資料庫多活
❶ 資料庫為什麼要分庫分表
1 基本思想之什麼是分庫分表?
從字面上簡單理解,就是把原本存儲於一個庫的數據分塊存儲到多個庫上,把原本存儲於一個表的數據分塊存儲到多個表上。
2 基本思想之為什麼要分庫分表?
數
據庫中的數據量不一定是可控的,在未進行分庫分表的情況下,隨著時間和業務的發展,庫中的表會越來越多,表中的數據量也會越來越大,相應地,數據操作,增
刪改查的開銷也會越來越大;另外,由於無法進行分布式式部署,而一台伺服器的資源(CPU、磁碟、內存、IO等)是有限的,最終資料庫所能承載的數據量、
數據處理能力都將遭遇瓶頸。
3 分庫分表的實施策略。
分庫分表有垂直切分和水平切分兩種。
3.1
何謂垂直切分,即將表按照功能模塊、關系密切程度劃分出來,部署到不同的庫上。例如,我們會建立定義資料庫workDB、商品資料庫payDB、用戶數據
庫userDB、日誌資料庫logDB等,分別用於存儲項目數據定義表、商品定義表、用戶數據表、日誌數據表等。
3.2
何謂水平切分,當一個表中的數據量過大時,我們可以把該表的數據按照某種規則,例如userID散列,進行劃分,然後存儲到多個結構相同的表,和不同的庫
上。例如,我們的userDB中的用戶數據表中,每一個表的數據量都很大,就可以把userDB切分為結構相同的多個userDB:part0DB、
part1DB等,再將userDB上的用戶數據表userTable,切分為很多userTable:userTable0、userTable1等,
然後將這些表按照一定的規則存儲到多個userDB上。
3.3 應該使用哪一種方式來實施資料庫分庫分表,這要看資料庫中數據量的瓶頸所在,並綜合項目的業務類型進行考慮。
如果資料庫是因為表太多而造成海量數據,並且項目的各項業務邏輯劃分清晰、低耦合,那麼規則簡單明了、容易實施的垂直切分必是首選。
而
如果資料庫中的表並不多,但單表的數據量很大、或數據熱度很高,這種情況之下就應該選擇水平切分,水平切分比垂直切分要復雜一些,它將原本邏輯上屬於一體
的數據進行了物理分割,除了在分割時要對分割的粒度做好評估,考慮數據平均和負載平均,後期也將對項目人員及應用程序產生額外的數據管理負擔。
在現實項目中,往往是這兩種情況兼而有之,這就需要做出權衡,甚至既需要垂直切分,又需要水平切分。我們的游戲項目便綜合使用了垂直與水平切分,我們首先對資料庫進行垂直切分,然後,再針對一部分表,通常是用戶數據表,進行水平切分。
4 分庫分表存在的問題。
4.1 事務問題。
在執行分庫分表之後,由於數據存儲到了不同的庫上,資料庫事務管理出現了困難。如果依賴資料庫本身的分布式事務管理功能去執行事務,將付出高昂的性能代價;如果由應用程序去協助控制,形成程序邏輯上的事務,又會造成編程方面的負擔。
4.2 跨庫跨表的join問題。
在執行了分庫分表之後,難以避免會將原本邏輯關聯性很強的數據劃分到不同的表、不同的庫上,這時,表的關聯操作將受到限制,我們無法join位於不同分庫的表,也無法join分表粒度不同的表,結果原本一次查詢能夠完成的業務,可能需要多次查詢才能完成。
4.3 額外的數據管理負擔和數據運算壓力。
額
外的數據管理負擔,最顯而易見的就是數據的定位問題和數據的增刪改查的重復執行問題,這些都可以通過應用程序解決,但必然引起額外的邏輯運算,例如,對於
一個記錄用戶成績的用戶數據表userTable,業務要求查出成績最好的100位,在進行分表之前,只需一個order
by語句就可以搞定,但是在進行分表之後,將需要n個order
by語句,分別查出每一個分表的前100名用戶數據,然後再對這些數據進行合並計算,才能得出結果。
❷ 資料庫的發展前景怎麼樣
進入信息化市場,資料庫的重要性日益凸顯,目前資料庫主要分為資料庫產品、資料庫服務和資料庫支撐體系。我國資料庫產品以關系型為主,非關系型資料庫以鍵值型資料庫為主。
