資料庫的寫入速度
❶ vb如何提高資料庫寫入速度
資料庫的存儲速度應該先一起寫入很多條到cache再commit一起寫入這樣才能更快。寫cache實際上是在處理磁碟IO的問題,這個也是資料庫性能調整的很重要的一步,簡單一點的就是多文件組,多數據文件(放在多個物理磁碟上,索引也放開)
當然了,資料庫伺服器的硬體還是有很大區別的,最明顯的就是多物理硬碟,而且硬碟夠快Cache夠大,磁碟的單堞容量大,採用單獨的專門的raid控制器……
最後,資料庫的寫入和VB真沒有什麼關系,只和寫入的語句的伺服器的讀寫性能有關系。
❷ mysql 事務寫入速度很慢,有什麼辦法能加速
mysql5的手冊中提到,插入一條記錄,所需的時間比例大概是:
連接:(3)
發送查詢給伺服器:(2)
分析查詢:(2)
插入記錄:(1x記錄大小)
插入索引:(1x索引)
關閉:(1)
並且表的大小以logN(B樹)的速度減慢索引的插入,因此提高插入速度的方法大概有以下7種:
一個insert語句包含多個value值;
使用insert delayed方法;
使用insert into ...values(select ...from),即select的同時執行insert;
使用load data infile;
先禁掉索引,插入後再創建索引;
寫鎖表,插入,解鎖。原因是索引緩存區僅在所有insert語句完成後才刷新到磁碟上一次;
增加key_buffer_size值來擴大鍵高速緩沖區。
❸ sql server讀取寫入速度具體多少m/s
sql server 不同版本與CPU掛鉤。
一般標准版就一個1cpu左右,有錢,可以只運行2個CPU。
比如企業版,買支持1個CPU的版本不限連接數,需要20幾萬。何況買2個CPU.
若用盜版,估計你也就一個CPU了。查你,就掛了。
所以說你還需要考慮SQL SERVER和讀取速度嗎?
最快的速度能達到你復制一個文件的速度。
最慢的速度可以為0。
還有你的網路帶寬,一般公司的普通網路帶寬也就100Mb比特,也就是是最快速度為100/8=12.5M
❹ C# 提高 SQLite 插入數據速度
這種本地小型資料庫的寫入速度受很多因素影響,一種是寫入的方法,另外就是硬體配置(比如硬碟速度),一般來說要一次寫入多條數據,通常要麼一次執行多條語句,要麼放在一個事務中執行,這里討論的很詳細了http://blog.csdn.net/djun100/article/details/12135763
30000條數據個人估計應該在10—30秒內寫完。
❺ 磁碟讀寫和資料庫讀寫哪個效率更高
假定在程序效率和關鍵過程相當且不計入緩存等措施的條件下,讀寫任何類型的數據都沒有直接操作文件來的快,不論MSYQL過程如何,最後都要到磁碟上去讀這個「文件」(記錄存儲區等效),所以當然這一切的前提是只讀 內容,無關任何排序或查找操作。
動態網站一般都是用資料庫來存儲信息,如果信息的及時性要求不高 可以加入緩存來減少頻繁讀寫資料庫。
兩種方式一般都支持,但是繞過操作系統直接操作磁碟的性能較高,而且安全性也較高,資料庫系中的磁碟性能一直都是瓶頸,大型資料庫一般基於unix
系統,當然win下也有,不常用應為win的不可靠性,unix下,用的是裸設備raw設備,就是沒有加工過的設備(unix下的磁碟分區屬於特殊設備,
