當前位置:首頁 » 操作系統 » 背包問題貪心演算法代碼

背包問題貪心演算法代碼

發布時間: 2022-12-28 16:25:13

A. 求完全背包問題的代碼(C語言或C++版)或演算法

背包問題小結- []2006-07-28

做到背包問題覺得很有意思,寫寫看看。
完全背包問題可以用貪心演算法。
代碼如下:

program bag1;
const maxn=10;
var
goods:array[1..maxn,1..3] of integer;
s:array[1..maxn] of real;
i,j:integer;
m,n:integer;
y:integer;
x:real;
function max:integer;
var m:real;
i,j:integer;
begin
m:=0;
for i:=1 to n do
if (goods[i,3]=0) and (m max:=j;
end;

procere choose;
var i,j:integer;

begin
while y begin
if y begin
i:=max;
if m>=y+goods[i,1] then begin goods[i,3]:=1;x:=x+goods[i,2];y:=y+goods[i,1];end else
begin
x:=x+(m-y)*s[i];
y:=m;
end;
end;
end;
end;

begin
fillchar(goods,sizeof(goods),0);
assign(input,'b.txt');
reset(input);
readln(m,n);
for j:=1 to n do
read(goods[j,1]);
readln;
for j:=1 to n do
read(goods[j,2]);
for j:=1 to n do
s[j]:=goods[j,2]/goods[j,1];

close(input);
choose;
writeln(x:5:2);
end.
編得不是很好 ^-^ 獻丑了。

我來說說0/1背包問題。
狀態:當前物品n
算符:j=0(當前物品不放入背包) 或 j=1(當前物品放入背包)
這就很好說了,還是把yes函數一改,問題OK了。
代碼如下:

program bag2;
const maxn=10;
var i:integer;
goods:array[1..maxn,1..3] of integer;{原始數據}
s:array[1..maxn] of integer;{當前的狀態}
r:array[1..maxn] of integer;{當前的總質量}
m:integer;{背包容量}
max:integer;{物品個數}
procere try(n:integer);
var j:integer;

{function yes:boolean;
var k:integer;
t:integer;
mn:integer;
begin
mn:=0;
t:=goods[n,3];
goods[n,3]:=j;
for k:=1 to n do
if goods[k,3]=1 then inc(mn,goods[k,1]);
goods[n,3]:=t;
if mn>m then yes:=false else yes:=true;
end;}

begin
if n=max+1 then begin if x for i:=1 to max do s[i]:=goods[i,3]; {保存最優解}end
end else
begin
if r[n-1]>m then exit;{已超過背包總容量}
for j:=1 downto 0 do
begin
if j=1 then r[n]:=r[n-1]+goods[n,1];
if j=0 then r[n]:=r[n]-goods[n,1];
if {yes}r[n]<=m then begin goods[n,3]:=j;try(n+1);goods[n,3]:=0;end
end;
end;
end;

begin
assign(input,'b.txt');
reset(input);
readln(m,max);
for i:=1 to max do
read(goods[i,1]);
readln;
for i:=1 to max do
read(goods[i,2]);
close(input);
try(1);
for i:=1 to 7 do
write(s[i]:3);
writeln;
writeln(x);
end.

用yes 函數要從頭到當前求已裝入背包物品的總質量,時間效率不高。所以我們引入r[n]數組來記錄當前背包總質量(很好用!)注意用r[n-1]>m來做剪枝,以再次提高時間效率。

DC跟我說可以用二進制解此類問題。我覺得很有創意,也說說。比如8個物品,每個物品有0/1兩種狀態所以我們從(00000000)(二進制 )到(11111111)(二進制)循環即可。然後在分離十進制數對應起來即可。但在實際的操作中發現效率比回溯還低,我想有兩方面的原因:1、顯而易見,不可能做剪枝。2、每一次結果都要從1到8求和十效率降低。不過這確實是一種很新穎的演算法。

B. 背包問題——貪心演算法

•貪心演算法的特點是每個階段所作的選擇都是局部最優的,它期望通過所作的局部最優選擇產生出一個全局最優解。

貪心與動態規劃: 與動態規劃不同的是,貪心是 鼠目寸光 ;動態規劃是 統攬全局

–動態規劃:每個階段產生的都是全局最優解

•第i階段的「全局」: 問題空間為(a1, … , ai)