金融、電信、政務、製造和互聯網為我國資料庫應用最為廣泛的領域,但是它們的應用特點各不相同。未來,在企業崛起、國家利好政策和資本關注等因素推動下,我國資料庫行業市場規模有望接近7百億元。
本文核心數據:資料庫產品分布、資料庫市場規模
資料庫主要分為三大類
在信息化時代,資料庫已經逐漸應用於各行各業。資料庫主要分為三大類:資料庫產品、資料庫服務和資料庫支撐體系。
資料庫產品主要由關系型資料庫、非關系型資料庫、混合型資料庫及資料庫周邊工具構成。
資料庫服務是指圍繞資料庫的咨詢規劃、實施部署和運維運營等環節,為資料庫系統的正常、高效、持續、安全使用提供信息技術服務工作。
資料庫支撐體系由從事資料庫學術研究、人才培養、開源社區、評測認證等工作的相關主體共同構成。
❸ 數據倉庫的並發能力和OLTP類資料庫的區別
在數據倉庫場景下,對並發能力的要求:
1.用戶的多任務能連接進來,這就是連接池的管理。
2.高效完成多任務並發執行,實際上是多任務並發進來後,如何充分利用集群資源,向用戶返回執行結果。對於OLTP類資料庫來說,用戶的任務(sql)以短事務居多,所以並發能力會比較高。但是在數倉場景下,批處理、復雜查詢非常耗費系統資源,對並發能力的要求是幾十,例如POC測試中大部分是用5並發、20並發來測試。
由於DWS/LibrA(注1)的集群的Coordinator Node是多活的、對等的,所以整個系統的並發數隨著CN的增加可以不斷增長。具體的並發能力受限於實際場景:
•短事務:在平安城市某項目中,在混合負載場景下,測試過5000+並發,可以穩定運行。
•長事務:在某銀行復雜批處理場景下,20並發可以穩定運行。後續版本會進一步優化。
獨創技術:提供一種基於流水線執行模式的查詢內存自適應解決方法,解決多並發場景下系統資源搶占問題,實現無論多大並發,系統穩定運行。
❹ 資料庫性能優化有哪些措施
1、調整數據結構的設計
這一部分在開發信息系統之前完成,程序員需要考慮是否使用ORACLE資料庫的分區功能,對於經常訪問的資料庫表是否需要建立索引等。
2、調整應用程序結構設計
這一部分也是在開發信息系統之前完成,程序員在這一步需要考慮應用程序使用什麼樣的體系結構,是使用傳統的Client/Server兩層體系結構,還是使用Browser/Web/Database的三層體系結構。不同的應用程序體系結構要求的資料庫資源是不同的。
3、調整資料庫SQL語句
應用程序的執行最終將歸結為資料庫中的SQL語句執行,因此SQL語句的執行效率最終決定了ORACLE資料庫的性能。ORACLE公司推薦使用ORACLE語句優化器(OracleOptimizer)和行鎖管理器(row-levelmanager)來調整優化SQL語句。
4、調整伺服器內存分配
內存分配是在信息系統運行過程中優化配置的,資料庫管理員可以根據資料庫運行狀況調整資料庫系統全局區(SGA區)的數據緩沖區、日誌緩沖區和共享池的大小;還可以調整程序全局區(PGA區)的大小。需要注意的是,SGA區不是越大越好,SGA區過大會佔用操作系統使用的內存而引起虛擬內存的頁面交換,這樣反而會降低系統。
5、調整硬碟I/O
這一步是在信息系統開發之前完成的。資料庫管理員可以將組成同一個表空間的數據文件放在不同的硬碟上,做到硬碟之間I/O負載均衡。
6、調整操作系統參數
例如:運行在UNIX操作系統上的ORACLE資料庫,可以調整UNIX數據緩沖池的大小,每個進程所能使用的內存大小等參數。
實際上,上述資料庫優化措施之間是相互聯系的。ORACLE資料庫性能惡化表現基本上都是用戶響應時間比較長,需要用戶長時間的等待。但性能惡化的原因卻是多種多樣的,有時是多個因素共同造成了性能惡化的結果,這就需要資料庫管理員有比較全面的計算機知識,能夠敏感地察覺到影響資料庫性能的主要原因所在。另外,良好的資料庫管理工具對於優化資料庫性能也是很重要的。
一、ORACLE資料庫性能優化工具
