻編碼的壓縮方式都一樣,清晰度要求都一樣的時候,GOP組的長度格式決定了碼流的大小,例如:每秒25幀畫面,GOP組長度為5,那麼幀格式為IBPBP,那麼1秒鍾有5個I幀,10個B幀,10個P幀,如果GOP組長度為15,幀格式就是IBBPBBPBBPBBPBB,那麼1秒鍾內會有2個I幀和16個B幀和7個P幀,那麼5個I幀比2個I幀佔用的數據信息量大,所以GOP組的長度格式也決定了碼流的大小。

最後,我們再來看VBR和CBR,對於VBR來說,它可以通過特殊的演算法來控制一個GOP組的長度,也就是I幀的數量,當圖像中運動圖像多時,我可以把I幀數量加大,那麼圖像會很清晰,如果圖像內元素基本靜止時,它甚至可以把GOP組調到25的長度。那麼根據前面的描述,可以想像這是一種為了確保圖像質量的控制手段,它非常靈活,不死板,但是要求控制演算法非常的精確,不精確會導致很多問題,例如碼流突增後不降低,即使帶寬足夠,會導致圖像出現問題。

❸ 智能編程語言和人工智慧編程語言有區別嗎什麼是智能編程語言

Python、Java、Lisp、Prolog、C ++、Yigo。

Python由於簡單易用,是人工智慧領域中使用最廣泛的編程語言之一,它可以無縫地與數據結構和其他常用的AI演算法一起使用。
Python之所以適合AI項目,其實也是基於Python的很多有用的庫都可以在AI中使用,如Numpy提供科學的計算能力,Scypy的高級計算和Pybrain的機器學習。
Java也是AI項目的一個很好的選擇。它是一種面向對象的編程語言,專注於提供AI項目上所需的所有高級功能,它是可移植的,並且提供了內置的垃圾回收。另外Java社區也是一個加分項,完善豐富的社區生態可以幫助開發人員隨時隨地查詢和解決遇到的問題。
對於AI項目來說,演算法幾乎是靈魂,無論是搜索演算法、自然語言處理演算法還是神經網路,Java都可以提供一種簡單的編碼演算法。另外,Java的擴展性也是AI項目必備的功能之一。自從去年,AlphaGo打遍天下棋手無對手,人工智慧的風頭就一直無人能及。在IT領袖峰會上,BAT三位大佬都看好人工智慧的未來發展。今年年初,網路就做了一個大動作,在醫療方面押寶人工智慧,所以在這次峰會上李彥宏也發聲稱互聯網是道開胃菜,人工智慧才是主菜。
人工智慧是一個很廣闊的領域,很多編程語言都可以用於人工智慧開發,所以很難說人工智慧必須用哪一種語言來開發。選擇多也意味著會有優劣之分,並不是每種編程語言都能夠為開發人員節省時間及精力。所以我們整理了5種比較適用於人工智慧開發的編程語言,希望能夠對你有所幫助。
Python
Python由於簡單易用,是人工智慧領域中使用最廣泛的編程語言之一,它可以無縫地與數據結構和其他常用的AI演算法一起使用。
Python之所以時候AI項目,其實也是基於Python的很多有用的庫都可以在AI中使用,如Numpy提供科學的計算能力,Scypy的高級計算和Pybrain的機器學習。另外,Python有大量的在線資源,所以學習曲線也不會特別陡峭。
Java
Java也是AI項目的一個很好的選擇。它是一種面向對象的編程語言,專注於提供AI項目上所需的所有高級功能,它是可移植的,並且提供了內置的垃圾回收。另外Java社區也是一個加分項,完善豐富的社區生態可以幫助開發人員隨時隨地查詢和解決遇到的問題。
對於AI項目來說,演算法幾乎是靈魂,無論是搜索演算法、自然語言處理演算法還是神經網路,Java都可以提供一種簡單的編碼演算法。另外,Java的擴展性也是AI項目必備的功能之一。
Lisp
Lisp因其出色的原型設計能力和對符號表達式的支持在AI領域嶄露頭角。LISP作為因應人工智慧而設計的語言,是第一個聲明式系內函數式程序設計語言,有別於命令式系內過程式的C、Fortran和面向對象的Java、C#等結構化程序設計語言。
Lisp語言因其可用性和符號結構而主要用於機器學習/ ILP子領域。著名的AI專家彼得·諾維奇(Peter Norvig)在其《ArTIficial Intelligence: A modern approach》一書中,詳細解釋了為什麼Lisp是AI開發的頂級編程語言之一,感興趣的朋友可以自行查看。
Prolog
Prolog與Lisp在可用性方面旗鼓相當,據《Prolog Programming for ArTIficial Intelligence》一文介紹,Prolog一種邏輯編程語言,主要是對一些基本機制進行編程,對於AI編程十分有效,例如它提供模式匹配,自動回溯和基於樹的數據結構化機制。結合這些機制可以為AI項目提供一個靈活的框架。
Prolog廣泛應用於AI的 expert系統,也可用於醫療項目的工作。
C ++
C ++是世界上速度最快的編程語言,其在硬體層面上的交流能力使開發人員能夠改進程序執行時間。 C ++對於時間很敏感,這對於AI項目是非常有用的,例如,搜索引擎可以廣泛使用C ++。
在AI項目中,C++可用於統計,如神經網路。另外演算法也可以在C ++被廣泛地快速執行,游戲中的AI主要用C ++編碼,以便更快的執行和響應時間。
寫在最後:
在這些編程語言中,Python因為適用於大多數AI,所以漸有成為AI編程語言之首的趨勢,而Lisp和Prolog因其獨特的功能,所以在部分AI項目中卓有成效,地位暫時難以撼動。而Java和C++的自身優勢將在AI項目中繼續保持。