•第i階段的「全局最優解」:問題空間為 (a1, … , ai)時的最優解

–貪心:每個階段產生的都是局部最優解

•第i階段的「局部」:問題空間為按照貪心策略中的優先順序排好序的第i個輸入ai

•第i階段的「局部最優解」: ai

•貪心選擇性質:所求問題的全局最優解可以通過一系列局部最優的選擇(即貪心選擇)來達到。

–這是貪心演算法與動態規劃演算法的主要區別。

•最優子結構性質:當原問題的最優解包含子問題的最優解時,稱此問題具有最優子結構性質。

最優子結構性質是該問題可用動態規劃演算法或貪心演算法求解的關鍵特徵

C. 0-1背包問題的多種解法代碼(動態規劃、貪心法、回溯法、分支限界法)

一.動態規劃求解0-1背包問題
/************************************************************************/
/* 0-1背包問題:
/* 給定n種物品和一個背包
/* 物品i的重量為wi,其價值為vi
/* 背包的容量為c
/* 應如何選擇裝入背包的物品,使得裝入背包中的物品
/* 的總價值最大?
/* 註:在選擇裝入背包的物品時,對物品i只有兩種選擇,
/* 即裝入或不裝入背包。不能將物品i裝入多次,也
/* 不能只裝入部分的物品i。
/*
/* 1. 0-1背包問題的形式化描述:
/* 給定c>0, wi>0, vi>0, 0<=i<=n,要求找到一個n元的
/* 0-1向量(x1, x2, ..., xn), 使得:
/* max sum_{i=1 to n} (vi*xi),且滿足如下約束:
/* (1) sum_{i=1 to n} (wi*xi) <= c
/* (2) xi∈{0, 1}, 1<=i<=n
/*
/* 2. 0-1背包問題的求解
/* 0-1背包問題具有最優子結構性質和子問題重疊性質,適於
/* 採用動態規劃方法求解
/*
/* 2.1 最優子結構性質
/* 設(y1,y2,...,yn)是給定0-1背包問題的一個最優解,則必有
/* 結論,(y2,y3,...,yn)是如下子問題的一個最優解:
/* max sum_{i=2 to n} (vi*xi)
/* (1) sum_{i=2 to n} (wi*xi) <= c - w1*y1
/* (2) xi∈{0, 1}, 2<=i<=n
/* 因為如若不然,則該子問題存在一個最優解(z2,z3,...,zn),
/* 而(y2,y3,...,yn)不是其最優解。那麼有:
/* sum_{i=2 to n} (vi*zi) > sum_{i=2 to n} (vi*yi)
/* 且,w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 進一步有:
/* v1*y1 + sum_{i=2 to n} (vi*zi) > sum_{i=1 to n} (vi*yi)
/* w1*y1 + sum_{i=2 to n} (wi*zi) <= c
/* 這說明:(y1,z2,z3,...zn)是所給0-1背包問題的更優解,那麼
/* 說明(y1,y2,...,yn)不是問題的最優解,與前提矛盾,所以最優
/* 子結構性質成立。
/*
/* 2.2 子問題重疊性質
/* 設所給0-1背包問題的子問題 P(i,j)為:
/* max sum_{k=i to n} (vk*xk)
/* (1) sum_{k=i to n} (wk*xk) <= j
/* (2) xk∈{0, 1}, i<=k<=n
/* 問題P(i,j)是背包容量為j、可選物品為i,i+1,...,n時的子問題
/* 設m(i,j)是子問題P(i,j)的最優值,即最大總價值。則根據最優
/* 子結構性質,可以建立m(i,j)的遞歸式:
/* a. 遞歸初始 m(n,j)
/* //背包容量為j、可選物品只有n,若背包容量j大於物品n的
/* //重量,則直接裝入;否則無法裝入。
/* m(n,j) = vn, j>=wn
/* m(n,j) = 0, 0<=j<wn
/* b. 遞歸式 m(i,j)
/* //背包容量為j、可選物品為i,i+1,...,n
/* //如果背包容量j<wi,則根本裝不進物品i,所以有:
/* m(i,j) = m(i+1,j), 0<=j<wi
/* //如果j>=wi,則在不裝物品i和裝入物品i之間做出選擇
/* 不裝物品i的最優值:m(i+1,j)
/* 裝入物品i的最優值:m(i+1, j-wi) + vi
/* 所以:
/* m(i,j) = max {m(i+1,j), m(i+1, j-wi) + vi}, j>=wi
/*
/************************************************************************/

#define max(a,b) (((a) > (b)) ? (a) : (b))
#define min(a,b) (((a) < (b)) ? (a) : (b))
template <typename Type>
void Knapsack(Type* v, int *w, int c, int n, Type **m)
{
//遞歸初始條件
int jMax = min(w[n] - 1, c);
for (int j=0; j<=jMax; j++) {
m[n][j] = 0;
}

for (j=w[n]; j<=c; j++) {
m[n][j] = v[n];
}

//i從2到n-1,分別對j>=wi和0<=j<wi即使m(i,j)
for (int i=n-1; i>1; i--) {
jMax = min(w[i] - 1, c);
for (int j=0; j<=jMax; j++) {
m[i][j] = m[i+1][j];
}
for (j=w[i]; j<=c; j++) {
m[i][j] = max(m[i+1][j], m[i+1][j-w[i]]+v[i]);
}
}

m[1][c] = m[2][c];
if (c >= w[1]) {
m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);
}

}

template <typename Type>
void TraceBack(Type **m, int *w, int c, int n, int* x)
{
for (int i=1; i<n; i++) {
if(m[i][c] == m[i+1][c]) x[i] = 0;
else {
x[i] = 1;
c -= w[i];
}
}
x[n] = (m[n][c])? 1:0;
}

int main(int argc, char* argv[])
{
int n = 5;
int w[6] = {-1, 2, 2, 6, 5, 4};
int v[6] = {-1, 6, 3, 5, 4, 6};
int c = 10;

int **ppm = new int*[n+1];
for (int i=0; i<n+1; i++) {
ppm[i] = new int[c+1];
}

int x[6];

Knapsack<int>(v, w, c, n, ppm);
TraceBack<int>(ppm, w, c, n, x);

return 0;
}
二.貪心演算法求解0-1背包問題
1.貪心法的基本思路:
——從問題的某一個初始解出發逐步逼近給定的目標,以盡可能快的地求得更好的解。當達到某演算法中的某一步不能再繼續前進時,演算法停止。
該演算法存在問題:
1).不能保證求得的最後解是最佳的;
2).不能用來求最大或最小解問題;
3).只能求滿足某些約束條件的可行解的范圍。

實現該演算法的過程:
從問題的某一初始解出發;
while 能朝給定總目標前進一步 do
求出可行解的一個解元素;
由所有解元素組合成問題的一個可行解;

2.例題分析

1).[背包問題]有一個背包,背包容量是M=150。有7個物品,物品可以分割成任意大小。
要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。

物品 A B C D E F G
重量 35 30 60 50 40 10 25
價值 10 40 30 50 35 40 30

分析:
目標函數: ∑pi最大
約束條件是裝入的物品總重量不超過背包容量:∑wi<=M( M=150)
(1)根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優?
(2)每次挑選所佔空間最小的物品裝入是否能得到最優解?
(3)每次選取單位容量價值最大的物品,成為解本題的策略。