常用的資料庫性能優化工具有:
ORACLE資料庫在線數據字典,ORACLE在線數據字典能夠反映出ORACLE動態運行情況,對於調整資料庫性能是很有幫助的。
操作系統工具,例如UNIX操作系統的vmstat,iostat等命令可以查看到系統系統級內存和硬碟I/O的使用情況,這些工具對於管理員弄清出系統瓶頸出現在什麼地方有時候很有用。
SQL語言跟蹤工具(SQLTRACEFACILITY),SQL語言跟蹤工具可以記錄SQL語句的執行情況,管理員可以使用虛擬表來調整實例,使用SQL語句跟蹤文件調整應用程序性能。SQL語言跟蹤工具將結果輸出成一個操作系統的文件,管理員可以使用TKPROF工具查看這些文件。
ORACLEEnterpriseManager(OEM),這是一個圖形的用戶管理界面,用戶可以使用它方便地進行資料庫管理而不必記住復雜的ORACLE資料庫管理的命令。
EXPLAINPLAN——SQL語言優化命令,使用這個命令可以幫助程序員寫出高效的SQL語言。
二、ORACLE資料庫的系統性能評估
信息系統的類型不同,需要關注的資料庫參數也是不同的。資料庫管理員需要根據自己的信息系統的類型著重考慮不同的資料庫參數。
1、在線事務處理信息系統(OLTP),這種類型的信息系統一般需要有大量的Insert、Update操作,典型的系統包括民航機票發售系統、銀行儲蓄系統等。OLTP系統需要保證資料庫的並發性、可靠性和最終用戶的速度,這類系統使用的ORACLE資料庫需要主要考慮下述參數:
資料庫回滾段是否足夠?
是否需要建立ORACLE資料庫索引、聚集、散列?
系統全局區(SGA)大小是否足夠?
SQL語句是否高效?
2、數據倉庫系統(DataWarehousing),這種信息系統的主要任務是從ORACLE的海量數據中進行查詢,得到數據之間的某些規律。資料庫管理員需要為這種類型的ORACLE資料庫著重考慮下述參數:
是否採用B*-索引或者bitmap索引?
是否採用並行SQL查詢以提高查詢效率?
是否採用PL/SQL函數編寫存儲過程?
有必要的話,需要建立並行資料庫提高資料庫的查詢效率
三、SQL語句的調整原則
SQL語言是一種靈活的語言,相同的功能可以使用不同的語句來實現,但是語句的執行效率是很不相同的。程序員可以使用EXPLAINPLAN語句來比較各種實現方案,並選出最優的實現方案。總得來講,程序員寫SQL語句需要滿足考慮如下規則:
1、盡量使用索引。試比較下面兩條SQL語句:
語句A:SELECTdname,
(SELECTdeptnoFROMemp);
語句B:SELECTdname,deptnoFROMdeptWHERENOTEXISTS
(SELECTdeptnoFROMempWHEREdept.deptno=emp.deptno);
這兩條查詢語句實現的結果是相同的,但是執行語句A的時候,ORACLE會對整個emp表進行掃描,沒有使用建立在emp表上的deptno索引,執行語句B的時候,由於在子查詢中使用了聯合查詢,ORACLE只是對emp表進行的部分數據掃描,並利用了deptno列的索引,所以語句B的效率要比語句A的效率高一些。
2、選擇聯合查詢的聯合次序。考慮下面的例子:
SELECTstuffFROMtabaa,tabbb,tabcc
WHEREa.acolbetween:alowand:ahigh
ANDb.bcolbetween:blowand:bhigh
ANDc.ccolbetween:clowand:chigh
ANDa.key1=b.key1
AMDa.key2=c.key2;
這個SQL例子中,程序員首先需要選擇要查詢的主表,因為主表要進行整個表數據的掃描,所以主表應該數據量最小,所以例子中表A的acol列的范圍應該比表B和表C相應列的范圍小。
3、在子查詢中慎重使用IN或者NOTIN語句,使用where(NOT)exists的效果要好的多。