以文件形式統一管理),由dbms直接管理,不通過操作系統,效率很高,可靠性也高,因為磁碟,cache和內存都是自己管理的,大型資料庫系統
db2,oracal,informix(不太流行了),mssql算不上大型資料庫系統。
1、直接讀文件相比資料庫查詢效率更勝一籌,而且文中還沒算上連接和斷開的時間。
2、一次讀取的內容越大,直接讀文件的優勢會越明
顯(讀文件時間都是小幅增長,這跟文件存儲的連續性和簇大小等有關系),這個結果恰恰跟書生預料的相反,說明MYSQL對更大文件讀取可能又附加了某些操
作(兩次時間增長了近30%),如果只是單純的賦值轉換應該是差異偏小才對。
3、寫文件和INSERT幾乎不用測試就可以推測出,資料庫效率只會更差。
4、很小的配置文件如果不需要使用到資料庫特性,更加適合放到獨立文件里存取,無需單獨創建數據表或記錄,很大的文件比如圖片、音樂等採用文件存儲更為方便,只把路徑或縮略圖等索引信息放到資料庫里更合理一些。
5、PHP上如果只是讀文件,file_get_contents比fopen、fclose更有效率,不包括判斷存在這個函數時間會少3秒左右。
6、fetch_row和fetch_object應該是從fetch_array轉換而來的,書生沒看過PHP的源碼,單從執行上就可以說明fetch_array效率更高,這跟網上的說法似乎相反。
磁碟讀寫與資料庫的關系:
一 磁碟物理結構
(1) 碟片:硬碟的盤體由多個碟片疊在一起構成。
在硬碟出廠時,由硬碟生產商完成了低級格式化(物理格式化),作用是將空白的碟片(Platter)劃分為一個個同圓心、不同半徑的磁軌
(Track),還將磁軌劃分為若干個扇區(Sector),每個扇區可存儲128×2的N次方(N=0.1.2.3)位元組信息,默認每個扇區的大小為
512位元組。通常使用者無需再進行低級格式化操作。
(2) 磁頭:每張碟片的正反兩面各有一個磁頭。
(3) 主軸:所有磁片都由主軸電機帶動旋轉。
(4) 控制集成電路板:復雜!上面還有ROM(內有軟體系統)、Cache等。
二 磁碟如何完成單次IO操作
(1) 尋道
當控制器對磁碟發出一個IO操作命令的時候,磁碟的驅動臂(Actuator
Arm)帶動磁頭(Head)離開著陸區(Landing
Zone,位於內圈沒有數據的區域),移動到要操作的初始數據塊所在的磁軌(Track)的正上方,這個過程被稱為尋道(Seeking),對應消耗的時
間被稱為尋道時間(Seek Time);
(2) 旋轉延遲
找到對應磁軌還不能馬上讀取數據,這時候磁頭要等到磁碟碟片(Platter)旋轉到初始數據塊所在的扇區(Sector)落在讀寫磁頭正下方之後才能開始讀取數據,在這個等待碟片旋轉到可操作扇區的過程中消耗的時間稱為旋轉延時(Rotational Delay);
(3) 數據傳送
接下來就隨著碟片的旋轉,磁頭不斷的讀/寫相應的數據塊,直到完成這次IO所需要操作的全部數據,這個過程稱為數據傳送(Data Transfer),對應的時間稱為傳送時間(Transfer Time)。完成這三個步驟之後單次IO操作也就完成了。
根據磁碟單次IO操作的過程,可以發現:
單次IO時間 = 尋道時間 + 旋轉延遲 + 傳送時間
進而推算IOPS(IO per second)的公式為:
IOPS = 1000ms/單次IO時間
三 磁碟IOPS計算
不同磁碟,它的尋道時間,旋轉延遲,數據傳送所需的時間各是多少?