<程序代碼:>(環境:c++)
#include<iostream.h>
#define max 100 //最多物品數
void sort (int n,float a[max],float b[max]) //按價值密度排序
{
int j,h,k;
float t1,t2,t3,c[max];
for(k=1;k<=n;k++)
c[k]=a[k]/b[k];
for(h=1;h<n;h++)
for(j=1;j<=n-h;j++)
if(c[j]<c[j+1])
{t1=a[j];a[j]=a[j+1];a[j+1]=t1;
t2=b[j];b[j]=b[j+1];b[j+1]=t2;
t3=c[j];c[j]=c[j+1];c[j+1]=t3;
}
}
void knapsack(int n,float limitw,float v[max],float w[max],int x[max])
{float c1; //c1為背包剩餘可裝載重量
int i;
sort(n,v,w); //物品按價值密度排序
c1=limitw;
for(i=1;i<=n;i++)
{
if(w[i]>c1)break;
x[i]=1; //x[i]為1時,物品i在解中
c1=c1-w[i];
}
}
void main()
{int n,i,x[max];
float v[max],w[max],totalv=0,totalw=0,limitw;
cout<<"請輸入n和limitw:";
cin>>n >>limitw;
for(i=1;i<=n;i++)
x[i]=0; //物品選擇情況表初始化為0
cout<<"請依次輸入物品的價值:"<<endl;
for(i=1;i<=n;i++)
cin>>v[i];
cout<<endl;
cout<<"請依次輸入物品的重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<endl;
knapsack (n,limitw,v,w,x);
cout<<"the selection is:";
for(i=1;i<=n;i++)
{
cout<<x[i];
if(x[i]==1)
totalw=totalw+w[i];
}
cout<<endl;
cout<<"背包的總重量為:"<<totalw<<endl; //背包所裝載總重量
cout<<"背包的總價值為:"<<totalv<<endl; //背包的總價值
}
三.回溯演算法求解0-1背包問題
1.0-l背包問題是子集選取問題。
一般情況下,0-1背包問題是NP難題。0-1背包
問題的解空間可用子集樹表示。解0-1背包問題的回溯法與裝載問題的回溯法十分類
似。在搜索解空間樹時,只要其左兒子結點是一個可行結點,搜索就進入其左子樹。當
右子樹有可能包含最優解時才進入右子樹搜索。否則將右子樹剪去。設r是當前剩餘
物品價值總和;cp是當前價值;bestp是當前最優價值。當cp+r≤bestp時,可剪去右
子樹。計算右子樹中解的上界的更好方法是將剩餘物品依其單位重量價值排序,然後
依次裝入物品,直至裝不下時,再裝入該物品的一部分而裝滿背包。由此得到的價值是
右子樹中解的上界。
2.解決辦法思路:
為了便於計算上界,可先將物品依其單位重量價值從大到小排序,此後只要順序考
察各物品即可。在實現時,由bound計算當前結點處的上界。在搜索解空間樹時,只要其左兒子節點是一個可行結點,搜索就進入左子樹,在右子樹中有可能包含最優解是才進入右子樹搜索。否則將右子樹剪去。

回溯法是一個既帶有系統性又帶有跳躍性的的搜索演算法。它在包含問題的所有解的解空間樹中,按照深度優先的策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任一結點時,總是先判斷該結點是否肯定不包含問題的解。如果肯定不包含,則跳過對以該結點為根的子樹的系統搜索,逐層向其祖先結點回溯。否則,進入該子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根結點的所有子樹都已被搜索遍才結束。而回溯法在用來求問題的任一解時,只要搜索到問題的一個解就可以結束。這種以深度優先的方式系統地搜索問題的解的演算法稱為回溯法,它適用於解一些組合數較大的問題。
2.演算法框架:
a.問題的解空間:應用回溯法解問題時,首先應明確定義問題的解空間。問題的解空間應到少包含問題的一個(最優)解。
b.回溯法的基本思想:確定了解空間的組織結構後,回溯法就從開始結點(根結點)出發,以深度優先的方式搜索整個解空間。這個開始結點就成為一個活結點,同時也成為當前的擴展結點。在當前的擴展結點處,搜索向縱深方向移至一個新結點。這個新結點就成為一個新的活結點,並成為當前擴展結點。如果在當前的擴展結點處不能再向縱深方向移動,則當前擴展結點就成為死結點。換句話說,這個結點不再是一個活結點。此時,應往回移動(回溯)至最近的一個活結點處,並使這個活結點成為當前的擴展結點。回溯法即以這種工作方式遞歸地在解空間中搜索,直至找到所要求的解或解空間中已沒有活結點時為止。
3.運用回溯法解題通常包含以下三個步驟:
a.針對所給問題,定義問題的解空間;
b.確定易於搜索的解空間結構;
c.以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索;
#include<iostream>

using namespace std;

class Knap
{
friend int Knapsack(int p[],int w[],int c,int n );

public:
void print()
{

for(int m=1;m<=n;m++)
{
cout<<bestx[m]<<" ";
}
cout<<endl;
};

private:
int Bound(int i);
void Backtrack(int i);

int c;//背包容量
int n; //物品數
int *w;//物品重量數組
int *p;//物品價值數組
int cw;//當前重量
int cp;//當前價值
int bestp;//當前最優值
int *bestx;//當前最優解
int *x;//當前解

};

int Knap::Bound(int i)
{
//計算上界
int cleft=c-cw;//剩餘容量
int b=cp;
//以物品單位重量價值遞減序裝入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//裝滿背包
if(i<=n)
b+=p[i]/w[i]*cleft;
return b;
}

void Knap::Backtrack(int i)
{
if(i>n)
{
if(bestp<cp)
{
for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子樹
{
x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子樹
{
x[i]=0;
Backtrack(i+1);
}

}

class Object
{
friend int Knapsack(int p[],int w[],int c,int n);
public:
int operator<=(Object a)const
{
return (d>=a.d);
}

private:
int ID;
float d;
};

int Knapsack(int p[],int w[],int c,int n)
{
//為Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n];
for(i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)
return P;//裝入所有物品
//依物品單位重量排序
float f;
for( i=0;i<n;i++)
for(int j=i;j<n;j++)
{
if(Q[i].d<Q[j].d)
{
f=Q[i].d;
Q[i].d=Q[j].d;
Q[j].d=f;
}

}

Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
K.print();
delete [] Q;
delete [] K.w;
delete [] K.p;
return K.bestp;

}

void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
char k;
cout<<"0-1背包問題——回溯法 "<<endl;
cout<<" by zbqplayer "<<endl;
while(k)
{
cout<<"請輸入背包容量(c):"<<endl;
cin>>c;
cout<<"請輸入物品的個數(n):"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;

cout<<"請輸入物品的價值(p):"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];

cout<<"請輸入物品的重量(w):"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];

cout<<"最優解為(bestx):"<<endl;
cout<<"最優值為(bestp):"<<endl;
cout<<Knapsack(p,w,c,n)<<endl;
cout<<"[s] 重新開始"<<endl;
cout<<"[q] 退出"<<endl;
cin>>k;
}
四.分支限界法求解0-1背包問題
1.問題描述:已知有N個物品和一個可以容納M重量的背包,每種物品I的重量為WEIGHT,一個只能全放入或者不放入,求解如何放入物品,可以使背包里的物品的總效益最大。