❹ 人工智慧用的編程語言是哪些

Python、Java、Lisp、Prolog、C ++、Yigo。

❺ 人工智慧演算法簡介

人工智慧的三大基石—演算法、數據和計算能力,演算法作為其中之一,是非常重要的,那麼人工智慧都會涉及哪些演算法呢?不同演算法適用於哪些場景呢?

一、按照模型訓練方式不同可以分為監督學習(Supervised Learning),無監督學習(Unsupervised Learning)、半監督學習(Semi-supervised Learning)和強化學習(Reinforcement Learning)四大類。

常見的監督學習演算法包含以下幾類:
(1)人工神經網路(Artificial Neural Network)類:反向傳播(Backpropagation)、波爾茲曼機(Boltzmann Machine)、卷積神經網路(Convolutional Neural Network)、Hopfield網路(hopfield Network)、多層感知器(Multilyer Perceptron)、徑向基函數網路(Radial Basis Function Network,RBFN)、受限波爾茲曼機(Restricted Boltzmann Machine)、回歸神經網路(Recurrent Neural Network,RNN)、自組織映射(Self-organizing Map,SOM)、尖峰神經網路(Spiking Neural Network)等。
(2)貝葉斯類(Bayesin):樸素貝葉斯(Naive Bayes)、高斯貝葉斯(Gaussian Naive Bayes)、多項樸素貝葉斯(Multinomial Naive Bayes)、平均-依賴性評估(Averaged One-Dependence Estimators,AODE)
貝葉斯信念網路(Bayesian Belief Network,BBN)、貝葉斯網路(Bayesian Network,BN)等。
(3)決策樹(Decision Tree)類:分類和回歸樹(Classification and Regression Tree,CART)、迭代Dichotomiser3(Iterative Dichotomiser 3, ID3),C4.5演算法(C4.5 Algorithm)、C5.0演算法(C5.0 Algorithm)、卡方自動交互檢測(Chi-squared Automatic Interaction Detection,CHAID)、決策殘端(Decision Stump)、ID3演算法(ID3 Algorithm)、隨機森林(Random Forest)、SLIQ(Supervised Learning in Quest)等。
(4)線性分類器(Linear Classifier)類:Fisher的線性判別(Fisher』s Linear Discriminant)
線性回歸(Linear Regression)、邏輯回歸(Logistic Regression)、多項邏輯回歸(Multionmial Logistic Regression)、樸素貝葉斯分類器(Naive Bayes Classifier)、感知(Perception)、支持向量機(Support Vector Machine)等。

常見的無監督學習類演算法包括:
(1) 人工神經網路(Artificial Neural Network)類:生成對抗網路(Generative Adversarial Networks,GAN),前饋神經網路(Feedforward Neural Network)、邏輯學習機(Logic Learning Machine)、自組織映射(Self-organizing Map)等。
(2) 關聯規則學習(Association Rule Learning)類:先驗演算法(Apriori Algorithm)、Eclat演算法(Eclat Algorithm)、FP-Growth演算法等。
(3)分層聚類演算法(Hierarchical Clustering):單連鎖聚類(Single-linkage Clustering),概念聚類(Conceptual Clustering)等。
(4)聚類分析(Cluster analysis):BIRCH演算法、DBSCAN演算法,期望最大化(Expectation-maximization,EM)、模糊聚類(Fuzzy Clustering)、K-means演算法、K均值聚類(K-means Clustering)、K-medians聚類、均值漂移演算法(Mean-shift)、OPTICS演算法等。
(5)異常檢測(Anomaly detection)類:K最鄰近(K-nearest Neighbor,KNN)演算法,局部異常因子演算法(Local Outlier Factor,LOF)等。

常見的半監督學習類演算法包含:生成模型(Generative Models)、低密度分離(Low-density Separation)、基於圖形的方法(Graph-based Methods)、聯合訓練(Co-training)等。

常見的強化學習類演算法包含:Q學習(Q-learning)、狀態-行動-獎勵-狀態-行動(State-Action-Reward-State-Action,SARSA)、DQN(Deep Q Network)、策略梯度演算法(Policy Gradients)、基於模型強化學習(Model Based RL)、時序差分學習(Temporal Different Learning)等。

常見的深度學習類演算法包含:深度信念網路(Deep Belief Machines)、深度卷積神經網路(Deep Convolutional Neural Networks)、深度遞歸神經網路(Deep Recurrent Neural Network)、分層時間記憶(Hierarchical Temporal Memory,HTM)、深度波爾茲曼機(Deep Boltzmann Machine,DBM)、棧式自動編碼器(Stacked Autoencoder)、生成對抗網路(Generative Adversarial Networks)等。