1. 尋道時間
考慮到被讀寫的數據可能在磁碟的任意一個磁軌,既有可能在磁碟的最內圈(尋道時間最短),也可能在磁碟的最外圈(尋道時間最長),所以在計算中我們只考慮平均尋道時間。
在購買磁碟時,該參數都有標明,目前的SATA/SAS磁碟,按轉速不同,尋道時間不同,不過通常都在10ms以下:
3. 傳送時間2. 旋轉延時
和尋道一樣,當磁頭定位到磁軌之後有可能正好在要讀寫扇區之上,這時候是不需要額外的延時就可以立刻讀寫到數據,但是最壞的情況確實要磁碟旋轉整整
一圈之後磁頭才能讀取到數據,所以這里也考慮的是平均旋轉延時,對於15000rpm的磁碟就是(60s/15000)*(1/2) = 2ms。
(1) 磁碟傳輸速率
磁碟傳輸速率分兩種:內部傳輸速率(Internal Transfer Rate),外部傳輸速率(External Transfer Rate)。
內部傳輸速率(Internal Transfer Rate),是指磁頭與硬碟緩存之間的數據傳輸速率,簡單的說就是硬碟磁頭將數據從碟片上讀取出來,然後存儲在緩存內的速度。
理想的內部傳輸速率不存在尋道,旋轉延時,就一直在同一個磁軌上讀數據並傳到緩存,顯然這是不可能的,因為單個磁軌的存儲空間是有限的;
實際的內部傳輸速率包含了尋道和旋轉延時,目前家用磁碟,穩定的內部傳輸速率一般在30MB/s到45MB/s之間(伺服器磁碟,應該會更高)。
外部傳輸速率(External Transfer Rate),是指硬碟緩存和系統匯流排之間的數據傳輸速率,也就是計算機通過硬碟介面從緩存中將數據讀出交給相應的硬碟控制器的速率。
硬碟廠商在硬碟參數中,通常也會給出一個最大傳輸速率,比如現在SATA3.0的6Gbit/s,換算一下就是6*1024/8,768MB/s,通常指的是硬碟介面對外的最大傳輸速率,當然實際使用中是達不到這個值的。
這里計算IOPS,保守選擇實際內部傳輸速率,以40M/s為例。
(2) 單次IO操作的大小
有了傳送速率,還要知道單次IO操作的大小(IO Chunk Size),才可以算出單次IO的傳送時間。那麼磁碟單次IO的大小是多少?答案是:不確定。
操作系統為了提高 IO的性能而引入了文件系統緩存(File System Cache),系統會根據請求數據的情況將多個來自IO的請求先放在緩存裡面,然後再一次性的提交給磁碟,也就是說對於資料庫發出的多個8K數據塊的讀操作有可能放在一個磁碟讀IO里就處理了。
還有,有些存儲系統也是提供了緩存(Cache),接收到操作系統的IO請求之後也是會將多個操作系統的 IO請求合並成一個來處理。
不管是操作系統層面的緩存還是磁碟控制器層面的緩存,目的都只有一個,提高數據讀寫的效率。因此每次單獨的IO操作大小都是不一樣的,它主要取決於系統對於數據讀寫效率的判斷。這里以SQL Server資料庫的數據頁大小為例:8K。
(3) 傳送時間
傳送時間 = IO Chunk Size/Internal Transfer Rate = 8k/40M/s = 0.2ms
可以發現:
(3.1) 如果IO Chunk Size大的話,傳送時間會變大,從而導致IOPS變小;
(3.2) 機械磁碟的主要讀寫成本,都花在了定址時間上,即:尋道時間 + 旋轉延遲,也就是磁碟臂的擺動,和磁碟的旋轉延遲。
(3.3) 如果粗略的計算IOPS,可以忽略傳送時間,1000ms/(尋道時間 + 旋轉延遲)即可。
4. IOPS計算示例
以15000rpm為例:
(1) 單次IO時間
單次IO時間 = 尋道時間 + 旋轉延遲 + 傳送時間 = 3ms + 2ms + 0.2 ms = 5.2 ms
(2) IOPS
IOPS = 1000ms/單次IO時間 = 1000ms/5.2ms = 192 (次)
這里計算的是單塊磁碟的隨機訪問IOPS。
考慮一種極端的情況,如果磁碟全部為順序訪問,那麼就可以忽略:尋道時間 + 旋轉延遲 的時長,IOPS的計算公式就變為:IOPS = 1000ms/傳送時間
IOPS = 1000ms/傳送時間= 1000ms/0.2ms = 5000 (次)
顯然這種極端的情況太過理想,畢竟每個磁軌的空間是有限的,尋道時間 + 旋轉延遲 時長確實可以減少,不過是無法完全避免的。
四 資料庫中的磁碟讀寫