2.設計思想與分析:對物品的選取與否構成一棵解樹,左子樹表示不裝入,右表示裝入,通過檢索問題的解樹得出最優解,並用結點上界殺死不符合要求的結點。

#include <iostream.h>

struct good
{
int weight;
int benefit;
int flag;//是否可以裝入標記
};

int number=0;//物品數量
int upbound=0;
int curp=0, curw=0;//當前效益值與重量
int maxweight=0;
good *bag=NULL;

void Init_good()
{
bag=new good [number];

for(int i=0; i<number; i++)
{
cout<<"請輸入第件"<<i+1<<"物品的重量:";
cin>>bag[i].weight;
cout<<"請輸入第件"<<i+1<<"物品的效益:";
cin>>bag[i].benefit;
bag[i].flag=0;//初始標志為不裝入背包
cout<<endl;
}

}

int getbound(int num, int *bound_u)//返回本結點的c限界和u限界
{
for(int w=curw, p=curp; num<number && (w+bag[num].weight)<=maxweight; num++)
{
w=w+bag[num].weight;
p=w+bag[num].benefit;
}

*bound_u=p+bag[num].benefit;
return ( p+bag[num].benefit*((maxweight-w)/bag[num].weight) );
}

void LCbag()
{
int bound_u=0, bound_c=0;//當前結點的c限界和u限界

for(int i=0; i<number; i++)//逐層遍歷解樹決定是否裝入各個物品
{
if( ( bound_c=getbound(i+1, &bound_u) )>upbound )//遍歷左子樹
upbound=bound_u;//更改已有u限界,不更改標志

if( getbound(i, &bound_u)>bound_c )//遍歷右子樹
//若裝入,判斷右子樹的c限界是否大於左子樹根的c限界,是則裝入
{
upbound=bound_u;//更改已有u限界
curp=curp+bag[i].benefit;
curw=curw+bag[i].weight;//從已有重量和效益加上新物品
bag[i].flag=1;//標記為裝入
}
}

}

void Display()
{

cout<<"可以放入背包的物品的編號為:";
for(int i=0; i<number; i++)
if(bag[i].flag>0)
cout<<i+1<<" ";
cout<<endl;
delete []bag;
}

D. 用貪心演算法解決背包問題

用貪心演算法解決背包問題,首先要明白,結果不一定是全局最優的。對於貪心法而言,首先步驟是找到最優度量標准,我這里的演算法採用的最優度量標準是: 收益p/重量w 的值最大者優先放入背包中,所以有演算法如下:void GreedyKnapsack(float * x){ //前置條件:w[i]已按p[i]/w[i]的非增次序排列 float u=m; //u為背包剩餘載重量,初始時為m for(int i=0;i<n;i++) x[i]=0; //對解向量x初始化 for(i=0;i<n;i++){ //按最優度量標准選擇的分量 if(w[i]>u) break; x[i]=1.0; u=u-w[i]; } if(i<n) x[i]=u/w[i];}

E. 貪心演算法解決特殊0-1背包問題

void 0_1_Knapsack(float w[], int n, float c,int x[]) //w[]為每個物品的重量,c為背包容量
{
int i;
for(i=1;i<=n;i++) x[i]=0;
for(i=1;i<=n;i++)
{
if(w[i]>c) break;
x[i]=1;
c-=w[i];
}
}

F. 貪心演算法 部分背包問題

這道題是dp的思想啦,動態規劃

(1)背包問題最優值的結構

動態規劃的逆向思維法的第一步是刻畫一個最優值的結構,如果我們能分析出一個問題的最優值包含其子問題的最優值,問題的這種性質稱為最優子結構。一個問題的最優子結構性質是該問題可以使用動態規劃的顯著特徵。

對一個負重能力為m的背包,如果我們選擇裝入一個第 i 種物品,那麼原背包問題就轉化為負重能力為 m-w[i] 的子背包問題。原背包問題的最優值包含這個子背包問題的最優值。若我們用背包的負重能力來劃分狀態,令狀態變數s[k]表示負重能力為k的背包,那麼s[m]的值只取決於s[k](k≤m)的值。因此背包問題具有最優子結構。

(2)遞歸地定義最優值

動態規劃的逆向思維法的第二步是根據各個子問題的最優值來遞歸地定義原問題的最優值。對背包問題而言,有狀態轉移方程:

/max{s[k-w[i]]+v[i]}(其中1≤i≤n,且k-w[i]≥0)

s[k]= 若k>0且存在1≤i≤n使k-w[i]≥0,

\ 0 否則。

有了計算各個子問題的最優值的遞歸式,我們就可以直接編寫對應的程序。下述的函數knapsack是輸入背包的負重能力k,返回對應的子背包問題的最優值s[k]:

G. C語言 貪心演算法求背包問題

是你的冒泡排序出了問題~

你吧 原來的1-2-3號按照東西的價值重新排列現在的1-2-3對應原來的2-1-3了
所以 你輸出的時候是按 1-2-3輸出的話 就等於第一個是原來的X2 第二個是X1第三個是X3
而且你的冒泡排序用錯了 只比較了 P[0]/K[0]和P[1]/K[1] P[1]/K[1]和P[2]/K[2]
周一我去學校幫你重新改改 我家的機器沒有C++
周一晚上我會上傳答案~我最近正好也要做演算法的作業~
#include <stdio.h>
#include <math.h>
#define N 50

float find(float p[N],float w[N],float x[N] ,float M,int n) /*先放單位價值量大的物體,再考慮小的物體*/
{
int i;
float maxprice;
for (i = 0; i < n; i++)
x[i] = 0;
i = 0;
maxprice=0;
while (i < n && w[i] < M)
{
M=M-w[i];
x[i] =w[i]; /* 表示放入數量 */
maxprice=maxprice+p[i];
x[n-1]=M;
i++;
}
if (i < n &&M> 0)
{
maxprice=maxprice+p[i]*x[i]/w[i];
i++;
}
return maxprice;
}

int main()
{
int n,flag=1;
float temp,M,w[N],p[N],x[N];
int a[N],b[N];
int k,j,l=0;
printf(