二、按照解決任務的不同來分類,粗略可以分為二分類演算法(Two-class Classification)、多分類演算法(Multi-class Classification)、回歸演算法(Regression)、聚類演算法(Clustering)和異常檢測(Anomaly Detection)五種。
1.二分類(Two-class Classification)
(1)二分類支持向量機(Two-class SVM):適用於數據特徵較多、線性模型的場景。
(2)二分類平均感知器(Two-class Average Perceptron):適用於訓練時間短、線性模型的場景。
(3)二分類邏輯回歸(Two-class Logistic Regression):適用於訓練時間短、線性模型的場景。
(4)二分類貝葉斯點機(Two-class Bayes Point Machine):適用於訓練時間短、線性模型的場景。(5)二分類決策森林(Two-class Decision Forest):適用於訓練時間短、精準的場景。
(6)二分類提升決策樹(Two-class Boosted Decision Tree):適用於訓練時間短、精準度高、內存佔用量大的場景
(7)二分類決策叢林(Two-class Decision Jungle):適用於訓練時間短、精確度高、內存佔用量小的場景。
(8)二分類局部深度支持向量機(Two-class Locally Deep SVM):適用於數據特徵較多的場景。
(9)二分類神經網路(Two-class Neural Network):適用於精準度高、訓練時間較長的場景。

解決多分類問題通常適用三種解決方案:第一種,從數據集和適用方法入手,利用二分類器解決多分類問題;第二種,直接使用具備多分類能力的多分類器;第三種,將二分類器改進成為多分類器今兒解決多分類問題。
常用的演算法:
(1)多分類邏輯回歸(Multiclass Logistic Regression):適用訓練時間短、線性模型的場景。
(2)多分類神經網路(Multiclass Neural Network):適用於精準度高、訓練時間較長的場景。
(3)多分類決策森林(Multiclass Decision Forest):適用於精準度高,訓練時間短的場景。
(4)多分類決策叢林(Multiclass Decision Jungle):適用於精準度高,內存佔用較小的場景。
(5)「一對多」多分類(One-vs-all Multiclass):取決於二分類器效果。

回歸
回歸問題通常被用來預測具體的數值而非分類。除了返回的結果不同,其他方法與分類問題類似。我們將定量輸出,或者連續變數預測稱為回歸;將定性輸出,或者離散變數預測稱為分類。長巾的演算法有:
(1)排序回歸(Ordinal Regression):適用於對數據進行分類排序的場景。
(2)泊松回歸(Poission Regression):適用於預測事件次數的場景。
(3)快速森林分位數回歸(Fast Forest Quantile Regression):適用於預測分布的場景。
(4)線性回歸(Linear Regression):適用於訓練時間短、線性模型的場景。
(5)貝葉斯線性回歸(Bayesian Linear Regression):適用於線性模型,訓練數據量較少的場景。
(6)神經網路回歸(Neural Network Regression):適用於精準度高、訓練時間較長的場景。
(7)決策森林回歸(Decision Forest Regression):適用於精準度高、訓練時間短的場景。
(8)提升決策樹回歸(Boosted Decision Tree Regression):適用於精確度高、訓練時間短、內存佔用較大的場景。

聚類
聚類的目標是發現數據的潛在規律和結構。聚類通常被用做描述和衡量不同數據源間的相似性,並把數據源分類到不同的簇中。
(1)層次聚類(Hierarchical Clustering):適用於訓練時間短、大數據量的場景。
(2)K-means演算法:適用於精準度高、訓練時間短的場景。
(3)模糊聚類FCM演算法(Fuzzy C-means,FCM):適用於精確度高、訓練時間短的場景。
(4)SOM神經網路(Self-organizing Feature Map,SOM):適用於運行時間較長的場景。
異常檢測
異常檢測是指對數據中存在的不正常或非典型的分體進行檢測和標志,有時也稱為偏差檢測。
異常檢測看起來和監督學習問題非常相似,都是分類問題。都是對樣本的標簽進行預測和判斷,但是實際上兩者的區別非常大,因為異常檢測中的正樣本(異常點)非常小。常用的演算法有:
(1)一分類支持向量機(One-class SVM):適用於數據特徵較多的場景。
(2)基於PCA的異常檢測(PCA-based Anomaly Detection):適用於訓練時間短的場景。

常見的遷移學習類演算法包含:歸納式遷移學習(Inctive Transfer Learning) 、直推式遷移學習(Transctive Transfer Learning)、無監督式遷移學習(Unsupervised Transfer Learning)、傳遞式遷移學習(Transitive Transfer Learning)等。

演算法的適用場景:
需要考慮的因素有:
(1)數據量的大小、數據質量和數據本身的特點
(2)機器學習要解決的具體業務場景中問題的本質是什麼?
(3)可以接受的計算時間是什麼?
(4)演算法精度要求有多高?
————————————————

