當前位置:首頁 » 操作系統 » 直方圖匹配演算法

直方圖匹配演算法

發布時間: 2022-12-10 21:09:09

Ⅰ 如何求壓縮後圖像與原始圖像相近程度

圖像相似度計算主要用於對於兩幅圖像之間內容的相似程度進行打分,根據分數的高低來判斷圖像內容的相近程度。

可以用於計算機視覺中的檢測跟蹤中目標位置的獲取,根據已有模板在圖像中找到一個與之最接近的區域。然後一直跟著。已有的一些演算法比如BlobTracking,Meanshift,Camshift,粒子濾波等等也都是需要這方面的理論去支撐。

還有一方面就是基於圖像內容的圖像檢索,也就是通常說的以圖檢圖。比如給你某一個人在海量的圖像資料庫中羅列出與之最匹配的一些圖像,當然這項技術可能也會這樣做,將圖像抽象為幾個特徵值,比如Trace變換,圖像哈希或者Sift特徵向量等等,來根據資料庫中存得這些特徵匹配再返回相應的圖像來提高效率。

下面就一些自己看到過的演算法進行一些演算法原理和效果上的介紹。

(1)直方圖匹配。

比如有圖像A和圖像B,分別計算兩幅圖像的直方圖,HistA,HistB,然後計算兩個直方圖的歸一化相關系數(巴氏距離,直方圖相交距離)等等。

這種思想是基於簡單的數學上的向量之間的差異來進行圖像相似程度的度量,這種方法是目前用的比較多的一種方法,第一,直方圖能夠很好的歸一化,比如通常的256個bin條的。那麼兩幅解析度不同的圖像可以直接通過計算直方圖來計算相似度很方便。而且計算量比較小。

這種方法的缺點:

1、直方圖反映的是圖像像素灰度值的概率分布,比如灰度值為200的像素有多少個,但是對於這些像素原來的位置在直方圖中並沒有體現,所以圖像的骨架,也就是圖像內部到底存在什麼樣的物體,形狀是什麼,每一塊的灰度分布式什麼樣的這些在直方圖信息中是被省略掉得。那麼造成的一個問題就是,比如一個上黑下白的圖像和上白下黑的圖像其直方圖分布是一模一樣的,其相似度為100%。

2、兩幅圖像之間的距離度量,採用的是巴氏距離或者歸一化相關系數,這種用分析數學向量的方法去分析圖像本身就是一個很不好的辦法。

3、就信息量的道理來說,採用一個數值來判斷兩幅圖像的相似程度本身就是一個信息壓縮的過程,那麼兩個256個元素的向量(假定直方圖有256個bin條)的距離用一個數值表示那麼肯定就會存在不準確性。

下面是一個基於直方圖距離的圖像相似度計算的Matlab Demo和實驗結果.
%計算圖像直方圖距離
%巴氏系數計演算法
M=imread('1.jpg');
N=imread('2.jpg');
I=rgb2gray(M);
J=rgb2gray(N);
[Count1,x]=imhist(I);
[Count2,x]=imhist(J);
Sum1=sum(Count1);Sum2=sum(Count2);
Sumup = sqrt(Count1.*Count2);
SumDown = sqrt(Sum1*Sum2);
Sumup = sum(Sumup);
figure(1);
subplot(2,2,1);imshow(I);
subplot(2,2,2);imshow(J);
subplot(2,2,3);imhist(I);
subplot(2,2,4);imhist(J);
HistDist=1-sqrt(1-Sumup/SumDown)