H. C語言貪心演算法 背包問題

if(k!=i)
t=T[i];
T[i]=T[k];
T[k]=t;
交換操作的三步要用{}括起來,不然只有t=T[i];是if的執行語句

I. Pascal貪心演算法,求解答!

這道題用貪心不大好吧
記得老師以前說過
這種題用DP
這道題是最簡單的01背包
我給你發個資料
那個,發不了啊,上傳失敗
你給我qq吧
P01: 01背包問題
題目
有N件物品和一個容量為V的背包。第i件物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。

基本思路
這是最基礎的背包問題,特點是:每種物品僅有一件,可以選擇放或不放。

用子問題定義狀態:即f[i][v]表示前i件物品恰放入一個容量為v的背包可以獲得的最大價值。則其狀態轉移方程便是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}。

這個方程非常重要,基本上所有跟背包相關的問題的方程都是由它衍生出來的。所以有必要將它詳細解釋一下:「將前i件物品放入容量為v的背包中」這個子問題,若只考慮第i件物品的策略(放或不放),那麼就可以轉化為一個只牽扯前i-1件物品的問題。如果不放第i件物品,那麼問題就轉化為「前i-1件物品放入容量為v的背包中」;如果放第i件物品,那麼問題就轉化為「前i-1件物品放入剩下的容量為v-c[i]的背包中」,此時能獲得的最大價值就是f [i-1][v-c[i]]再加上通過放入第i件物品獲得的價值w[i]。

注意f[i][v]有意義當且僅當存在一個前i件物品的子集,其費用總和為v。所以按照這個方程遞推完畢後,最終的答案並不一定是f[N] [V],而是f[N][0..V]的最大值。如果將狀態的定義中的「恰」字去掉,在轉移方程中就要再加入一項f[i][v-1],這樣就可以保證f[N] [V]就是最後的答案。至於為什麼這樣就可以,由你自己來體會了。

優化空間復雜度
以上方法的時間和空間復雜度均為O(N*V),其中時間復雜度基本已經不能再優化了,但空間復雜度卻可以優化到O(V)。

先考慮上面講的基本思路如何實現,肯定是有一個主循環i=1..N,每次算出來二維數組f[i][0..V]的所有值。那麼,如果只用一個數組f [0..V],能不能保證第i次循環結束後f[v]中表示的就是我們定義的狀態f[i][v]呢?f[i][v]是由f[i-1][v]和f[i-1][v-c[i]]兩個子問題遞推而來,能否保證在推f[i][v]時(也即在第i次主循環中推f[v]時)能夠得到f[i-1][v]和f[i-1][v-c[i]]的值呢?事實上,這要求在每次主循環中我們以v=V..0的順序推f[v],這樣才能保證推f[v]時f[v-c[i]]保存的是狀態f[i -1][v-c[i]]的值。偽代碼如下:

for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};

其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相當於我們的轉移方程f[i][v]=max{f[i-1][v],f[i- 1][v-c[i]]},因為現在的f[v-c[i]]就相當於原來的f[i-1][v-c[i]]。如果將v的循環順序從上面的逆序改成順序的話,那麼則成了f[i][v]由f[i][v-c[i]]推知,與本題意不符,但它卻是另一個重要的背包問題P02最簡捷的解決方案,故學習只用一維數組解01背包問題是十分必要的。

總結
01背包問題是最基本的背包問題,它包含了背包問題中設計狀態、方程的最基本思想,另外,別的類型的背包問題往往也可以轉換成01背包問題求解。故一定要仔細體會上面基本思路的得出方法,狀態轉移方程的意義,以及最後怎樣優化的空間復雜度。

P02: 完全背包問題
題目
有N種物品和一個容量為V的背包,每種物品都有無限件可用。第i種物品的費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。

基本思路
這個問題非常類似於01背包問題,所不同的是每種物品有無限件。也就是從每種物品的角度考慮,與它相關的策略已並非取或不取兩種,而是有取0件、取1件、取2件……等很多種。如果仍然按照解01背包時的思路,令f[i][v]表示前i種物品恰放入一個容量為v的背包的最大權值。仍然可以按照每種物品不同的策略寫出狀態轉移方程,像這樣:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}。這跟01背包問題一樣有O(N*V)個狀態需要求解,但求解每個狀態的時間則不是常數了,求解狀態f[i][v]的時間是O(v/c[i]),總的復雜度是超過O(VN)的。

將01背包問題的基本思路加以改進,得到了這樣一個清晰的方法。這說明01背包問題的方程的確是很重要,可以推及其它類型的背包問題。但我們還是試圖改進這個復雜度。

一個簡單有效的優化
完全背包問題有一個很簡單有效的優化,是這樣的:若兩件物品i、j滿足c[i]<=c[j]且w[i]>=w[j],則將物品j去掉,不用考慮。這個優化的正確性顯然:任何情況下都可將價值小費用高得j換成物美價廉的i,得到至少不會更差的方案。對於隨機生成的數據,這個方法往往會大大減少物品的件數,從而加快速度。然而這個並不能改善最壞情況的復雜度,因為有可能特別設計的數據可以一件物品也去不掉。

轉化為01背包問題求解
既然01背包問題是最基本的背包問題,那麼我們可以考慮把完全背包問題轉化為01背包問題來解。最簡單的想法是,考慮到第i種物品最多選V/c [i]件,於是可以把第i種物品轉化為V/c[i]件費用及價值均不變的物品,然後求解這個01背包問題。這樣完全沒有改進基本思路的時間復雜度,但這畢竟給了我們將完全背包問題轉化為01背包問題的思路:將一種物品拆成多件物品。

更高效的轉化方法是:把第i種物品拆成費用為c[i]*2^k、價值為w[i]*2^k的若干件物品,其中k滿足c[i]*2^k<V。這是二進制的思想,因為不管最優策略選幾件第i種物品,總可以表示成若干個2^k件物品的和。這樣把每種物品拆成O(log(V/c[i]))件物品,是一個很大的改進。 但我們有更優的O(VN)的演算法。 * O(VN)的演算法 這個演算法使用一維數組,先看偽代碼: <pre class"example"> for i=1..N for v=0..Vf[v]=max{f[v],f[v-c[i]]+w[i]};