原文鏈接: https://blog.csdn.net/nfzhlk/article/details/82725769

❻ 人工智慧演算法解決新挑戰,智能演算法是什麼是如何運行的

由於人工智慧缺乏可解釋性,人們越來越關注人工智慧主體的接受和信任問題。多年來,對可解釋性的重視在計算機視覺、自然語言處理和序列建模等領域取得了巨大的進展。隨著時間的推移,這些類型的編碼指令變得比任何人想像的都更加全面和復雜。人工智慧演算法已經進入了這一領域。人工智慧演算法是機器學習的一個子領域,它引導計算機學習如何獨立工作。因此,為了優化程序並更快地完成工作,小工具將繼續學習。

人工智慧演算法也每天都在使用。盡管關於美國聯邦政府如何保護個人數據信息的問題尚不清楚,但對特定方面和通信的計算機軟體監控已經在防止國內外的重大恐怖行為。這只是人類使用人工智慧不斷發展和擴大的一種經驗。人類對人工智慧的使用拓寬了我們的視野,使事情變得更簡單、更安全,並使子孫後代更幸福。

❼ 人工智慧創意編程是什麼

Python、Java、Lisp、Prolog、C ++、Yigo。

Python由於簡單易用,是人工智慧領域中使用最廣泛的編程語言之一,它可以無縫地與數據結構和其他常用的AI演算法一起使用。
Python之所以適合AI項目,其實也是基於Python的很多有用的庫都可以在AI中使用,如Numpy提供科學的計算能力,Scypy的高級計算和Pybrain的機器學習。
Java也是AI項目的一個很好的選擇。它是一種面向對象的編程語言,專注於提供AI項目上所需的所有高級功能,它是可移植的,並且提供了內置的垃圾回收。另外Java社區也是一個加分項,完善豐富的社區生態可以幫助開發人員隨時隨地查詢和解決遇到的問題。
對於AI項目來說,演算法幾乎是靈魂,無論是搜索演算法、自然語言處理演算法還是神經網路,Java都可以提供一種簡單的編碼演算法。另外,Java的擴展性也是AI項目必備的功能之一。

