什麼是演算法的復雜性
㈠ 演算法的空間復雜度是指什麼
空間復雜度(Space Complexity)是對一個演算法在運行過程中臨時佔用存儲空間大小的量度,記做S(n)=O(f(n))。比如直接插入排序的時間復雜度是O(n^2),空間復雜度是O(1) 。而一般的遞歸演算法就要有O(n)的空間復雜度了,因為每次遞歸都要存儲返回信息。一個演算法的優劣主要從演算法的執行時間和所需要佔用的存儲空間兩個方面衡量。
簡介
對於一個演算法,其時間復雜度和空間復雜度往往是相互影響的。當追求一個較好的時間復雜度時,可能會使空間復雜度的性能變差,即可能導致佔用較多的存儲空間;反之,當追求一個較好的空間復雜度時,可能會使時間復雜度的性能變差,即可能導致佔用較長的運行時間。
另外,演算法的所有性能之間都存在著或多或少的相互影響。因此,當設計一個演算法(特別是大型演算法)時,要綜合考慮演算法的各項性能,演算法的使用頻率,演算法處理的數據量的大小,演算法描述語言的特性,演算法運行的機器系統環境等各方面因素,才能夠設計出比較好的演算法。演算法的時間復雜度和空間復雜度合稱為演算法的復雜度。
㈡ 什麼是演算法復雜度
演算法分析
同一問題可用不同演算法解決,而一個演算法的質量優劣將影響到演算法乃至程序的效率。演算法分析的目的在於選擇合適演算法和改進演算法。一個演算法的評價主要從時間復雜度和空間復雜度來考慮。
1、時間復雜度
(1)時間頻度
一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。
(2)時間復雜度
在剛才提到的時間頻度中,n稱為問題的規模,當n不斷變化時,時間頻度T(n)也會不斷變化。但有時我們想知道它變化時呈現什麼規律。為此,我們引入時間復雜度概念。
一般情況下,演算法中基本操作重復執行的次數是問題規模n的某個函數,用T(n)表示,若有某個輔助函數f(n),使得當n趨近於無窮大時,T(n)/f(n)的極限值為不等於零的常數,則稱f(n)是T(n)的同數量級函數。記作T(n)=O(f(n)),稱O(f(n)) 為演算法的漸進時間復雜度,簡稱時間復雜度。
在各種不同演算法中,若演算法中語句執行次數為一個常數,則時間復雜度為O(1),另外,在時間頻度不相同時,時間復雜度有可能相同,如T(n)=n2+3n+4與T(n)=4n2+2n+1它們的頻度不同,但時間復雜度相同,都為O(n2)。
按數量級遞增排列,常見的時間復雜度有:
常數階O(1),對數階O(log2n),線性階O(n),
線性對數階O(nlog2n),平方階O(n2),立方階O(n3),...,
k次方階O(nk),指數階O(2n)。隨著問題規模n的不斷增大,上述時間復雜度不斷增大,演算法的執行效率越低。
2、空間復雜度
與時間復雜度類似,空間復雜度是指演算法在計算機內執行時所需存儲空間的度量。記作:
S(n)=O(f(n))
我們一般所討論的是除正常佔用內存開銷外的輔助存儲單元規模。討論方法與時間復雜度類似,不再贅述。
㈢ 演算法的時間復雜度是指什麼
就是對演算法執行時所花時間的度量。一般為問題規模的函數。
相關介紹:
計算機科學中,演算法的時間復雜度是一個函數,它定量描述了該演算法的運行時間。這是一個關於代表演算法輸入值的字元串的長度的函數。時間復雜度常用大O符號表述,不包括這個函數的低階項和首項系數。使用這種方式時,時間復雜度可被稱為是漸近的,它考察當輸入值大小趨近無窮時的情況。
演算法復雜度分為時間復雜度和空間復雜度。其作用: 時間復雜度是指執行演算法所需要的計算工作量;而空間復雜度是指執行這個演算法所需要的內存空間。演算法的復雜性體現在運行該演算法時的計算機所需資源的多少上,計算機資源最重要的是時間和空間資源,因此復雜度分為時間和空間復雜度。
一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。
並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。演算法的時間復雜度是指執行演算法所需要的計算工作量。
㈣ 演算法的時間復雜度是指什麼
時間復雜性,又稱時間復雜度,演算法的時間復雜度是一個函數,它定性描述該演算法的運行時間。
這是一個代表演算法輸入值的字元串的長度的函數。時間復雜度常用大O符號表述,不包括這個函數的低階項和首項系數。使用這種方式時,時間復雜度可被稱為是漸進的,亦即考察輸入值大小趨近無窮時的情況。
相關介紹:
時間復雜度是同一問題可用不同演算法解決,而一個演算法的質量優劣將影響到演算法乃至程序的效率。演算法分析的目的在於選擇合適演算法和改進演算法。
空間復雜度是對一個演算法在運行過程中臨時佔用存儲空間大小的量度,記做S(n)=O(f(n))。比如直接插入排序的時間復雜度是O(n^2),空間復雜度是O(1) 。而一般的遞歸演算法就要有O(n)的空間復雜度了,因為每次遞歸都要存儲返回信息。一個演算法的優劣主要從演算法的執行時間和所需要佔用的存儲空間兩個方面衡量。