Ⅱ 怎樣用C語言實現數字圖像處理的局部直方圖均衡演算法

1、ctrl+alt+l,自動色階。 2、手動調色階,用黑場和白場吸取色樣。 3、曲線調色。 4、圖像調整,匹配顏色,勾選中和選項。 方法很多的,學會靈活運用喲

Ⅲ 說明直方圖匹配與直方圖均衡兩種處理演算法原理的區別.考慮在什麼情況

首先需要說明的是,如果你說的是一道完整的題目,則這道題目沒有唯一解,因為題目中沒有說明原始圖像的灰度級數(比如原始圖像是16個灰度級的,或者是32個灰度級的,等等)。為了給你提供一個解題思路,現在人為假設原始圖像是16個灰度級的,其它灰度級的解法類似。1、圖像的灰度直方圖求法為:(1)先計算圖像中各個灰度級的出現頻率,用h(i)表示灰度級i的出現頻率,其值等於灰度級出現次數/圖像像素個數:h(0)=2/16h(1)=1/16h(2)=3/16h(3)=2/16h(4)=0/16h(5)=1/16h(6)=4/16h(7)=1/16h(8)=1/16h(9)=1/16h(10)=h(11)=h(12)=h(13)=h(14)=h(15)=0/16。然後以灰度級i為橫軸,出現頻率h(i)為縱軸即可繪制出圖像對應的直方圖。(2)圖像進行直方圖均衡化處理的過程為:先計算累積分布,用r(i)表示灰度級i的累積分布:r(0)=h(0)=2/16r(1)=r(0)+h(1)=2/16+1/16=3/16r(2)=r(1)+h(2)=3/16+3/16=6/16r(3)=r(2)+h(3)=6/16+2/16=8/16r(4)=r(3)+h(4)=8/16+0/16=8/16r(5)=r(4)+h(5)=8/16+1/16=9/16r(6)=r(5)+h(6)=9/16+4/16=13/16r(7)=r(6)+h(7)=13/16+1/16=14/16r(8)=r(7)+h(8)=14/16+1/16=15/16r(9)=r(8)+h(9)=15/16+1/16=16/16=1r(10)=r(11)=r(12)=r(13)=r(14)=r(15)=1將累積分布進行量化(量化時需要用到原始圖像的灰度級數,這也是為什麼前面需要說明的原因),量化後的灰度級用rq(i)表示,量化公式為rq(i)=ROUND(r(i)*15),(說明:量化公式中的15等於原始圖像灰度級數減1),可得:rq(0)=ROUND(r(0)*15)=2rq(1)=ROUND(r(1)*15)=3rq(2)=ROUND(r(2)*15)=6rq(3)=ROUND(r(3)*15)=8rq(4)=ROUND(r(4)*15)=8rq(5)=ROUND(r(5)*15)=8rq(6)=ROUND(r(6)*15)=12rq(7)=ROUND(r(7)*15)=13rq(8)=ROUND(r(8)*15)=14rq(9)=ROUND(r(9)*15)=15rq(10)=ROUND(r(10)*15)=15rq(11)=ROUND(r(11)*15)=15rq(12)=ROUND(r(12)*15)=15rq(13)=ROUND(r(13)*15)=15rq(14)=ROUND(r(14)*15)=15rq(15)=ROUND(r(15)*15)=15因此,原始圖像中的灰度級和均化後圖像中的灰度級之間的對應關系為:0->21->32->63->84->85->86->127->138->149->1510->1511->1512->1513->1514->1515->15將原始圖像中對應的灰度值安裝上述對應關系替換成相應的灰度值,即可得到均化圖像,結果如下:38138612212146128156122(在電腦上直接做的,僅供參考。ROUND(.)表示四捨五入。)

Ⅳ 圖像分割

圖A的按照圖B的直方圖進行規定化也只是近似規定化,就是如何將圖A中個像素值的灰度值變化得到一幅新圖,該圖的灰度值按照圖B直方圖的規律進行分布。這很難得到嚴格遵守圖B的直方圖分布規律。這種逼近有很多種演算法。

這個就可以了:演示其中一張圖
%規定化直方圖
clear all
clc
A=imread('girl.png'); %讀入圖像
A=rgb2gray(A);
imshow(A) %顯示出來
title('輸入圖像')
%繪制直方圖
[m,n]=size(A); %測量圖像尺寸
B=zeros(1,256); %預創建存放灰度出現概率的向量
for k=0:255
B(k+1)=length(find(A==k)); %計算每級灰度出現的概率,將其存入B中相應位置
end
figure,bar(0:255,B,'g'); %繪制直方圖
title('原圖像直方圖')
xlabel('灰度值')
ylabel('出現概率')
axis([0,260,0,0.026])

S1=zeros(1,256);
for i=1:256
for j=1:i
S1(i)=B(j)+S1(i); %計算原灰度圖累計直方圖
end
end

S3=zeros(1,256);
for i=1:150
S3(i+80)=B(i);
end
S4=zeros(1,256);
for i=81:230
S4(i)=B(i)+S3(i);
end
counts=S4;