4、慎重使用視圖的聯合查詢,尤其是比較復雜的視圖之間的聯合查詢。一般對視圖的查詢最好都分解為對數據表的直接查詢效果要好一些。
5、可以在參數文件中設置SHARED_POOL_RESERVED_SIZE參數,這個參數在SGA共享池中保留一個連續的內存空間,連續的內存空間有益於存放大的SQL程序包。
6、ORACLE公司提供的DBMS_SHARED_POOL程序可以幫助程序員將某些經常使用的存儲過程「釘」在SQL區中而不被換出內存,程序員對於經常使用並且佔用內存很多的存儲過程「釘」到內存中有利於提高最終用戶的響應時間。
四、CPU參數的調整
CPU是伺服器的一項重要資源,伺服器良好的工作狀態是在工作高峰時CPU的使用率在90%以上。如果空閑時間CPU使用率就在90%以上,說明伺服器缺乏CPU資源,如果工作高峰時CPU使用率仍然很低,說明伺服器CPU資源還比較富餘。
使用操作相同命令可以看到CPU的使用情況,一般UNIX操作系統的伺服器,可以使用sar_u命令查看CPU的使用率,NT操作系統的伺服器,可以使用NT的性能管理器來查看CPU的使用率。
資料庫管理員可以通過查看v$sysstat數據字典中「CPUusedbythissession」統計項得知ORACLE資料庫使用的CPU時間,查看「OSUserlevelCPUtime」統計項得知操作系統用戶態下的CPU時間,查看「OSSystemcallCPUtime」統計項得知操作系統系統態下的CPU時間,操作系統總的CPU時間就是用戶態和系統態時間之和,如果ORACLE資料庫使用的CPU時間占操作系統總的CPU時間90%以上,說明伺服器CPU基本上被ORACLE資料庫使用著,這是合理,反之,說明伺服器CPU被其它程序佔用過多,ORACLE資料庫無法得到更多的CPU時間。
資料庫管理員還可以通過查看v$sesstat數據字典來獲得當前連接ORACLE資料庫各個會話佔用的CPU時間,從而得知什麼會話耗用伺服器CPU比較多。
出現CPU資源不足的情況是很多的:SQL語句的重解析、低效率的SQL語句、鎖沖突都會引起CPU資源不足。
1、資料庫管理員可以執行下述語句來查看SQL語句的解析情況:
SELECT*FROMV$SYSSTATWHERENAMEIN
('parsetimecpu','parsetimeelapsed','parsecount(hard)');
這里parsetimecpu是系統服務時間,parsetimeelapsed是響應時間,用戶等待時間,waitetime=parsetimeelapsed_parsetimecpu
由此可以得到用戶SQL語句平均解析等待時間=waitetime/parsecount。這個平均等待時間應該接近於0,如果平均解析等待時間過長,資料庫管理員可以通過下述語句
SELECTSQL_TEXT,PARSE_CALLS,EXECUTIONSFROMV$SQLAREA
ORDERBYPARSE_CALLS;
來發現是什麼SQL語句解析效率比較低。程序員可以優化這些語句,或者增加ORACLE參數SESSION_CACHED_CURSORS的值。
2、資料庫管理員還可以通過下述語句:
SELECTBUFFER_GETS,EXECUTIONS,SQL_TEXTFROMV$SQLAREA;
查看低效率的SQL語句,優化這些語句也有助於提高CPU的利用率。
3、資料庫管理員可以通過v$system_event數據字典中的「latchfree」統計項查看ORACLE資料庫的沖突情況,如果沒有沖突的話,latchfree查詢出來沒有結果。如果沖突太大的話,資料庫管理員可以降低spin_count參數值,來消除高的CPU使用率。
五、內存參數的調整
內存參數的調整主要是指ORACLE資料庫的系統全局區(SGA)的調整。SGA主要由三部分構成:共享池、數據緩沖區、日誌緩沖區。