演算法的復雜性體現在運行該演算法時的計算機所需資源的多少上,計算機資源最重要的是時間和空間(即寄存器)資源,因此復雜度分為時間和空間復雜度。
㈤ 名詞解釋——演算法的復雜性
演算法的復雜性是演算法效率的度量,是評價演算法優劣的重要依據。一個演算法的復雜性的高低體現在運行該演算法所需要的計算機資源的多少上面,所需的資源越多,我們就說該演算法的復雜性越高;反之,所需的資源越低,則該演算法的復雜性越低。
㈥ 計算復雜性包括什麼
計算復雜性理論(Computational complexity theory)是理論計算機科學和數學的一個分支,它致力於將可計算問題根據它們本身的復雜性分類,以及將這些類別聯系起來。一個可計算問題被認為是一個原則上可以用計算機解決的問題,亦即這個問題可以用一系列機械的數學步驟解決,例如演算法。 如果一個問題的求解需要相當多的資源(無論用什麼演算法),則被認為是難解的。計算復雜性理論通過引入數學計算模型來研究這些問題以及定量計算解決問題所需的資源(時間和空間),從而將資源的確定方法正式化了。其他復雜性測度同樣被運用,比如通信量(應用於通信復雜性),電路中門的數量(應用於電路復雜性)以及中央處理器的數量(應用於並行計算)。計算復雜性理論的一個作用就是確定一個能或不能被計算機求解的問題的所具有的實際限制。 在理論計算機科學領域,與此相關的概念有演算法分析和可計算性理論。兩者之間一個關鍵的區別是前者致力於分析用一個確定的演算法來求解一個問題所需的資源量,而後者則是在更廣泛意義上研究用所有可能的演算法來解決相同問題。更精確地說,它嘗試將問題分成能或不能在現有的適當受限的資源條件下解決這兩類。相應地,在現有資源條件下的限制正是區分計算復雜性理論和可計算性理論的一個重要指標:後者關心的是何種問題原則上可以用演算法解決。
簡介
計算復雜性理論所研究的資源中最常見的是時間(要通過多少步演算才能解決問題)和空間(在解決問題時需要多少內存)。其他資源亦可考慮,例如在並行計算中,需要多少並行處理器才能解決問題。
時間復雜度是指在計算機科學與工程領域完成一個演算法所需要的時間,是衡量一個演算法優劣的重要參數。時間復雜度越小,說明該演算法效率越高,則該演算法越有價值。
空間復雜度是指計算機科學領域完成一個演算法所需要佔用的存儲空間,一般是輸入參數的函數。它是演算法優劣的重要度量指標,一般來說,空間復雜度越小,演算法越好。我們假設有一個圖靈機來解決某一類語言的某一問題,設有個字(word)屬於這個問題,把放入這個圖靈機的輸入端,這個圖靈機為解決此問題所需要的工作帶格子數總和稱為空間。
復雜度理論和可計算性理論不同,可計算性理論的重心在於問題能否解決,不管需要多少資源。而復雜性理論作為計算理論的分支,某種程度上被認為和演算法理論是一種「矛」與「盾」的關系,即演算法理論專注於設計有效的演算法,而復雜性理論專注於理解為什麼對於某類問題,不存在有效的演算法
㈦ 演算法復雜度是什麼概念
看下數據結構,簡單解釋下:
演算法復雜度包括時間復雜度和空間復雜度。
時間復雜度就是執行演算法所需要的時間(執行多少次賦值、比較、判斷等操作),空間復雜度就是執行該演算法需要消耗多少存儲空間。
2者都是越低越好,但往往不能兼顧,需要找到時間和空間復雜度的平衡點。
㈧ 演算法的空間復雜度指的是什麼
1、簡單來說:演算法的空間復雜度指的是佔用內存,cpu等計算機資源的程度。
2、具體點來解釋就是:空間復雜度(Space Complexity)是對一個演算法在運行過程中臨時佔用存儲空間大小的量度,記做S(n)=O(f(n))。比如直接插入排序的時間復雜度是O(n^2),空間復雜度是O(1) 。
而一般的遞歸演算法就要有O(n)的空間復雜度了,因為每次遞歸都要存儲返回信息。
一個演算法的優劣主要從演算法的執行時間和所需要佔用的存儲空間兩個方面衡量。
㈨ 演算法的復雜性分析包括哪些內容
在演算法的復雜性表示中,O記號表示復雜度的上限。
即:O(g(n)) =
單向鏈表沒有指向前節點的指針,必須從頭指針開始遍歷到p的前節點,最壞的情況為p指向的是鏈表的尾節點,應此為O(n)。
㈩ 演算法時間復雜度指的是什麼
時間復雜性,又稱時間復雜度,演算法的時間復雜度是一個函數,它定性描述該演算法的運行時間。這是一個代表演算法輸入值的字元串的長度的函數。時間復雜度常用大O符號表述,不包括這個函數的低階項和首項系數。使用這種方式時,時間復雜度可被稱為是漸進的,亦即考察輸入值大小趨近無窮時的情況。
空間復雜性介紹
空間復雜性是指計算所需的存儲單元數量。隸屬於計算復雜性(計算復雜性由空間復雜性和時間復雜性兩部分組成)。演算法的復雜性是演算法運行所需要的計算機資源的量,需要時間資源量稱為時間復雜性,需要空間資源的量成為空間復雜性。
一個演算法的空間復雜度S(n)定義為該演算法所耗費的存儲空間,它也是問題規模n的函數。漸近空間復雜度也常常簡稱為空間復雜度。演算法的時間復雜度和空間復雜度合稱為演算法的復雜度。