❽ 智能演算法的演算法分類

模擬退火演算法的依據是固體物質退火過程和組合優化問題之間的相似性。物質在加熱的時候,粒子間的布朗運動增強,到達一定強度後,固體物質轉化為液態,這個時候再進行退火,粒子熱運動減弱,並逐漸趨於有序,最後達到穩定。
模擬退火的解不再像局部搜索那樣最後的結果依賴初始點。它引入了一個接受概率p。如果新的點(設為pn)的目標函數f(pn)更好,則p=1,表示選取新點;否則,接受概率p是當前點(設為pc)的目標函數f(pc),新點的目標函數f(pn)以及另一個控制參數「溫度」T的函數。也就是說,模擬退火沒有像局部搜索那樣每次都貪婪地尋找比現在好的點,目標函數差一點的點也有可能接受進來。隨著演算法的執行,系統溫度T逐漸降低,最後終止於某個低溫,在該溫度下,系統不再接受變化。
模擬退火的典型特徵是除了接受目標函數的改進外,還接受一個衰減極限,當T較大時,接受較大的衰減,當T逐漸變小時,接受較小的衰減,當T為0時,就不再接受衰減。這一特徵意味著模擬退火與局部搜索相反,它能避開局部極小,並且還保持了局部搜索的通用性和簡單性。
在物理上,先加熱,讓分子間互相碰撞,變成無序狀態,內能加大,然後降溫,最後的分子次序反而會更有序,內能比沒有加熱前更小。就像那隻兔子,它喝醉後,對比較近的山峰視而不見,迷迷糊糊地跳一大圈子,反而更有可能找到珠峰。
值得注意的是,當T為0時,模擬退火就成為局部搜索的一個特例。
模擬退火的偽碼表達:
procere simulated annealing
begin
t:=0;
initialize temperature T
select a current string vc at random;
evaluate vc;
repeat
repeat
select a new string vn in the neighborhood of vc; (1)
if f(vc)<f(vn)
then vc:=vn;
else if random [0,1] <exp ((f (vn)-f (vc))/T) (2)
then vc:=vn;
until (termination-condition) (3)
T:=g(T,t); (4)
T:=t+1;
until (stop-criterion) (5)
end;
上面的程序中,關鍵的是(1)新狀態產生函數,(2)新狀態接受函數,(3)抽樣穩定準則,(4)退溫函數,(5)退火結束准則(簡稱三函數兩准則)是直接影響優化結果的主要環節。雖然實驗結果證明初始值對於最後的結果沒有影響,但是初溫越高,得到高質量解的概率越大。所以,應該盡量選取比較高的初溫。
上面關鍵環節的選取策略:
(1)狀態產生函數:候選解由當前解的鄰域函數決定,可以取互換,插入,逆序等操作產生,然後根據概率分布方式選取新的解,概率可以取均勻分布、正態分布、高斯分布、柯西分布等。
(2)狀態接受函數:這個環節最關鍵,但是,實驗表明,何種接受函數對於最後結果影響不大。所以,一般選取min [1, exp ((f (vn)-f (vc))/T)]。
(3)抽樣穩定準則:一般常用的有:檢驗目標函數的均值是否穩定;連續若干步的目標值變化較小;規定一定的步數;
(4)退溫函數:如果要求溫度必須按照一定的比率下降,SA演算法可以採用,但是溫度下降很慢;快速SA中,一般採用 。目前,經常用的是 ,是一個不斷變化的值。
(5)退火結束准則:一般有:設置終止溫度;設置迭代次數;搜索到的最優值連續多次保持不變;檢驗系統熵是否穩定。
為了保證有比較優的解,演算法往往採取慢降溫、多抽樣、以及把「終止溫度」設的比較低等方式,導致演算法運行時間比較長,這也是模擬退火的最大缺點。人喝醉了酒辦起事來都不利索,何況兔子? 「物競天擇,適者生存」,是進化論的基本思想。遺傳演算法就是模擬自然界想做的事。遺傳演算法可以很好地用於優化問題,若把它看作對自然過程高度理想化的模擬,更能顯出它本身的優雅——雖然生存競爭是殘酷的。
遺傳演算法以一種群體中的所有個體為對象,並利用隨機化技術指導對一個被編碼的參數空間進行高效搜索。其中,選擇、交叉和變異構成了遺傳演算法的遺傳操作;參數編碼、初始群體的設定、適應度函數的設計、遺傳操作設計、控制參數設定五個要素組成了遺傳演算法的核心內容。作為一種新的全局優化搜索演算法,遺傳演算法以其簡單通用、健壯性強、適於並行處理以及高效、實用等顯著特點,在各個領域得到了廣泛應用,取得了良好效果,並逐漸成為重要的智能演算法之一。
遺傳演算法的偽碼:
procere genetic algorithm
begin
initialize a group and evaluate the fitness value ; (1)
while not convergent (2)
begin
select; (3)
if random[0,1]<pc then
crossover; (4)
if random (0,1)<pm then
mutation; (5)
end;
end
上述程序中有五個重要的環節:
(1)編碼和初始群體的生成:GA在進行搜索之前先將解空間的解數據表示成遺傳空間的基因型串結構數據,這些串結構數據的不同組合便構成了不同的點。然後隨機產生N個初始串結構數據,每個串結構數據稱為一個個體, N個體構成了一個群體。GA以這N個串結構數據作為初始點開始迭代。
比如,旅行商問題中,可以把商人走過的路徑進行編碼,也可以對整個圖矩陣進行編碼。編碼方式依賴於問題怎樣描述比較好解決。初始群體也應該選取適當,如果選取的過小則雜交優勢不明顯,演算法性能很差(數量上佔了優勢的老鼠進化能力比老虎強),群體選取太大則計算量太大。