1、共享池由兩部分構成:共享SQL區和數據字典緩沖區,共享SQL區是存放用戶SQL命令的區域,數據字典緩沖區存放資料庫運行的動態信息。資料庫管理員通過執行下述語句:
select(sum(pins-reloads))/sum(pins)"LibCache"fromv$librarycache;
來查看共享SQL區的使用率。這個使用率應該在90%以上,否則需要增加共享池的大小。資料庫管理員還可以執行下述語句:
select(sum(gets-getmisses-usage-fixed))/sum(gets)"RowCache"fromv$rowcache;
查看數據字典緩沖區的使用率,這個使用率也應該在90%以上,否則需要增加共享池的大小。
2、數據緩沖區。資料庫管理員可以通過下述語句:
SELECTname,valueFROMv$sysstatWHEREnameIN('dbblockgets','consistentgets','physicalreads');
來查看資料庫數據緩沖區的使用情況。查詢出來的結果可以計算出來數據緩沖區的使用命中率=1-(physicalreads/(dbblockgets+consistentgets))。
這個命中率應該在90%以上,否則需要增加數據緩沖區的大小。
3、日誌緩沖區。資料庫管理員可以通過執行下述語句:
selectname,valuefromv$sysstatwherenamein('redoentries','redologspacerequests');
查看日誌緩沖區的使用情況。查詢出的結果可以計算出日誌緩沖區的申請失敗率:
申請失敗率=requests/entries,申請失敗率應該接近於0,否則說明日誌緩沖區開設太小,需要增加ORACLE資料庫的日誌緩沖區。
昆明北大青鳥java培訓班轉載自網路如有侵權請聯系我們感謝您的關注謝謝支持
❺ 淺問下資料庫管理員的工作辛苦嗎
說不辛苦是假的,我就是個資料庫管理員,別聽這個職位很高大上,做的其實就是些雜活,有時候要是資料庫出現問題,別管是凌晨還是半夜,都必須在規定時間內讓系統恢復,很苦逼的網路。
不過公司最近採用了Nutanix的資料庫管理系統Nutanix Era,讓我徹底解放了。下面簡單介紹下Nutanix Era。首先,它可以加快資料庫置備。通過一鍵式自動化操作,可以在數分鍾內完成資料庫置備;其次,它可以簡化資料庫管理。憑借智能自動化,消除繁瑣且易出錯的手動資料庫操作。簡化克隆、補丁安裝和資料庫備份/恢復,讓你不必在下班後和周末操心工作;再次,它不僅適用於所有資料庫,還是一個單一的平台。Nutanix 融合了兩全其美的優勢,即HCI體系結構的強大功能和資料庫管理服務的操作簡便性。滿足快速部署和擴展的需求,在同一面板上管理所有雲中的資料庫。
Nutanix Era通過一鍵式簡化操作實現資料庫置備和生命周期管理(LCM),可以幫助企業提高企業應用的效率、敏捷性、成本效益和擴展性,關鍵是還幫我這個資料庫管理員省了很多事,很nice!
❻ 資料庫DBA 累不
我就是一個資料庫管理員,其實做這個有很多雜活,也不輕松。尤其是資料庫出現問題的時候,經常會被要求在指定的時間內,讓系統恢復正常。
或者是資料庫性能出現問題,你要檢查很多方面來找到問題的根源從而調優。
如果是比較重要的系統出現問題,就算夜裡2點接到電話,也要馬上起來對應問題,可以說是24x7 support.
我做了2年dba了,感覺這個職位需要承擔很多責任,而且要有應付壓力的准備,需要較強的溝通能力,因為你要跟不同team的人合作,共同維護具備高可用性,高性能的系統。
雖然說了這么多的不容易,不過當你獨自成功的解決了問題的時候,還是很有工作的成就感的。而且做dba,可以學到很多不同方面的知識,比如說伺服器的管理,網路的知識,存儲設備等,dba要對這些方面都有全面的了解,總體上,還是比程序員要更有發展。
期待我們成為同行!