1. 隨機訪問和連續訪問
(1) 隨機訪問(Random Access)
指的是本次IO所給出的扇區地址和上次IO給出扇區地址相差比較大,這樣的話磁頭在兩次IO操作之間需要作比較大的移動動作才能重新開始讀/寫數據。
(2) 連續訪問(Sequential Access)
相反的,如果當次IO給出的扇區地址與上次IO結束的扇區地址一致或者是接近的話,那磁頭就能很快的開始這次IO操作,這樣的多個IO操作稱為連續訪問。
(3) 以SQL Server資料庫為例
數據文件,SQL Server統一區上的對象,是以extent(8*8k)為單位進行空間分配的,數據存放是很隨機的,哪個數據頁有空間,就寫在哪裡,除非通過文件組給每個表預分配足夠大的、單獨使用的文件,否則不能保證數據的連續性,通常為隨機訪問。
另外哪怕聚集索引表,也只是邏輯上的連續,並不是物理上。
日誌文件,由於有VLF的存在,日誌的讀寫理論上為連續訪問,但如果日誌文件設置為自動增長,且增量不大,VLF就會很多很小,那麼就也並不是嚴格的連續訪問了。
2. 順序IO和並發IO
(1) 順序IO模式(Queue Mode)
磁碟控制器可能會一次對磁碟組發出一連串的IO命令,如果磁碟組一次只能執行一個IO命令,稱為順序IO;
(2) 並發IO模式(Burst Mode)
當磁碟組能同時執行多個IO命令時,稱為並發IO。並發IO只能發生在由多個磁碟組成的磁碟組上,單塊磁碟只能一次處理一個IO命令。
(3) 以SQL Server資料庫為例
有的時候,盡管磁碟的IOPS(Disk Transfers/sec)還沒有太大,但是發現資料庫出現IO等待,為什麼?通常是因為有了磁碟請求隊列,有過多的IO請求堆積。
磁碟的請求隊列和繁忙程度,通過以下性能計數器查看:
LogicalDisk/Avg.Disk Queue Length
LogicalDisk/Current Disk Queue Length
LogicalDisk/%Disk Time
這種情況下,可以做的是:
(1) 簡化業務邏輯,減少IO請求數;
(2) 同一個實例下,多個資料庫遷移的不同實例下;
(3) 同一個資料庫的日誌,數據文件分離到不同的存儲單元;
(4) 藉助HA策略,做讀寫操作的分離。
3. IOPS和吞吐量(throughput)
(1) IOPS
IOPS即每秒進行讀寫(I/O)操作的次數。在計算傳送時間時,有提到,如果IO Chunk Size大的話,那麼IOPS會變小,假設以100M為單位讀寫數據,那麼IOPS就會很小。
(2) 吞吐量(throughput)
吞吐量指每秒可以讀寫的位元組數。同樣假設以100M為單位讀寫數據,盡管IOPS很小,但是每秒讀寫了N*100M的數據,吞吐量並不小。
(3) 以SQL Server資料庫為例
對於OLTP的系統,經常讀寫小塊數據,多為隨機訪問,用IOPS來衡量讀寫性能;
對於數據倉庫,日誌文件,經常讀寫大塊數據,多為順序訪問,用吞吐量來衡量讀寫性能。
磁碟當前的IOPS,通過以下性能計數器查看:
LogicalDisk/Disk Transfers/sec
LogicalDisk/Disk Reads/sec
LogicalDisk/Disk Writes/sec
磁碟當前的吞吐量,通過以下性能計數器查看:
LogicalDisk/Disk Bytes/sec
LogicalDisk/Disk Read Bytes/sec
LogicalDisk/Disk Write Bytes/sec
❻ 如何優化mysql寫入速
單機MySQL資料庫的優化
一、伺服器硬體對MySQL性能的影響
①磁碟尋道能力 (磁碟I/O),我們現在上的都是SAS15000轉的硬碟。MySQL每秒鍾都在進行大量、復雜的查詢操作,對磁碟的讀寫量可想而知。所以,通常認為磁 盤I/O是制約MySQL性能的最大因素之一,對於日均訪 問量在100萬PV以上的Discuz!論壇,由於磁碟I/O的制約,MySQL的性能會非常低下!解決這一制約因素可以考慮以下幾種解決方案: 使用RAID1+0磁碟陣列,注意不要嘗試使用RAID-5,MySQL在RAID-5磁碟陣列上的效率不會像你期待的那樣快。