(2)檢查演算法收斂准則是否滿足,控制演算法是否結束。可以採用判斷與最優解的適配度或者定一個迭代次數來達到。
(3)適應性值評估檢測和選擇:適應性函數表明個體或解的優劣性,在程序的開始也應該評價適應性,以便和以後的做比較。不同的問題,適應性函數的定義方式也不同。根據適應性的好壞,進行選擇。選擇的目的是為了從當前群體中選出優良的個體,使它們有機會作為父代為下一代繁殖子孫。遺傳演算法通過選擇過程體現這一思想,進行選擇的原則是適應性強的個體為下一代貢獻一個或多個後代的概率大。選擇實現了達爾文的適者生存原則。
(4)雜交:按照雜交概率(pc)進行雜交。雜交操作是遺傳演算法中最主要的遺傳操作。通過雜交操作可以得到新一代個體,新個體組合了其父輩個體的特性。雜交體現了信息交換的思想。
可以選定一個點對染色體串進行互換,插入,逆序等雜交,也可以隨機選取幾個點雜交。雜交概率如果太大,種群更新快,但是高適應性的個體很容易被淹沒,概率小了搜索會停滯。
(5)變異:按照變異概率(pm)進行變異。變異首先在群體中隨機選擇一個個體,對於選中的個體以一定的概率隨機地改變串結構數據中某個串的值。同生物界一樣,GA中變異發生的概率很低。變異為新個體的產生提供了機會。
變異可以防止有效基因的缺損造成的進化停滯。比較低的變異概率就已經可以讓基因不斷變更,太大了會陷入隨機搜索。想一下,生物界每一代都和上一代差距很大,會是怎樣的可怕情形。
就像自然界的變異適和任何物種一樣,對變數進行了編碼的遺傳演算法沒有考慮函數本身是否可導,是否連續等性質,所以適用性很強;並且,它開始就對一個種群進行操作,隱含了並行性,也容易找到「全局最優解」。 為了找到「全局最優解」,就不應該執著於某一個特定的區域。局部搜索的缺點就是太貪婪地對某一個局部區域以及其鄰域搜索,導致一葉障目,不見泰山。禁忌搜索就是對於找到的一部分局部最優解,有意識地避開它(但不是完全隔絕),從而獲得更多的搜索區間。兔子們找到了泰山,它們之中的一隻就會留守在這里,其他的再去別的地方尋找。就這樣,一大圈後,把找到的幾個山峰一比較,珠穆朗瑪峰脫穎而出。
當兔子們再尋找的時候,一般地會有意識地避開泰山,因為他們知道,這里已經找過,並且有一隻兔子在那裡看著了。這就是禁忌搜索中「禁忌表(tabu list)」的含義。那隻留在泰山的兔子一般不會就安家在那裡了,它會在一定時間後重新回到找最高峰的大軍,因為這個時候已經有了許多新的消息,泰山畢竟也有一個不錯的高度,需要重新考慮,這個歸隊時間,在禁忌搜索裡面叫做「禁忌長度(tabu length)」;如果在搜索的過程中,留守泰山的兔子還沒有歸隊,但是找到的地方全是華北平原等比較低的地方,兔子們就不得不再次考慮選中泰山,也就是說,當一個有兔子留守的地方優越性太突出,超過了「best to far」的狀態,就可以不顧及有沒有兔子留守,都把這個地方考慮進來,這就叫「特赦准則(aspiration criterion)」。這三個概念是禁忌搜索和一般搜索准則最不同的地方,演算法的優化也關鍵在這里。
偽碼表達:
procere tabu search;
begin
initialize a string vc at random,clear up the tabu list;
cur:=vc;
repeat
select a new string vn in the neighborhood of vc;
if va>best_to_far then {va is a string in the tabu list}
begin
cur:=va;
let va take place of the oldest string in the tabu list;
best_to_far:=va;
end else
begin
cur:=vn;
let vn take place of the oldest string in the tabu list;
end;
until (termination-condition);
end;
以上程序中有關鍵的幾點:
(1)禁忌對象:可以選取當前的值(cur)作為禁忌對象放進tabu list,也可以把和當然值在同一「等高線」上的都放進tabu list。
(2)為了降低計算量,禁忌長度和禁忌表的集合不宜太大,但是禁忌長度太小容易循環搜索,禁忌表太小容易陷入「局部極優解」。
(3)上述程序段中對best_to_far的操作是直接賦值為最優的「解禁候選解」,但是有時候會出現沒有大於best_to_far的,候選解也全部被禁的「死鎖」狀態,這個時候,就應該對候選解中最佳的進行解禁,以能夠繼續下去。
(4)終止准則:和模擬退火,遺傳演算法差不多,常用的有:給定一個迭代步數;設定與估計的最優解的距離小於某個范圍時,就終止搜索;當與最優解的距離連續若干步保持不變時,終止搜索;
禁忌搜索是對人類思維過程本身的一種模擬,它通過對一些局部最優解的禁忌(也可以說是記憶)達到接納一部分較差解,從而跳出局部搜索的目的。 人工神經網路(Artificial Neural Network,ANN)
神經網路從名字就知道是對人腦的模擬。它的神經元結構,它的構成與作用方式都是在模仿人腦,但是也僅僅是粗糙的模仿,遠沒有達到完美的地步。和馮·諾依曼機不同,神經網路計算非數字,非精確,高度並行,並且有自學習功能。
生命科學中,神經細胞一般稱作神經元,它是整個神經結構的最基本單位。每個神經細胞就像一條胳膊,其中像手掌的地方含有細胞核,稱作細胞體,像手指的稱作樹突,是信息的輸入通路,像手臂的稱作軸突,是信息的輸出通路;神經元之間錯綜復雜地連在一起,互相之間傳遞信號,而傳遞的信號可以導致神經元電位的變化,一旦電位高出一定值,就會引起神經元的激發,此神經元就會通過軸突傳出電信號。