你會發現,這個偽代碼與P01的偽代碼只有v的循環次序不同而已。為什麼這樣一改就可行呢?首先想想為什麼P01中要按照v=V..0的逆序來循環。這是因為要保證第i次循環中的狀態f[i][v]是由狀態f[i-1][v-c[i]]遞推而來。換句話說,這正是為了保證每件物品只選一次,保證在考慮「選入第i件物品」這件策略時,依據的是一個絕無已經選入第i件物品的子結果f[i-1][v-c[i]]。而現在完全背包的特點恰是每種物品可選無限件,所以在考慮「加選一件第i種物品」這種策略時,卻正需要一個可能已選入第i種物品的子結果f[i][v-c[i]],所以就可以並且必須採用v= 0..V的順序循環。這就是這個簡單的程序為何成立的道理。

這個演算法也可以以另外的思路得出。例如,基本思路中的狀態轉移方程可以等價地變形成這種形式:f[i][v]=max{f[i-1][v],f[i][v-c[i]]+w[i]},將這個方程用一維數組實現,便得到了上面的偽代碼。

總結
完全背包問題也是一個相當基礎的背包問題,它有兩個狀態轉移方程,分別在「基本思路」以及「O(VN)的演算法「的小節中給出。希望你能夠對這兩個狀態轉移方程都仔細地體會,不僅記住,也要弄明白它們是怎麼得出來的,最好能夠自己想一種得到這些方程的方法。事實上,對每一道動態規劃題目都思考其方程的意義以及如何得來,是加深對動態規劃的理解、提高動態規劃功力的好方法。

P03: 多重背包問題
題目
有N種物品和一個容量為V的背包。第i種物品最多有n[i]件可用,每件費用是c[i],價值是w[i]。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。

基本演算法
這題目和完全背包問題很類似。基本的方程只需將完全背包問題的方程略微一改即可,因為對於第i種物品有n[i]+1種策略:取0件,取1件……取n[i]件。令f[i][v]表示前i種物品恰放入一個容量為v的背包的最大權值,則:f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k<=n[i]}。復雜度是O(V*∑n[i])。

轉化為01背包問題
另一種好想好寫的基本方法是轉化為01背包求解:把第i種物品換成n[i]件01背包中的物品,則得到了物品數為∑n[i]的01背包問題,直接求解,復雜度仍然是O(V*∑n[i])。

但是我們期望將它轉化為01背包問題之後能夠像完全背包一樣降低復雜度。仍然考慮二進制的思想,我們考慮把第i種物品換成若干件物品,使得原問題中第i種物品可取的每種策略——取0..n[i]件——均能等價於取若干件代換以後的物品。另外,取超過n[i]件的策略必不能出現。

方法是:將第i種物品分成若干件物品,其中每件物品有一個系數,這件物品的費用和價值均是原來的費用和價值乘以這個系數。使這些系數分別為 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是滿足n[i]-2^k+1>0的最大整數。例如,如果n[i]為13,就將這種物品分成系數分別為1,2,4,6的四件物品。

分成的這幾件物品的系數和為n[i],表明不可能取多於n[i]件的第i種物品。另外這種方法也能保證對於0..n[i]間的每一個整數,均可以用若干個系數的和表示,這個證明可以分0..2^k-1和2^k..n[i]兩段來分別討論得出,並不難,希望你自己思考嘗試一下。

這樣就將第i種物品分成了O(log n[i])種物品,將原問題轉化為了復雜度為O(V*∑logn[i])的01背包問題,是很大的改進。

O(VN)的演算法
多重背包問題同樣有O(VN)的演算法。這個演算法基於基本演算法的狀態轉移方程,但應用單調隊列的方法使每個狀態的值可以以均攤O(1)的時間求解。由於用單調隊列優化的DP已超出了NOIP的范圍,故本文不再展開講解。我最初了解到這個方法是在樓天成的「男人八題」幻燈片上。

小結
這里我們看到了將一個演算法的復雜度由O(V*∑n[i])改進到O(V*∑log n[i])的過程,還知道了存在應用超出NOIP范圍的知識的O(VN)演算法。希望你特別注意「拆分物品」的思想和方法,自己證明一下它的正確性,並用盡量簡潔的程序來實現。

P04: 混合三種背包問題
問題
如果將P01、P02、P03混合起來。也就是說,有的物品只可以取一次(01背包),有的物品可以取無限次(完全背包),有的物品可以取的次數有一個上限(多重背包)。應該怎麼求解呢?

01背包與完全背包的混合
考慮到在P01和P02中最後給出的偽代碼只有一處不同,故如果只有兩類物品:一類物品只能取一次,另一類物品可以取無限次,那麼只需在對每個物品應用轉移方程時,根據物品的類別選用順序或逆序的循環即可,復雜度是O(VN)。偽代碼如下:

for i=1..N
if 第i件物品是01背包
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
else if 第i件物品是完全背包
for v=0..V
f[v]=max{f[v],f[v-c[i]]+w[i]};

再加上多重背包
如果再加上有的物品最多可以取有限次,那麼原則上也可以給出O(VN)的解法:遇到多重背包類型的物品用單調隊列解即可。但如果不考慮超過NOIP范圍的演算法的話,用P03中將每個這類物品分成O(log n[i])個01背包的物品的方法也已經很優了。

小結
有人說,困難的題目都是由簡單的題目疊加而來的。這句話是否公理暫且存之不論,但它在本講中已經得到了充分的體現。本來01背包、完全背包、多重背包都不是什麼難題,但將它們簡單地組合起來以後就得到了這樣一道一定能嚇倒不少人的題目。但只要基礎扎實,領會三種基本背包問題的思想,就可以做到把困難的題目拆分成簡單的題目來解決。
P05: 二維費用的背包問題
問題
二維費用的背包問題是指:對於每件物品,具有兩種不同的費用;選擇這件物品必須同時付出這兩種代價;對於每種代價都有一個可付出的最大值(背包容量)。問怎樣選擇物品可以得到最大的價值。設這兩種代價分別為代價1和代價2,第i件物品所需的兩種代價分別為a[i]和b[i]。兩種代價可付出的最大值(兩種背包容量)分別為V和U。物品的價值為w[i]。

演算法
費用加了一維,只需狀態也加一維即可。設f[i][v][u]表示前i件物品付出兩種代價分別為v和u時可獲得的最大價值。狀態轉移方程就是:f[i][v][u]=max{f[i-1][v][u],f[i-1][v-a[i]][u-b[i]]+w[i]}。如前述方法,可以只使用二維的數組:當每件物品只可以取一次時變數v和u採用順序的循環,當物品有如完全背包問題時採用逆序的循環。當物品有如多重背包問題時拆分物品。

