當前位置:首頁 » 操作系統 » cc演算法動態規劃

cc演算法動態規劃

發布時間: 2022-11-28 22:35:49

㈠ 動態規劃演算法的基本思想

動態規劃與其它演算法相比,大大減少了計算量,豐富了計算結果,不僅求出了當前狀態到目標狀態的最優值,而且同時求出了到中間狀態的最優值,這對於很多實際問題來說是很有用的。動態規劃相比一般演算法也存在一定缺點:空間占據過多,但對於空間需求量不大的題目來說,動態規劃無疑是最佳方法!

動態規劃與其它演算法相比,大大減少了計算量,豐富了計算結果,不僅求出了當前狀態到目標狀態的最優值,而且同時求出了到中間狀態的最優值,這對於很多實際問題來說是很有用的。動態規劃相比一般演算法也存在一定缺點:空間占據過多,但對於空間需求量不大的題目來說,動態規劃無疑是最佳方法!

動態規劃演算法和貪婪演算法都是構造最優解的常有方法。動態規劃演算法沒有一個固定的解題模式,技巧性很強。

動態規劃是運籌學的一個分支,是求解決策過程最優化的過程。20世紀50年代初,美國數學家貝爾曼等人在研究多階段決策過程的優化問題時,提出了著名的最優化原理,從而創立了動態規劃。

㈡ C++演算法 動態規劃 最短路徑問題

d[i][j][k]表示第i列 左邊的第j個到右邊的第k個的距離(第i個和第k個均表示圖中這一列的第i,k個,不是左邊第j個指向的第k個),d[2][2][2]就表示B2到C2的距離就是8,d[2][2][4]表示B2到C4為4
望採納

㈢ c++動態規劃是什麼

所謂動態規劃:把多階段過程轉化為一系列單階段問題,利用各階段之間的關系,逐個求解。動態規劃演算法通常用於求解具有某種最優性質的問題。在這類問題中,可能會有許多可行解。每一個解都對應於一個值,我們希望找到具有最優值的解。動態規劃演算法與分治法類似,其基本思想也是將待求解問題分解成若干個子問題,先求解子問題,然後從這些子問題的解得到原問題的解。與分治法不同的是,適合於用動態規劃求解的問題,經分解得到子問題往往不是互相獨立的。若用分治法來解這類問題,則分解得到的子問題數目太多,有些子問題被重復計算了很多次。如果我們能夠保存已解決的子問題的答案,而在需要時再找出已求得的答案,這樣就可以避免大量的重復計算,節省時間。我們可以用一個表來記錄所有已解的子問題的答案。不管該子問題以後是否被用到,只要它被計算過,就將其結果填入表中。這就是動態規劃法的基本思路。

㈣ 什麼是動態規劃演算法,常見的動態規劃問題分析與求解

動態規劃中遞推式的求解方法不是動態規劃的本質,本質,是對問題狀態的定義和狀態轉移方程的定義。

㈤ 大數據經典演算法解析(1)一C4.5演算法

姓名:崔升    學號:14020120005

【嵌牛導讀】:

C4.5作為一種經典的處理大數據的演算法,是我們在學習互聯網大數據時不得不去了解的一種常用演算法

【嵌牛鼻子】:經典大數據演算法之C4.5簡單介紹

【嵌牛提問】:C4.5是一種怎麼的演算法,其決策機制靠什麼實現?

【嵌牛正文】:

決策樹模型:

決策樹是一種通過對特徵屬性的分類對樣本進行分類的樹形結構,包括有向邊與三類節點:

根節點(root node),表示第一個特徵屬性,只有出邊沒有入邊;

內部節點(internal node),表示特徵屬性,有一條入邊至少兩條出邊

葉子節點(leaf node),表示類別,只有一條入邊沒有出邊。

上圖給出了(二叉)決策樹的示例。決策樹具有以下特點:

對於二叉決策樹而言,可以看作是if-then規則集合,由決策樹的根節點到葉子節點對應於一條分類規則;

分類規則是 互斥並且完備 的,所謂 互斥 即每一條樣本記錄不會同時匹配上兩條分類規則,所謂 完備 即每條樣本記錄都在決策樹中都能匹配上一條規則。

分類的本質是對特徵空間的劃分,如下圖所示,

決策樹學習:

決策樹學習的本質是從訓練數據集中歸納出一組分類規則[2]。但隨著分裂屬性次序的不同,所得到的決策樹也會不同。如何得到一棵決策樹既對訓練數據有較好的擬合,又對未知數據有很好的預測呢?