而如果要用計算機模仿生物神經,就需要人工的神經網路有三個要素:(1)形式定義人工神經元;(2)給出人工神經元的連接方式,或者說給出網路結構;(3)給出人工神經元之間信號強度的定義。
歷史上第一個人工神經網路模型稱作M-P模型,非常簡單:
其中,表示神經元i在t時刻的狀態,為1表示激發態,為0表示抑制態;是神經元i和j之間的連接強度;表示神經元i的閾值,超過這個值神經元才能激發。
這個模型是最簡單的神經元模型。但是功能已經非常強大:此模型的發明人McCulloch和Pitts已經證明,不考慮速度和實現的復雜性,它可以完成當前數字計算機的任何工作。
以上這個M-P模型僅僅是一層的網路,如果從對一個平面進行分割的方面來考慮的話,M-P網路只能把一個平面分成個半平面,卻不能夠選取特定的一部分。而解決的辦法就是「多層前向網路」。
為了讓這種網路有合適的權值,必須給網路一定的激勵,讓它自己學習,調整。一種方法稱作「向後傳播演算法(Back Propagation,BP)」,其基本思想是考察最後輸出解和理想解的差異,調整權值,並把這種調整從輸出層開始向後推演,經過中間層,達到輸入層。
可見,神經網路是通過學習來達到解決問題的目的,學習沒有改變單個神經元的結構和工作方式,單個神經元的特性和要解決的問題之間也沒有直接聯系,這里學習的作用是根據神經元之間激勵與抑制的關系,改變它們的作用強度。學習樣本中的任何樣品的信息都包含在網路的每個權值之中。
BP演算法中有考察輸出解和理想解差異的過程,假設差距為w,則調整權值的目的就是為了使得w最小化。這就又包含了前文所說的「最小值」問題。一般的BP演算法採用的是局部搜索,比如最速下降法,牛頓法等,當然如果想要得到全局最優解,可以採用模擬退火,遺傳演算法等。當前向網路採用模擬退火演算法作為學習方法的時候,一般成為「波爾茲曼網路」,屬於隨機性神經網路。
在學習BP演算法學習的過程中,需要已經有一部分確定的值作為理想輸出,這就好像中學生在學習的時候,有老師的監督。如果沒有了監督,人工神經網路該怎麼學習?
就像沒有了宏觀調控,自由的市場引入了競爭一樣,有一種學習方法稱作「無監督有競爭的學習」。在輸入神經元i的若干個神經元之間開展競爭,競爭之後,只有一個神經元為1,其他均為0,而對於失敗的神經元,調整使得向對競爭有利的方向移動,則最終也可能在一次競爭中勝利;
人工神經網路還有反饋網路如Hopfield網路,它的神經元的信號傳遞方向是雙向的,並且引入一個能量函數,通過神經元之間不斷地相互影響,能量函數值不斷下降,最後能給出一個能量比較低的解。這個思想和模擬退火差不多。
人工神經網路應用到演算法上時,其正確率和速度與軟體的實現聯系不大,關鍵的是它自身的不斷學習。這種思想已經和馮·諾依曼模型很不一樣。 粒子群優化演算法(PSO)是一種進化計算技術(evolutionary computation),1995 年由Eberhart 博士和kennedy 博士提出,源於對鳥群捕食的行為研究 。該演算法最初是受到飛鳥集群活動的規律性啟發,進而利用群體智能建立的一個簡化模型。粒子群演算法在對動物集群活動行為觀察基礎上,利用群體中的個體對信息的共享使整個群體的運動在問題求解空間中產生從無序到有序的演化過程,從而獲得最優解。
PSO同遺傳演算法類似,是一種基於迭代的優化演算法。系統初始化為一組隨機解,通過迭代搜尋最優值。但是它沒有遺傳演算法用的交叉(crossover)以及變異(mutation),而是粒子在解空間追隨最優的粒子進行搜索。同遺傳演算法比較,PSO的優勢在於簡單容易實現並且沒有許多參數需要調整。目前已廣泛應用於函數優化,神經網路訓練,模糊系統控制以及其他遺傳演算法的應用領域。
PSO模擬鳥群的捕食行為。設想這樣一個場景:一群鳥在隨機搜索食物。在這個區域里只有一塊食物。所有的鳥都不知道食物在那裡。但是他們知道當前的位置離食物還有多遠。那麼找到食物的最優策略是什麼呢。最簡單有效的就是搜尋目前離食物最近的鳥的周圍區域。
PSO從這種模型中得到啟示並用於解決優化問題。PSO中,每個優化問題的解都是搜索空間中的一隻鳥。我們稱之為「粒子」。所有的粒子都有一個由被優化的函數決定的適應值(fitness value),每個粒子還有一個速度決定他們飛翔的方向和距離。然後粒子們就追隨當前的最優粒子在解空間中搜索。
PSO 初始化為一群隨機粒子(隨機解)。然後通過迭代找到最優解。在每一次迭代中,粒子通過跟蹤兩個極值來更新自己。第一個就是粒子本身所找到的最優解,這個解叫做個體極值pBest。另一個極值是整個種群目前找到的最優解,這個極值是全局極值gBest。另外也可以不用整個種群而只是用其中一部分作為粒子的鄰居,那麼在所有鄰居中的極值就是局部極值。 模擬退火,遺傳演算法,禁忌搜索,神經網路在解決全局最優解的問題上有著獨到的優點,並且,它們有一個共同的特點:都是模擬了自然過程。模擬退火思路源於物理學中固體物質的退火過程,遺傳演算法借鑒了自然界優勝劣汰的進化思想,禁忌搜索模擬了人類有記憶過程的智力過程,神經網路更是直接模擬了人腦。
它們之間的聯系也非常緊密,比如模擬退火和遺傳演算法為神經網路提供更優良的學習演算法提供了思路。把它們有機地綜合在一起,取長補短,性能將更加優良。
這幾種智能演算法有別於一般的按照圖靈機進行精確計算的程序,尤其是人工神經網路,是對計算機模型的一種新的詮釋,跳出了馮·諾依曼機的圈子,按照這種思想來設計的計算機有著廣闊的發展前景