②CPU 對於MySQL應用,推薦使用DELL R710,E5620 @2.40GHz(4 core)* 2 ,我現在比較喜歡DELL R710,也在用其作Linuxakg 虛擬化應用;
③物理內存對於一台使用MySQL的Database Server來說,伺服器內存建議不要小於2GB,推薦使用4GB以上的物理內存,不過內存對於現在的伺服器而言可以說是一個可以忽略的問題,工作中遇到高端伺服器基本上內存都超過了32G。
我們工作中用得比較多的資料庫伺服器是HP DL580G5和DELL R710,穩定性和性能都不錯;特別是DELL R710,我發現許多同行都是採用它作資料庫的伺服器,所以重點推薦下。
二、MySQL的線上安裝我建議採取編譯安裝的方法,這樣性能上有較大提升,伺服器系統我建議用64bit的Centos5.5,源碼包的編譯參數會默 認以Debgu模式生成二進制代碼,而Debug模式給MySQL帶來的性能損失是比較大的,所以當我們編譯准備安裝的產品代碼時,一定不要忘記使用「— without-debug」參數禁用Debug模式。而如果把—with-mysqld-ldflags和—with-client-ldflags二 個編譯參數設置為—all-static的話,可以告訴編譯器以靜態方式編譯和編譯結果代碼得到最高的性能。使用靜態編譯和使用動態編譯的代碼相比,性能 差距可能會達到5%至10%之多。我參考了簡朝陽先生的編譯參數,特列如下,供大家參考
./configure –prefix=/usr/local/mysql –without-debug –without-bench –enable-thread-safe-client –enable-assembler –enable-profiling –with-mysqld-ldflags=-all-static –with-client-ldflags=-all-static –with-charset=latin1 –with-extra-charset=utf8,gbk –with-innodb –with-csv-storage-engine –with-federated-storage-engine –with-mysqld-user=mysql –without-我是怎麼了ded-server –with-server-suffix=-community –with-unix-socket-path=/usr/local/mysql/sock/mysql.sock
三、MySQL自身因素當解決了上述伺服器硬體制約因素後,讓我們看看MySQL自身的優化是如何操作的。對 MySQL自身的優化主要是對其配置文件my.cnf中的各項參數進行優化調整。下面介紹一些對性能影響較大的參數。
下面,根據以上硬體配置結合一份已經優化好的my.cnf進行說明:
#vim /etc/my.cnf
以下只列出my.cnf文件中[mysqld]段落中的內容,其他段落內容對MySQL運行性能影響甚微,因而姑且忽略。
[mysqld]
port = 3306
serverid = 1
socket = /tmp/mysql.sock
skip-locking
#避免MySQL的外部鎖定,減少出錯幾率增強穩定性。
skip-name-resolve
#禁止MySQL對外部連接進行DNS解析,使用這一選項可以消除MySQL進行DNS解析的時間。但需要注意,如果開啟該選項,則所有遠程主機連接授權都要使用IP地址方式,否則MySQL將無法正常處理連接請求!
back_log = 384
#back_log參數的值指出在MySQL暫時停止響應新請求之前的短時間內多少個請求可以被存在堆棧中。 如果系統在一個短時間內有很多連接,則需要增大該參數的值,該參數值指定到來的TCP/IP連接的偵聽隊列的大小。不同的操作系統在這個隊列大小上有它自 己的限制。 試圖設定back_log高於你的操作系統的限制將是無效的。默認值為50。對於Linux系統推薦設置為小於512的整數。
key_buffer_size = 384M
#key_buffer_size指定用於索引的緩沖區大小,增加它可得到更好的索引處理性能。對於內存在4GB左右的伺服器該參數可設置為256M或384M。注意:該參數值設置的過大反而會是伺服器整體效率降低!