首先,我們要解決兩個問題:

如何選擇較優的特徵屬性進行分裂?每一次特徵屬性的分裂,相當於對訓練數據集進行再劃分,對應於一次決策樹的生長。ID3演算法定義了目標函數來進行特徵選擇。

什麼時候應該停止分裂?有兩種自然情況應該停止分裂,一是該節點對應的所有樣本記錄均屬於同一類別,二是該節點對應的所有樣本的特徵屬性值均相等。但除此之外,是不是還應該其他情況停止分裂呢?

2. 決策樹演算法

特徵選擇

特徵選擇指選擇最大化所定義目標函數的特徵。下面給出如下三種特徵(Gender, Car Type, Customer ID)分裂的例子:

圖中有兩類類別(C0, C1),C0: 6是對C0類別的計數。直觀上,應選擇Car Type特徵進行分裂,因為其類別的分布概率具有更大的傾斜程度,類別不確定程度更小。

為了衡量類別分布概率的傾斜程度,定義決策樹節點tt的不純度(impurity),其滿足:不純度越小,則類別的分布概率越傾斜;下面給出不純度的的三種度量:

其中,p(ck|t)p(ck|t)表示對於決策樹節點tt類別ckck的概率。這三種不純度的度量是等價的,在等概率分布是達到最大值。

為了判斷分裂前後節點不純度的變化情況,目標函數定義為信息增益(information gain):

I(⋅)I(⋅)對應於決策樹節點的不純度,parentparent表示分裂前的父節點,NN表示父節點所包含的樣本記錄數,aiai表示父節點分裂後的某子節點,N(ai)N(ai)為其計數,nn為分裂後的子節點數。

特別地,ID3演算法選取 熵值 作為不純度I(⋅)I(⋅)的度量,則

cc指父節點對應所有樣本記錄的類別;AA表示選擇的特徵屬性,即aiai的集合。那麼,決策樹學習中的信息增益ΔΔ等價於訓練數據集中 類與特徵的互信息 ,表示由於得知特徵AA的信息訓練數據集cc不確定性減少的程度。

在特徵分裂後,有些子節點的記錄數可能偏少,以至於影響分類結果。為了解決這個問題,CART演算法提出了只進行特徵的二元分裂,即決策樹是一棵二叉樹;C4.5演算法改進分裂目標函數,用信息增益比(information gain ratio)來選擇特徵:

因而,特徵選擇的過程等同於計算每個特徵的信息增益,選擇最大信息增益的特徵進行分裂。此即回答前面所提出的第一個問題(選擇較優特徵)。ID3演算法設定一閾值,當最大信息增益小於閾值時,認為沒有找到有較優分類能力的特徵,沒有往下繼續分裂的必要。根據最大表決原則,將最多計數的類別作為此葉子節點。即回答前面所提出的第二個問題(停止分裂條件)。

決策樹生成:

ID3演算法的核心是根據信息增益最大的准則,遞歸地構造決策樹;演算法流程如下:

如果節點滿足停止分裂條件(所有記錄屬同一類別 or 最大信息增益小於閾值),將其置為葉子節點;

選擇信息增益最大的特徵進行分裂;

重復步驟1-2,直至分類完成。

C4.5演算法流程與ID3相類似,只不過將信息增益改為 信息增益比 。

3. 決策樹剪枝

過擬合

生成的決策樹對訓練數據會有很好的分類效果,卻可能對未知數據的預測不準確,即決策樹模型發生過擬合(overfitting)——訓練誤差(training error)很小、泛化誤差(generalization error,亦可看作為test error)較大。下圖給出訓練誤差、測試誤差(test error)隨決策樹節點數的變化情況:

可以觀察到,當節點數較小時,訓練誤差與測試誤差均較大,即發生了欠擬合(underfitting)。當節點數較大時,訓練誤差較小,測試誤差卻很大,即發生了過擬合。只有當節點數適中是,訓練誤差居中,測試誤差較小;對訓練數據有較好的擬合,同時對未知數據有很好的分類准確率。

發生過擬合的根本原因是分類模型過於復雜,可能的原因如下:

訓練數據集中有噪音樣本點,對訓練數據擬合的同時也對噪音進行擬合,從而影響了分類的效果;

決策樹的葉子節點中缺乏有分類價值的樣本記錄,也就是說此葉子節點應被剪掉。

剪枝策略

為了解決過擬合,C4.5通過剪枝以減少模型的復雜度。[2]中提出一種簡單剪枝策略,通過極小化決策樹的整體損失函數(loss function)或代價函數(cost function)來實現,決策樹TT的損失函數為:

其中,C(T)C(T)表示決策樹的訓練誤差,αα為調節參數,|T||T|為模型的復雜度。當模型越復雜時,訓練的誤差就越小。上述定義的損失正好做了兩者之間的權衡。

如果剪枝後損失函數減少了,即說明這是有效剪枝。具體剪枝演算法可以由動態規劃等來實現。

4. 參考資料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introction to Data Mining .