S2=zeros(1,256);
for i=1:256
for j=1:i
S2(i)=counts(j)+S2(i);
end
end; %"累計"規定化直方圖

%對比直方圖,找到相差最小的灰度級
S=zeros(256,256);
for i=1:256
for j=1:256
S(j,i)=abs(S2(j)-S1(i));
end
end
[Y,T]=min(S);

%確定變換關系,重組直方圖
for j=1:256

H(j)=sum(B(find(T==j)));
end
figure,bar(0:255,H,'g') %顯示規定化後的直方圖
title('規定化後的直方圖')
xlabel('灰度值')
ylabel('出現概率')
axis([0,260,0,0.03])

%顯示規定圖
PA=A;
for i=0:255
PA(find(A==i))=T(i+1); %將各個像素歸一化後的灰度值賦給這個像素
end
figure,imshow(PA) %顯示均衡化後的圖像
title('規定化後圖像')

Ⅳ 圖像的特徵提取都有哪些演算法

常用的圖像特徵有顏色特徵、紋理特徵、形狀特徵、空間關系特徵。

一 顏色特徵

(一)特點:顏色特徵是一種全局特徵,描述了圖像或圖像區域所對應的景物的表面性質。一般顏色特徵是基於像素點的特徵,此時所有屬於圖像或圖像區域的像素都有各自的貢獻。由於顏色對圖像或圖像區域的方向、大小等變化不敏感,所以顏色特徵不能很好地捕捉圖像中對象的局部特徵。另外,僅使用顏色特徵查詢時,如果資料庫很大,常會將許多不需要的圖像也檢索出來。顏色直方圖是最常用的表達顏色特徵的方法,其優點是不受圖像旋轉和平移變化的影響,進一步藉助歸一化還可不受圖像尺度變化的影響,基缺點是沒有表達出顏色空間分布的信息。

(二)常用的特徵提取與匹配方法

(1) 顏色直方圖

其優點在於:它能簡單描述一幅圖像中顏色的全局分布,即不同色彩在整幅圖像中所佔的比例,特別適用於描述那些難以自動分割的圖像和不需要考慮物體空間位置的圖像。其缺點在於:它無法描述圖像中顏色的局部分布及每種色彩所處的空間位置,即無法描述圖像中的某一具體的對象或物體。

最常用的顏色空間:RGB顏色空間、HSV顏色空間。

顏色直方圖特徵匹配方法:直方圖相交法、距離法、中心距法、參考顏色表法、累加顏色直方圖法。

(2) 顏色集

顏色直方圖法是一種全局顏色特徵提取與匹配方法,無法區分局部顏色信息。顏色集是對顏色直方圖的一種近似首先將圖像從 RGB顏色空間轉化成視覺均衡的顏色空間(如 HSV 空間),並將顏色空間量化成若干個柄。然後,用色彩自動分割技術將圖像分為若干區域,每個區域用量化顏色空間的某個顏色分量來索引,從而將圖像表達為一個二進制的顏色索引集。在圖像匹配中,比較不同圖像顏色集之間的距離和色彩區域的空間關系

(3) 顏色矩

這種方法的數學基礎在於:圖像中任何的顏色分布均可以用它的矩來表示。此外,由於顏色分布信息主要集中在低階矩中,因此,僅採用顏色的一階矩(mean)、二階矩(variance)和三階矩(skewness)就足以表達圖像的顏色分布。

(4) 顏色聚合向量

其核心思想是:將屬於直方圖每一個柄的像素分成兩部分,如果該柄內的某些像素所佔據的連續區域的面積大於給定的閾值,則該區域內的像素作為聚合像素,否則作為非聚合像素。

(5) 顏色相關圖

二 紋理特徵

(一)特點:紋理特徵也是一種全局特徵,它也描述了圖像或圖像區域所對應景物的表面性質。但由於紋理只是一種物體表面的特性,並不能完全反映出物體的本質屬性,所以僅僅利用紋理特徵是無法獲得高層次圖像內容的。與顏色特徵不同,紋理特徵不是基於像素點的特徵,它需要在包含多個像素點的區域中進行統計計算。在模式匹配中,這種區域性的特徵具有較大的優越性,不會由於局部的偏差而無法匹配成功。作為一種統計特徵,紋理特徵常具有旋轉不變性,並且對於雜訊有較強的抵抗能力。但是,紋理特徵也有其缺點,一個很明顯的缺點是當圖像的解析度變化的時候,所計算出來的紋理可能會有較大偏差。另外,由於有可能受到光照、反射情況的影響,從2-D圖像中反映出來的紋理不一定是3-D物體表面真實的紋理。