max_allowed_packet = 4M
thread_stack = 256K
table_cache = 614K
sort_buffer_size = 6M
#查詢排序時所能使用的緩沖區大小。注意:該參數對應的分配內存是每連接獨占,如果有100個連接,那麼實際分配的總共排序緩沖區大小為100 × 6 = 600MB。所以,對於內存在4GB左右的伺服器推薦設置為6-8M。
read_buffer_size = 4M
#讀查詢操作所能使用的緩沖區大小。和sort_buffer_size一樣,該參數對應的分配內存也是每連接獨享。
join_buffer_size = 8M
#聯合查詢操作所能使用的緩沖區大小,和sort_buffer_size一樣,該參數對應的分配內存也是每連接獨享。
myisam_sort_buffer_size = 64M
table_cache = 512
thread_cache_size = 64
query_cache_size = 64M
#指定MySQL查詢緩沖區的大小。可以通過在MySQL控制台觀察,如果Qcache_lowmem_prunes的值非常大,則表明經常出現緩沖不 夠 的情況;如果Qcache_hits的值非常大,則表明查詢緩沖使用非常頻繁,如果該值較小反而會影響效率,那麼可以考慮不用查詢緩 沖;Qcache_free_blocks,如果該值非常大,則表明緩沖區中碎片很多。
tmp_table_size = 256M
max_connections = 768
#指定MySQL允許的最大連接進程數。如果在訪問論壇時經常出現Too Many Connections的錯誤提 示,則需要增大該參數值。
max_connect_errors = 1000
wait_timeout = 10
#指定一個請求的最大連接時間,對於4GB左右內存的伺服器可以設置為5-10。
thread_concurrency = 8
#該參數取值為伺服器邏輯CPU數量*2,在本例中,伺服器有2顆物理CPU,而每顆物理CPU又支持H.T超線程,所以實際取值為4*2=8;這個目前也是雙四核主流伺服器配置。
skip-networking
#開啟該選項可以徹底關閉MySQL的TCP/IP連接方式,如果WEB伺服器是以遠程連接的方式訪問MySQL資料庫伺服器則不要開啟該選項!否則將無法正常連接!
table_cache=1024
#物理內存越大,設置就越大。默認為2402,調到512-1024最佳
innodb_additional_mem_pool_size=4M
#默認為2M
innodb_flush_log_at_trx_commit=1
#設置為0就是等到innodb_log_buffer_size列隊滿後再統一儲存,默認為1
innodb_log_buffer_size=2M
#默認為1M
innodb_thread_concurrency=8
#你的伺服器CPU有幾個就設置為幾,建議用默認一般為8
key_buffer_size=256M
#默認為218,調到128最佳
tmp_table_size=64M
#默認為16M,調到64-256最掛
read_buffer_size=4M
#默認為64K
read_rnd_buffer_size=16M
#默認為256K
sort_buffer_size=32M
#默認為256K
thread_cache_size=120
#默認為60
query_cache_size=32M
※值得注意的是:
很多情況需要具體情況具體分析
一、如果Key_reads太大,則應該把my.cnf中Key_buffer_size變大,保持Key_reads/Key_read_requests至少1/100以上,越小越好。
二、如果Qcache_lowmem_prunes很大,就要增加Query_cache_size的值。
很多時候我們發現,通過參數設置進行性能優化所帶來的性能提升,可能並不如許多人想像的那樣產生質的飛躍,除非是之前的設置存在嚴重不合理的情況。我們 不能將性能調優完全依託於通過DBA在資料庫上線後進行的參數調整,而應該在系統設計和開發階段就盡可能減少性能問題。
【51CTO獨家特稿】如果單MySQL的優化始終還是頂不住壓力時,這個時候我們就必須考慮MySQL的高可用架構(很多同學也愛說成是MySQL集群)了,目前可行的方案有:
一、MySQL Cluster
優勢:可用性非常高,性能非常好。每份數據至少可在不同主機存一份拷貝,且冗餘數據拷貝實時同步。但它的維護非常復雜,存在部分Bug,目前還不適合比較核心的線上系統,所以這個我不推薦。