[2] 李航,《統計學習方法》.

[3] Naren Ramakrishnan, The Top Ten Algorithms in Data Mining.

㈥ 簡述動態規劃演算法的基本範式

動態規劃演算法通常用於求解具有某種最優性質的問題.在這類問題中,可能會有許多可行解.每一個解都對應於一個值,我們希望找到具有最優值的解.動態規劃演算法與分治法類似,其基本思想也是將待求解問題分解成若干個子問題,先求解子問題,然後從這些子問題的解得到原問題的解.與分治法不同的是,適合於用動態規劃求解的問題,經分解得到子問題往往不是互相獨立的.若用分治法來解這類問題,則分解得到的子問題數目太多,有些子問題被重復計算了很多次.如果我們能夠保存已解決的子問題的答案,而在需要時再找出已求得的答案,這樣就可以避免大量的重復計算,節省時間.我們可以用一個表來記錄所有已解的子問題的答案.不管該子問題以後是否被用到,只要它被計算過,就將其結果填入表中.這就是動態規劃法的基本思路.具體的動態規劃演算法多種多樣,但它們具有相同的填表格式.

㈦ 詳解動態規劃演算法

其實你可以這么去想。
能用動態規劃解決的問題,肯定能用搜索解決。
但是搜素時間復雜度太高了,怎麼優化呢?
你想到了記憶化搜索,就是搜完某個解之後把它保存起來,下一次搜到這個地方的時候,調用上一次的搜索出來的結果。這樣就解決了處理重復狀態的問題。
動態規劃之所以速度快是因為解決了重復處理某個狀態的問題。
記憶化搜索是動態規劃的一種實現方法。
搜索到i狀態,首先確定要解決i首先要解決什麼狀態。
那麼那些狀態必然可以轉移給i狀態。
於是你就確定了狀態轉移方程。
然後你需要確定邊界條件。
將邊界條件賦予初值。
此時就可以從前往後枚舉狀態進行狀態轉移拉。

㈧ 動態規劃演算法程序例子

給你導彈攔截的吧:
[問題描述]
某國為了防禦敵國的導彈襲擊,發展出一種導彈攔截系統。但是這種導彈攔截系統有一個缺陷:雖然它的第一發炮彈能夠到達任意的高度,但是以後每一發炮彈都不能高於前一發的高度。某天,雷達捕捉到敵國的導彈來襲。由於該系統還在試用階段,所以只有一套系統,因此有可能不能攔截所有的導彈。
輸入導彈依次飛來的高度(雷達給出的高度數據是不大於30000的正整數,每個數據之間至少有一個空格),計算這套系統最多能攔截多少導彈,如果要攔截所有導彈最少要配備多少套這種導彈攔截系統。

[輸入輸出樣例]
INPUT:
389 207 155 300 299 170 158 65
OUTPUT:
6(最多能攔截的導彈數)
2(要攔截所有導彈最少要配備的系統數)

[問題分析]
我們先解決第一問。一套系統最多能攔多少導彈,跟它最後攔截的導彈高度有很大關系。假設a[i]表示攔截的最後一枚導彈是第i枚時,系統能攔得的最大導彈數。例如,樣例中a[5]=3,表示:如果系統攔截的最後一枚導彈是299的話,最多可以攔截第1枚(389)、第4枚(300)、第5枚(299)三枚導彈。顯然,a[1]~a[8]中的最大值就是第一問的答案。關鍵是怎樣求得a[1]~a[8]。
假設現在已經求得a[1]~a[7](註:在動態規劃中,這樣的假設往往是很必要的),那麼怎樣求a[8]呢?a[8]要求系統攔截的最後1枚導彈必須是65,也就意味著倒數第2枚被攔截的導彈高度必須不小於65,則符合要求的導彈有389、207、155、300、299、170、158。假如最後第二枚導彈是300,則a[8]=a[4]+1;假如倒數第2枚導彈是299,則a[8]=a[5]+1;類似地,a[8]還可能是a[1]+1、a[2]+1、……。當然,我們現在求得是以65結尾的最多導彈數目,因此a[8]要取所有可能值的最大值,即a[8]=max{a[1]+1,a[2]+1,……,a[7]+1}=max{a[i]}+1 (i=1..7)。
類似地,我們可以假設a[1]~a[6]為已知,來求得a[7]。同樣,a[6]、a[5]、a[4]、a[3]、a[2]也是類似求法,而a[1]就是1,即如果系統攔截的最後1枚導彈是389,則只能攔截第1枚。
這樣,求解過程可以用下列式子歸納:
a[1]=1
a[i]=max{a[j]}+1 (i>1,j=1,2,…,i-1,且j同時要滿足:a[j]>=a[i])
最後,只需把a[1]~a[8]中的最大值輸出即可。這就是第一問的解法,這種解題方法就稱為「動態規劃」。