物品總個數的限制
有時,「二維費用」的條件是以這樣一種隱含的方式給出的:最多隻能取M件物品。這事實上相當於每件物品多了一種「件數」的費用,每個物品的件數費用均為1,可以付出的最大件數費用為M。換句話說,設f[v][m]表示付出費用v、最多選m件時可得到的最大價值,則根據物品的類型(01、完全、多重)用不同的方法循環更新,最後在f[0..V][0..M]范圍內尋找答案。

另外,如果要求「恰取M件物品」,則在f[0..V][M]范圍內尋找答案。

小結
事實上,當發現由熟悉的動態規劃題目變形得來的題目時,在原來的狀態中加一緯以滿足新的限制是一種比較通用的方法。希望你能從本講中初步體會到這種方法。

P06: 分組的背包問題
問題
有N件物品和一個容量為V的背包。第i件物品的費用是c[i],價值是w[i]。這些物品被劃分為若干組,每組中的物品互相沖突,最多選一件。求解將哪些物品裝入背包可使這些物品的費用總和不超過背包容量,且價值總和最大。

演算法
這個問題變成了每組物品有若干種策略:是選擇本組的某一件,還是一件都不選。也就是說設f[k][v]表示前k組物品花費費用v能取得的最大權值,則有f[k][v]=max{f[k-1][v],f[k-1][v-c[i]]+w[i]|物品i屬於第k組}。

使用一維數組的偽代碼如下:

for 所有的組k
for 所有的i屬於組k
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]}

另外,顯然可以對每組中的物品應用P02中「一個簡單有效的優化」。

小結
分組的背包問題將彼此互斥的若干物品稱為一個組,這建立了一個很好的模型。不少背包問題的變形都可以轉化為分組的背包問題(例如P07),由分組的背包問題進一步可定義「泛化物品」的概念,十分有利於解題。

P07: 有依賴的背包問題
簡化的問題
這種背包問題的物品間存在某種「依賴」的關系。也就是說,i依賴於j,表示若選物品i,則必須選物品j。為了簡化起見,我們先設沒有某個物品既依賴於別的物品,又被別的物品所依賴;另外,沒有某件物品同時依賴多件物品。

演算法
這個問題由NOIP2006金明的預算方案一題擴展而來。遵從該題的提法,將不依賴於別的物品的物品稱為「主件」,依賴於某主件的物品稱為「附件」。由這個問題的簡化條件可知所有的物品由若干主件和依賴於每個主件的一個附件集合組成。

按照背包問題的一般思路,僅考慮一個主件和它的附件集合。可是,可用的策略非常多,包括:一個也不選,僅選擇主件,選擇主件後再選擇一個附件,選擇主件後再選擇兩個附件……無法用狀態轉移方程來表示如此多的策略。(事實上,設有n個附件,則策略有2^n+1個,為指數級。)

考慮到所有這些策略都是互斥的(也就是說,你只能選擇一種策略),所以一個主件和它的附件集合實際上對應於P06中的一個物品組,每個選擇了主件又選擇了若干個附件的策略對應於這個物品組中的一個物品,其費用和價值都是這個策略中的物品的值的和。但僅僅是這一步轉化並不能給出一個好的演算法,因為物品組中的物品還是像原問題的策略一樣多。

再考慮P06中的一句話: 可以對每組中的物品應用P02中「一個簡單有效的優化」。這提示我們,對於一個物品組中的物品,所有費用相同的物品只留一個價值最大的,不影響結果。所以,我們可以對主件i的「附件集合」先進行一次01背包,得到費用依次為0..V-c[i]所有這些值時相應的最大價值f'[0..V-c[i]]。那麼這個主件及它的附件集合相當於V-c[i]+1個物品的物品組,其中費用為c[i]+k的物品的價值為f'[k]+w[i]。也就是說原來指數級的策略中有很多策略都是冗餘的,通過一次01背包後,將主件i轉化為 V-c[i]+1個物品的物品組,就可以直接應用P06的演算法解決問題了。

更一般的問題
更一般的問題是:依賴關系以圖論中「森林」的形式給出(森林即多叉樹的集合),也就是說,主件的附件仍然可以具有自己的附件集合,限制只是每個物品最多隻依賴於一個物品(只有一個主件)且不出現循環依賴。

解決這個問題仍然可以用將每個主件及其附件集合轉化為物品組的方式。唯一不同的是,由於附件可能還有附件,就不能將每個附件都看作一個一般的01 背包中的物品了。若這個附件也有附件集合,則它必定要被先轉化為物品組,然後用分組的背包問題解出主件及其附件集合所對應的附件組中各個費用的附件所對應的價值。

事實上,這是一種樹形DP,其特點是每個父節點都需要對它的各個兒子的屬性進行一次DP以求得自己的相關屬性。這已經觸及到了「泛化物品」的思想。看完P08後,你會發現這個「依賴關系樹」每一個子樹都等價於一件泛化物品,求某節點為根的子樹對應的泛化物品相當於求其所有兒子的對應的泛化物品之和。

小結
NOIP2006的那道背包問題我做得很失敗,寫了上百行的代碼,卻一分未得。後來我通過思考發現通過引入「物品組」和「依賴」的概念可以加深對這題的理解,還可以解決它的推廣問題。用物品組的思想考慮那題中極其特殊的依賴關系:物品不能既作主件又作附件,每個主件最多有兩個附件,可以發現一個主件和它的兩個附件等價於一個由四個物品組成的物品組,這便揭示了問題的某種本質。

我想說:失敗不是什麼丟人的事情,從失敗中全無收獲才是。

P08: 泛化物品
定義
考慮這樣一種物品,它並沒有固定的費用和價值,而是它的價值隨著你分配給它的費用而變化。這就是泛化物品的概念。

更嚴格的定義之。在背包容量為V的背包問題中,泛化物品是一個定義域為0..V中的整數的函數h,當分配給它的費用為v時,能得到的價值就是h(v)。

這個定義有一點點抽象,另一種理解是一個泛化物品就是一個數組h[0..V],給它費用v,可得到價值h[V]。

一個費用為c價值為w的物品,如果它是01背包中的物品,那麼把它看成泛化物品,它就是除了h(c)=w其它函數值都為0的一個函數。如果它是完全背包中的物品,那麼它可以看成這樣一個函數,僅當v被c整除時有h(v)=v/c*w,其它函數值均為0。如果它是多重背包中重復次數最多為n的物品,那麼它對應的泛化物品的函數有h(v)=v/c*w僅當v被c整除且v/c<=n,其它情況函數值均為0。