二、DRBD磁碟網路鏡像方案
優勢:軟體功能強大,數據可在底層快設備級別跨物理主機鏡像,且可根據性能和可靠性要求配置不同級別的同步。IO操作保持順序,可滿足資料庫對數據一致 性的苛刻要求。但非分布式文件系統環境無法支持鏡像數據同時可見,性能和可靠性兩者相互矛盾,無法適用於性能和可靠性要求都比較苛刻的環境,維護成本高於 MySQL Replication。另外,DRBD也是官方推薦的可用於MySQL高可用方案之一,所以這個大家可根據實際環境來考慮是否部署。
三、MySQL Replication
在實際應用場景中,MySQL Replication是使用最為廣泛的一種提高系統擴展性的設計手段。眾多的MySQL使用者通過Replication功能提升系統的擴展性後,通過 簡單的增加價格低廉的硬體設備成倍 甚至成數量級地提高了原有系統的性能,是廣大MySQL中低端使用者非常喜歡的功能之一,也是許多MySQL使用者選擇MySQL最為重要的原因。
比較常規的MySQL Replication架構也有好幾種,這里分別簡單說明下
MySQL Replication架構一:常規復制架構--Master-slaves,是由一個Master復制到一個或多個Salve的架構模式,主要用於讀壓力大的應用資料庫端廉價擴展解決方案,讀寫分離,Master主要負責寫方面的壓力。
MySQL Replication架構二:級聯復制架構,即Master-Slaves-Slaves,這個也是為了防止Slaves的讀壓力過大,而配置一層二級 Slaves,很容易解決Master端因為附屬slave太多而成為瓶勁的風險。
MySQL Replication架構三:Dual Master與級聯復制結合架構,即Master-Master-Slaves,最大的好處是既可以避免主Master的寫操作受到Slave集群的復制帶來的影響,而且保證了主Master的單點故障。
以上就是比較常見的MySQL replication架構方案,大家可根據自己公司的具體環境來設計 ,Mysql 負載均衡可考慮用LVS或Haproxy來做,高可用HA軟體我推薦Heartbeat。
MySQL Replication的不足:如果Master主機硬體故障無法恢復,則可能造成部分未傳送到slave端的數據丟失。所以大家應該根據自己目前的網路 規劃,選擇自己合理的Mysql架構方案,跟自己的MySQL DBA和程序員多溝涌,多備份(備份我至少會做到本地和異地雙備份),多測試,數據的事是最大的事,出不得半點差錯,切記切記。
❼ sql 如何向資料庫中寫入的速度快
不要一行一行insert,這樣很慢,用事務批量寫入就會快很多
原理:一行行insert數據時,每次insert都相當於一次事務提交,而顯式用一個事務批量提交時,只提交一次即可,速度自然就會快很多
❽ 如何提高mongo的寫入速度
幾個大型資料庫的寫入速度都很快的,性能主要看並發量的吧,比如100w的數據寫入要多少秒,mongodb在數據量大的時候,並發還是杠杠的,比mysql要強,不過mongodb在數據統計上面還是有些缺陷的,沒有mysql好用,這個只是個人觀點,想要更加了解mongodb還需要自己多逛逛官網論壇,多敲敲鍵盤
❾ VBA 按條件篩選資料庫記錄導出Excel(如何加快寫入速度)
你這樣循環查詢是不科學了,上萬記錄會慢死,應該一次性讀出所有數據,然後去填寫:
'建立已經字典,把資料庫內容存入字典
setdaList=CreateObject("Scripting.Dictionary")
rs.Open"selectDA,B1,S1,M1,St1,R1from`A`",conn
DoWhileNotrs.EOF()
daList.Addrs(1),Array(rs(2),rs(3),rs(4),rs(5),rs(6))
rs.MoveNext
Loop
'填寫EXCEL表
fori=2toCells(rows.count,"D").End(xlUp).Row
da=Cells(i,"D")
ifdaList.Exists(da)then
Cells(i,"E").resize(5,1)=daList(da)
else
Cells(i,"E").resize(5,1)=Empty
endif
nexti
❿ ORACLE11 極限寫入速度53MB/S 怎麼提高
無非是 ORACLE中插入出現了IO或者並發沖突的性能瓶頸, 如果你懂ORACLE調優那麼直接看AWR對症下葯即可,不懂的話 請一個ORACLE調優顧問