第二問比較有意思。由於它緊接著第一問,所以很容易受前面的影響,多次採用第一問的辦法,然後得出總次數,其實這是不對的。要舉反例並不難,比如長為7的高度序列「7 5 4 1 6 3 2」, 最長不上升序列為「7 5 4 3 2」,用多次求最長不上升序列的結果為3套系統;但其實只要2套,分別擊落「7 5 4 1」與「6 3 2」。所以不能用「動態規劃」做,那麼,正確的做法又是什麼呢?
我們的目標是用最少的系統擊落所有導彈,至於系統之間怎麼分配導彈數目則無關緊要,上面錯誤的想法正是承襲了「一套系統盡量多攔截導彈」的思維定勢,忽視了最優解中各個系統攔截數較為平均的情況,本質上是一種貪心演算法,但貪心的策略不對。如果從每套系統攔截的導彈方面來想行不通的話,我們就應該換一個思路,從攔截某個導彈所選的系統入手。
題目告訴我們,已有系統目前的瞄準高度必須不低於來犯導彈高度,所以,當已有的系統均無法攔截該導彈時,就不得不啟用新系統。如果已有系統中有一個能攔截該導彈,我們是應該繼續使用它,還是另起爐灶呢?事實是:無論用哪套系統,只要攔截了這枚導彈,那麼系統的瞄準高度就等於導彈高度,這一點對舊的或新的系統都適用。而新系統能攔截的導彈高度最高,即新系統的性能優於任意一套已使用的系統。既然如此,我們當然應該選擇已有的系統。如果已有系統中有多個可以攔截該導彈,究竟選哪一個呢?當前瞄準高度較高的系統的「潛力」較大,而瞄準高度較低的系統則不同,它能打下的導彈別的系統也能打下,它夠不到的導彈卻未必是別的系統所夠不到的。所以,當有多個系統供選擇時,要選瞄準高度最低的使用,當然瞄準高度同時也要大於等於來犯導彈高度。
解題時用一個數組sys記下當前已有系統的各個當前瞄準高度,該數組中實際元素的個數就是第二問的解答。

[參考程序]
program noip1999_2;
const max=1000;
var i,j,current,maxlong,minheight,select,tail,total:longint;
height,longest,sys:array [1..max] of longint;
line:string;
begin
write('Input test data:');
readln(line); {輸入用字元串}
i:=1;
total:=0; {飛來的導彈數}
while i<=length(line) do {分解出若干個數,存儲在height數組中}
begin
while (i<=length(line)) and (line[i]=' ') do i:=i+1; {過濾空格}
current:=0; {記錄一個導彈的高度}
while (i<=length(line)) and (line[i]<>' ') do {將一個字元串變成數}
begin
current:=current*10+ord(line[i])-ord('0');
i:=i+1
end;
total:=total+1;
height[total]:=current {存儲在height中}
end;
longest[1]:=1; {以下用動態規劃求第一問}
for i:=2 to total do
begin
maxlong:=1;
for j:=1 to i-1 do
begin
if height[i]<=height[j]
then if longest[j]+1>maxlong
then maxlong:=longest[j]+1;
longest[i]:=maxlong {以第i個導彈為結束,能攔截的最多導彈數}
end;
end;
maxlong:=longest[1];
for i:=2 to total do
if longest[i]>maxlong then maxlong:=longest[i];
writeln(maxlong); {輸出第一問的結果}
sys[1]:=height[1]; {以下求第二問}
tail:=1; {數組下標,最後也就是所需系統數}
for i:=2 to total do
begin
minheight:=maxint;
for j:=1 to tail do {找一套最適合的系統}
if sys[j]>height[i] then
if sys[j]<minheight then
begin minheight:=sys[j]; select:=j end;
if minheight=maxint {開一套新系統}
then begin tail:=tail+1; sys[tail]:=height[i] end
else sys[select]:=height[i]
end;
writeln(tail)
end.