一個物品組可以看作一個泛化物品h。對於一個0..V中的v,若物品組中不存在費用為v的的物品,則h(v)=0,否則h(v)為所有費用為v的物品的最大價值。P07中每個主件及其附件集合等價於一個物品組,自然也可看作一個泛化物品。

泛化物品的和
如果面對兩個泛化物品h和l,要用給定的費用從這兩個泛化物品中得到最大的價值,怎麼求呢?事實上,對於一個給定的費用v,只需枚舉將這個費用如何分配給兩個泛化物品就可以了。同樣的,對於0..V的每一個整數v,可以求得費用v分配到h和l中的最大價值f(v)。也即f(v)=max{h(k)+l(v-k)|0<=k<=v}。可以看到,f也是一個由泛化物品h和l決定的定義域為0..V的函數,也就是說,f是一個由泛化物品h和 l決定的泛化物品。

由此可以定義泛化物品的和:h、l都是泛化物品,若泛化物品f滿足f(v)=max{h(k)+l(v-k)|0<=k<=v},則稱f是h與l的和,即f=h+l。這個運算的時間復雜度是O(V^2)。

泛化物品的定義表明:在一個背包問題中,若將兩個泛化物品代以它們的和,不影響問題的答案。事實上,對於其中的物品都是泛化物品的背包問題,求它的答案的過程也就是求所有這些泛化物品之和的過程。設此和為s,則答案就是s[0..V]中的最大值。

背包問題的泛化物品
一個背包問題中,可能會給出很多條件,包括每種物品的費用、價值等屬性,物品之間的分組、依賴等關系等。但肯定能將問題對應於某個泛化物品。也就是說,給定了所有條件以後,就可以對每個非負整數v求得:若背包容量為v,將物品裝入背包可得到的最大價值是多少,這可以認為是定義在非負整數集上的一件泛化物品。這個泛化物品——或者說問題所對應的一個定義域為非負整數的函數——包含了關於問題本身的高度濃縮的信息。一般而言,求得這個泛化物品的一個子域(例如0..V)的值之後,就可以根據這個函數的取值得到背包問題的最終答案。

綜上所述,一般而言,求解背包問題,即求解這個問題所對應的一個函數,即該問題的泛化物品。而求解某個泛化物品的一種方法就是將它表示為若干泛化物品的和然後求之。

小結
本講可以說都是我自己的原創思想。具體來說,是我在學習函數式編程的 Scheme 語言時,用函數編程的眼光審視各類背包問題得出的理論。這一講真的很抽象,也許在「模型的抽象程度」這一方面已經超出了NOIP的要求,所以暫且看不懂也沒關系。相信隨著你的OI之路逐漸延伸,有一天你會理解的。

我想說:「思考」是一個OIer最重要的品質。簡單的問題,深入思考以後,也能發現更多。

P09: 背包問題問法的變化
以上涉及的各種背包問題都是要求在背包容量(費用)的限制下求可以取到的最大價值,但背包問題還有很多種靈活的問法,在這里值得提一下。但是我認為,只要深入理解了求背包問題最大價值的方法,即使問法變化了,也是不難想出演算法的。

例如,求解最多可以放多少件物品或者最多可以裝滿多少背包的空間。這都可以根據具體問題利用前面的方程求出所有狀態的值(f數組)之後得到。

還有,如果要求的是「總價值最小」「總件數最小」,只需簡單的將上面的狀態轉移方程中的max改成min即可。

J. 貪心演算法 部分背包問題

[背包問題]有一個背包,背包容量是M=150。有7個物品,物品可以分割成任意大小。
要求盡可能讓裝入背包中的物品總價值最大,但不能超過總容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
價值 10 40 30 50 35 40 30
分析:
目標函數: ∑pi最大
約束條件是裝入的物品總重量不超過背包容量:∑wi<=M( M=150)
(1)根據貪心的策略,每次挑選價值最大的物品裝入背包,得到的結果是否最優?
(2)每次挑選所佔重量最小的物品裝入是否能得到最優解?
(3)每次選取單位重量價值最大的物品,成為解本題的策略。 ?
值得注意的是,貪心演算法並不是完全不可以使用,貪心策略一旦經過證明成立後,它就是一種高效的演算法。
貪心演算法還是很常見的演算法之一,這是由於它簡單易行,構造貪心策略不是很困難。
可惜的是,它需要證明後才能真正運用到題目的演算法中。
一般來說,貪心演算法的證明圍繞著:整個問題的最優解一定由在貪心策略中存在的子問題的最優解得來的。
對於例題中的3種貪心策略,都是無法成立(無法被證明)的,解釋如下:
(1)貪心策略:選取價值最大者。反例:
W=30
物品:A B C
重量:28 12 12
價值:30 20 20
根據策略,首先選取物品A,接下來就無法再選取了,可是,選取B、C則更好。
(2)貪心策略:選取重量最小。它的反例與第一種策略的反例差不多。
(3)貪心策略:選取單位重量價值最大的物品。反例:
W=30
物品:A B C
重量:28 20 10
價值:28 20 10
根據策略,三種物品單位重量價值一樣,程序無法依據現有策略作出判斷,如果選擇A,則答案錯誤。

熱點內容
浪潮伺服器配置bmc管理ip 發布:2025-05-10 19:26:31 瀏覽:469
兒童編程編 發布:2025-05-10 19:05:46 瀏覽:384
自己在電腦上怎麼搭建伺服器 發布:2025-05-10 19:05:11 瀏覽:426
沖鋒車裡面配置了什麼 發布:2025-05-10 18:55:31 瀏覽:430
c語言typedef的用法 發布:2025-05-10 18:51:35 瀏覽:893
同城網站源碼 發布:2025-05-10 18:47:36 瀏覽:643
怎麼查網易我的世界伺服器ip 發布:2025-05-10 18:46:19 瀏覽:943
共享文件夾英文 發布:2025-05-10 18:46:14 瀏覽:950
linux時間函數 發布:2025-05-10 18:46:12 瀏覽:112
c語言保存數據 發布:2025-05-10 18:44:45 瀏覽:52