❾ FLDA 是人工智慧演算法么全名中英文是啥啊

應該不是。

人工智慧之機器學習體系匯總

  • 監督學習 Supervised learning

  • Fisher的線性判別 Fisher』s linear discriminant

  • 線性回歸 Linear regression

  • Logistic回歸 Logistic regression

  • 多項Logistic回歸 Multinomial logistic regression

  • 樸素貝葉斯分類器 Naive Bayes classifier

  • 感知 Perceptron

  • 支持向量機 Support vector machine

  • 分類和回歸樹(CART) Classification and regression tree (CART)

  • 迭代Dichotomiser 3(ID3) Iterative Dichotomiser 3(ID3)

  • C4.5演算法 C4.5 algorithm

  • C5.0演算法 C5.0 algorithm

  • 卡方自動交互檢測(CHAID) Chi-squared Automatic Interaction Detection(CHAID)

  • 決策殘端 Decision stump

  • ID3演算法 ID3 algorithm

  • 隨機森林 Random forest

  • SLIQ

  • 樸素貝葉斯 Naive Bayes

  • 高斯貝葉斯 Gaussian Naive Bayes

  • 多項樸素貝葉斯 Multinomial Naive Bayes

  • 平均一依賴性評估(AODE) Averaged One-Dependence Estimators(AODE)

  • 貝葉斯信念網路(BNN) Bayesian Belief Network(BBN)

  • 貝葉斯網路(BN) Bayesian Network(BN)

  • 自動編碼器 Autoencoder

  • 反向傳播 Backpropagation

  • 玻爾茲曼機 Boltzmann machine

  • 卷積神經網路 Convolutional neural network

  • Hopfield網路 Hopfield network

  • 多層感知器 Multilayer perceptron

  • 徑向基函數網路(RBFN) Radial basis function network(RBFN)

  • 受限玻爾茲曼機 Restricted Boltzmann machine

  • 回歸神經網路(RNN) Recurrent neural network(RNN)

  • 自組織映射(SOM) Self-organizing map(SOM)

  • 尖峰神經網路 Spiking neural network

  • 人工神經網路 Artificial neural network

  • 貝葉斯 Bayesian

  • 決策樹 Decision Tree

  • 線性分類 Linear classifier

  • 無監督學習 Unsupervised learning

  • k-最近鄰演算法(K-NN) k-nearest neighbors classification(K-NN)

  • 局部異常因子 Local outlier factor

  • BIRCH

  • DBSCAN

  • 期望最大化(EM) Expectation-maximization(EM)

  • 模糊聚類 Fuzzy clustering

  • K-means演算法 K-means algorithm

  • k-均值聚類 K-means clustering

  • k-位數 K-medians

  • 平均移 Mean-shift

  • OPTICS演算法 OPTICS algorithm

  • 單連鎖聚類 Single-linkage clustering

  • 概念聚類 Conceptual clustering

  • 先驗演算法 Apriori algorithm

  • Eclat演算法 Eclat algorithm

  • FP-growth演算法 FP-growth algorithm

  • 對抗生成網路

  • 前饋神經網路 Feedforward neurral network

  • 邏輯學習機 Logic learning machine

  • 自組織映射 Self-organizing map

  • 極端學習機 Extreme learning machine

  • 人工神經網路 Artificial neural network

  • 關聯規則學習 Association rule learning

  • 分層聚類 Hierarchical clustering

  • 聚類分析 Cluster analysis

  • 異常檢測 Anomaly detection

  • 半監督學習 Semi-supervised learning

  • 生成模型 Generative models

  • 低密度分離 Low-density separation

  • 基於圖形的方法 Graph-based methods

  • 聯合訓練 Co-training

  • 強化學習 Reinforcement learning

  • 時間差分學習 Temporal difference learning

  • Q學習 Q-learning

  • 學習自動 Learning Automata

  • 狀態-行動-回饋-狀態-行動(SARSA) State-Action-Reward-State-Action(SARSA)

  • 深度學習 Deep learning

  • 深度信念網路 Deep belief machines

  • 深度卷積神經網路 Deep Convolutional neural networks

  • 深度遞歸神經網路 Deep Recurrent neural networks

  • 分層時間記憶 Hierarchical temporal memory

  • 深度玻爾茲曼機(DBM) Deep Boltzmann Machine(DBM)

  • 堆疊自動編碼器 Stacked Boltzmann Machine

  • 生成式對抗網路 Generative adversarial networks

  • 遷移學習 Transfer learning

  • 傳遞式遷移學習 Transitive Transfer Learning

  • 其他

  • 主成分分析(PCA) Principal component analysis(PCA)

  • 主成分回歸(PCR) Principal component regression(PCR)

  • 因子分析 Factor analysis

  • Bootstrap aggregating (Bagging)

  • AdaBoost

  • 梯度提升機(GBM) Gradient boosting machine(GBM)

  • 梯度提升決策樹(GBRT) Gradient boosted decision tree(GBRT)

  • 集成學習演算法

  • 降維

熱點內容
python實用代碼 發布:2025-05-13 22:19:41 瀏覽:842
dede資料庫的配置文件 發布:2025-05-13 22:19:08 瀏覽:966
給字元加密 發布:2025-05-13 22:12:32 瀏覽:972
資料庫系統實現答案 發布:2025-05-13 22:11:57 瀏覽:140
哪個軟體可以共存安卓 發布:2025-05-13 22:10:15 瀏覽:552
上傳宦妃天下野泉肉肉 發布:2025-05-13 22:10:10 瀏覽:408
洗眼睛解壓 發布:2025-05-13 21:58:28 瀏覽:272
c存儲指針 發布:2025-05-13 21:49:04 瀏覽:921
結繩編程軟體 發布:2025-05-13 21:49:03 瀏覽:850
解壓體育館 發布:2025-05-13 21:27:48 瀏覽:263