[部分測試數據]
輸入1:300 250 275 252 200 138 245
輸出1:
5
2

輸入2:181 205 471 782 1033 1058 1111
輸出2:
1
7

輸入3:465 978 486 476 324 575 384 278 214 657 218 445 123
輸出3:
7
4

輸入4:236 865 858 565 545 445 455 656 844 735 638 652 659 714 845
輸出4:
6
7
夠詳細的吧

㈨ 演算法分析中動態規劃的四個基本步驟

1、描述優解的結構特徵。

2、遞歸地定義一個最優解的值。

3、自底向上計算一個最優解的值。

4、從已計算的信息中構造一個最優解。

㈩ 迴文序列問題

Example 1:
Input: 121
Output: true
Example 2:
Input: -121
Output: false
Explanation: From left to right, it reads -121. From right to left, it becomes 121-. Therefore it is not a palindrome.

示例 1:
輸入:s = "babad"
輸出:"bab"
解釋:"aba" 同樣是符合題意的答案。
時間復雜度: O(n^2) 兩個for循環
空間復雜度: O(n^2) dp數組的大小

給你一個字元串 s,請你將 s 分割成一些子串,使每個子串都是 迴文串 。返回 s 所有可能的分割方案。
迴文串 是正著讀和反著讀都一樣的字元串。
示例 1:
輸入:s = "aab"
輸出:[["a","a","b"],["aa","b"]]
思路:動態規劃得到每個子串是否為迴文子串,然後從頭開始回溯演算法
時間復雜度:O(N * 2^N)

給你一個字元串 s,請你將 s 分割成一些子串,使每個子串都是迴文。
返回符合要求的 最少分割次數 。
示例 1:
輸入:s = "aab"
輸出:1
解釋:只需一次分割就可將 s 分割成 ["aa","b"] 這樣兩個迴文子串。
思路:

時間復雜度=空間復雜度=O(n^2)

給你一個字元串 s ,請你統計並返回這個字元串中 迴文子串 的數目。
迴文字元串 是正著讀和倒過來讀一樣的字元串。
子字元串 是字元串中的由連續字元組成的一個序列。
具有不同開始位置或結束位置的子串,即使是由相同的字元組成,也會被視作不同的子串。
示例 1:
輸入:s = "abc"
輸出:3
解釋:三個迴文子串: "a", "b", "c"

給你一個字元串 s ,找出其中最長的迴文子序列,並返回該序列的長度。
子序列定義為:不改變剩餘字元順序的情況下,刪除某些字元或者不刪除任何字元形成的一個序列。
示例 1:
輸入:s = "bbbab"
輸出:4
解釋:一個可能的最長迴文子序列為 "bbbb" 。

給定一個字元串 S,找出 S 中不同的非空迴文子序列個數,並返回該數字與 10^9 + 7 的模。
通過從 S 中刪除 0 個或多個字元來獲得子序列。
如果一個字元序列與它反轉後的字元序列一致,那麼它是迴文字元序列。
如果對於某個 i,A_i != B_i,那麼 A_1, A_2, ... 和 B_1, B_2, ... 這兩個字元序列是不同的。
示例 1:
輸入:
S = 'bccb'
輸出:6
解釋:
6 個不同的非空迴文子字元序列分別為:'b', 'c', 'bb', 'cc', 'bcb', 'bccb'。
注意:'bcb' 雖然出現兩次但僅計數一次。

熱點內容
c資料庫壓縮 發布:2025-05-17 11:39:22 瀏覽:960
安卓手機如何連接音響功放 發布:2025-05-17 11:37:48 瀏覽:958
破解exe加密視頻 發布:2025-05-17 11:23:41 瀏覽:976
我的世界伺服器圈太大了怎麼辦 發布:2025-05-17 11:15:21 瀏覽:614
便宜的免費雲伺服器 發布:2025-05-17 11:08:50 瀏覽:777
中國頂級dhcp解析伺服器地址 發布:2025-05-17 11:06:27 瀏覽:34
php轉義html 發布:2025-05-17 11:04:00 瀏覽:567
鋼筋籠加密區規范 發布:2025-05-17 10:59:50 瀏覽:4
我的世界網易手機版主播伺服器房號 發布:2025-05-17 10:40:59 瀏覽:227
豎編譯 發布:2025-05-17 09:56:08 瀏覽:229