例如,水中的倒影,光滑的金屬面互相反射造成的影響等都會導致紋理的變化。由於這些不是物體本身的特性,因而將紋理信息應用於檢索時,有時這些虛假的紋理會對檢索造成「誤導」。

在檢索具有粗細、疏密等方面較大差別的紋理圖像時,利用紋理特徵是一種有效的方法。但當紋理之間的粗細、疏密等易於分辨的信息之間相差不大的時候,通常的紋理特徵很難准確地反映出人的視覺感覺不同的紋理之間的差別。

(二)常用的特徵提取與匹配方法

紋理特徵描述方法分類

(1)統計方法統計方法的典型代表是一種稱為灰度共生矩陣的紋理特徵分析方法Gotlieb 和 Kreyszig 等人在研究共生矩陣中各種統計特徵基礎上,通過實驗,得出灰度共生矩陣的四個關鍵特徵:能量、慣量、熵和相關性。統計方法中另一種典型方法,則是從圖像的自相關函數(即圖像的能量譜函數)提取紋理特徵,即通過對圖像的能量譜函數的計算,提取紋理的粗細度及方向性等特徵參數

(2)幾何法

所謂幾何法,是建立在紋理基元(基本的紋理元素)理論基礎上的一種紋理特徵分析方法。紋理基元理論認為,復雜的紋理可以由若干簡單的紋理基元以一定的有規律的形式重復排列構成。在幾何法中,比較有影響的演算法有兩種:Voronio 棋盤格特徵法和結構法。

(3)模型法

模型法以圖像的構造模型為基礎,採用模型的參數作為紋理特徵。典型的方法是隨機場模型法,如馬爾可夫(Markov)隨機場(MRF)模型法和 Gibbs 隨機場模型法

(4)信號處理法

紋理特徵的提取與匹配主要有:灰度共生矩陣、Tamura 紋理特徵、自回歸紋理模型、小波變換等。

灰度共生矩陣特徵提取與匹配主要依賴於能量、慣量、熵和相關性四個參數。Tamura 紋理特徵基於人類對紋理的視覺感知心理學研究,提出6種屬性,即:粗糙度、對比度、方向度、線像度、規整度和粗略度。自回歸紋理模型(simultaneous auto-regressive, SAR)是馬爾可夫隨機場(MRF)模型的一種應用實例。

三 形狀特徵

(一)特點:各種基於形狀特徵的檢索方法都可以比較有效地利用圖像中感興趣的目標來進行檢索,但它們也有一些共同的問題,包括:①目前基於形狀的檢索方法還缺乏比較完善的數學模型;②如果目標有變形時檢索結果往往不太可靠;③許多形狀特徵僅描述了目標局部的性質,要全面描述目標常對計算時間和存儲量有較高的要求;④許多形狀特徵所反映的目標形狀信息與人的直觀感覺不完全一致,或者說,特徵空間的相似性與人視覺系統感受到的相似性有差別。另外,從 2-D 圖像中表現的 3-D 物體實際上只是物體在空間某一平面的投影,從 2-D 圖像中反映出來的形狀常不是 3-D 物體真實的形狀,由於視點的變化,可能會產生各種失真。

(二)常用的特徵提取與匹配方法

Ⅰ幾種典型的形狀特徵描述方法

通常情況下,形狀特徵有兩類表示方法,一類是輪廓特徵,另一類是區域特徵。圖像的輪廓特徵主要針對物體的外邊界,而圖像的區域特徵則關繫到整個形狀區域。

幾種典型的形狀特徵描述方法:

(1)邊界特徵法該方法通過對邊界特徵的描述來獲取圖像的形狀參數。其中Hough 變換檢測平行直線方法和邊界方向直方圖方法是經典方法。Hough 變換是利用圖像全局特性而將邊緣像素連接起來組成區域封閉邊界的一種方法,其基本思想是點—線的對偶性;邊界方向直方圖法首先微分圖像求得圖像邊緣,然後,做出關於邊緣大小和方向的直方圖,通常的方法是構造圖像灰度梯度方向矩陣。

(2)傅里葉形狀描述符法

傅里葉形狀描述符(Fourier shape descriptors)基本思想是用物體邊界的傅里葉變換作為形狀描述,利用區域邊界的封閉性和周期性,將二維問題轉化為一維問題。

由邊界點導出三種形狀表達,分別是曲率函數、質心距離、復坐標函數。

(3)幾何參數法

形狀的表達和匹配採用更為簡單的區域特徵描述方法,例如採用有關形狀定量測度(如矩、面積、周長等)的形狀參數法(shape factor)。在 QBIC 系統中,便是利用圓度、偏心率、主軸方向和代數不變矩等幾何參數,進行基於形狀特徵的圖像檢索。

需要說明的是,形狀參數的提取,必須以圖像處理及圖像分割為前提,參數的准確性必然受到分割效果的影響,對分割效果很差的圖像,形狀參數甚至無法提取。

(4)形狀不變矩法

利用目標所佔區域的矩作為形狀描述參數。

(5)其它方法

近年來,在形狀的表示和匹配方面的工作還包括有限元法(Finite Element Method 或 FEM)、旋轉函數(Turning Function)和小波描述符(Wavelet Descriptor)等方法。

Ⅱ 基於小波和相對矩的形狀特徵提取與匹配

該方法先用小波變換模極大值得到多尺度邊緣圖像,然後計算每一尺度的 7個不變矩,再轉化為 10 個相對矩,將所有尺度上的相對矩作為圖像特徵向量,從而統一了區域和封閉、不封閉結構。

四 空間關系特徵

(一)特點:所謂空間關系,是指圖像中分割出來的多個目標之間的相互的空間位置或相對方向關系,這些關系也可分為連接/鄰接關系、交疊/重疊關系和包含/包容關系等。通常空間位置信息可以分為兩類:相對空間位置信息和絕對空間位置信息。前一種關系強調的是目標之間的相對情況,如上下左右關系等,後一種關系強調的是目標之間的距離大小以及方位。顯而易見,由絕對空間位置可推出相對空間位置,但表達相對空間位置信息常比較簡單。

空間關系特徵的使用可加強對圖像內容的描述區分能力,但空間關系特徵常對圖像或目標的旋轉、反轉、尺度變化等比較敏感。另外,實際應用中,僅僅利用空間信息往往是不夠的,不能有效准確地表達場景信息。為了檢索,除使用空間關系特徵外,還需要其它特徵來配合。

(二)常用的特徵提取與匹配方法
提取圖像空間關系特徵可以有兩種方法:一種方法是首先對圖像進行自動分割,劃分出圖像中所包含的對象或顏色區域,然後根據這些區域提取圖像特徵,並建立索引;另一種方法則簡單地將圖像均勻地劃分為若干規則子塊,然後對每個圖像子塊提取特徵,並建立索引。

熱點內容
大華5032錄像機怎麼配置硬碟 發布:2025-07-10 17:19:20 瀏覽:114
c語言條形碼 發布:2025-07-10 17:18:32 瀏覽:895
移動垃圾壓縮設備 發布:2025-07-10 17:17:45 瀏覽:546
超級訪問沈傲君 發布:2025-07-10 17:06:33 瀏覽:692
安卓的手機來電閃光燈在哪裡 發布:2025-07-10 16:49:02 瀏覽:836
androidstudio導入as項目 發布:2025-07-10 16:43:37 瀏覽:538
c語言中編譯和編輯的差別 發布:2025-07-10 16:43:35 瀏覽:486
iphone清除緩存軟體 發布:2025-07-10 16:20:03 瀏覽:680
以下所列的c語言常量中錯誤的是 發布:2025-07-10 16:19:00 瀏覽:852
怎麼給安卓應用重命名 發布:2025-07-10 16:18:01 瀏覽:1001