❼ 主要的通用網路安全技術有8種。不間斷電源保護屬於哪一種
異地多活災備或者UPS不斷電。
異地多活災備
阿里雲資料庫異地多活解決方案使用以下阿里雲核心產品,按照架構設計原則提供數據層多活解決方案。
DRDS
按照之前說的業務數據拆分的維度,阿里雲DRDS有兩種集群分別支持買家維度與賣家維度:
unit模式的DRDS集群:多地用戶分別在本地域讀寫本地域的數據,且本地域的數據會和中心數據做雙向同步。
模式的DRDS集群:此集群數據在中心資料庫寫,完成後全量同步到各個單元。需要注意的是,DRDS層面需要增加對數據寫入路由的判斷:如果是跨單元的寫,則判斷為非法操作並拋出異常,確保數據不會跨單元寫。
更多DRDS的介紹請參考分布式關系型資料庫DRDS一文。
DTS
數據復制是資料庫多活設計關鍵的一環,其中數據復制的正確性是第一位,同時效率也很關鍵。阿里雲DTS支持多重的check,避免循環復制(用事務表,或者thread_id方案),採用並行復制(串列的分發,沖突檢測,並行的執行)、大事務切割來保證最終一致性。
數據校驗也是關鍵的一環,阿里雲DTS通過全量校驗工具(TCP)和增量校驗工具(AMG)來保證實時/定時檢查中心和單元的數據准確性,確保線上數據的萬無一失。
更多的數據傳輸相關內容請參考數據傳輸服務一文。
HDM
阿里雲HDM提供了DRDS集群的搭建、同步鏈路的創建、多活的資料庫監控、數據校驗、集群擴縮容以及自動化的容災等服務,都可通過HDM完成,通過HDM實現了異地多活場景下資料庫的管理。
❽ 兩地三中心數據中心和同城雙活數據中心的區別
兩地三中心:是指同城雙中心加異地災備的一種商用容災備份解決方案。兩地是指同城、異地;三中心是指生產中心、同城容災中心、異地容災中心。結合近年國內出現的大范圍自然災害,以同城雙中心加異地災備中心的「兩地三中心」的災備模式也隨之出現,這一方案兼具高可用性和災難備份的能力。
雙活數據中心,所謂「雙活」或「多活」數據中心,區別於傳統數據中心和災備中心的模式,前者多個或兩個數據中心都處於運行當中,運行相同的應用,具備同樣的數據,能夠提供跨中心業務負載均衡運行能力,實現持續的應用可用性和災難備份能力,所以稱為「雙活」和「多活」;後者是生產數據中心投入運行,災備數據中心處在不工作狀態,只有當災難發生時,生產數據中心癱瘓,災備中心才啟動。
「雙活」數據中心最大的特點是:一、充分利用資源,避免了一個數據中心常年處於閑置狀態而造成浪費,通過資源整合,「雙活」數據中心的服務能力是翻倍的;二、「雙活」數據中心如果斷了一個數據中心,其業務可以迅速切換到另外一個正在運行的數據中心,切換過程對用戶來說是不可感知的。
❾ 分庫分表 VS newsql資料庫
最近與同行 科技 交流,經常被問到分庫分表與分布式資料庫如何選擇,網上也有很多關於中間件+傳統關系資料庫(分庫分表)與NewSQL分布式資料庫的文章,但有些觀點與判斷是我覺得是偏激的,脫離環境去評價方案好壞其實有失公允。
本文通過對兩種模式關鍵特性實現原理對比,希望可以盡可能客觀、中立的闡明各自真實的優缺點以及適用場景。
首先關於「中間件+關系資料庫分庫分表」算不算NewSQL分布式資料庫問題,國外有篇論文pavlo-newsql-sigmodrec,如果根據該文中的分類,Spanner、TiDB、OB算是第一種新架構型,Sharding-Sphere、Mycat、DRDS等中間件方案算是第二種(文中還有第三種雲資料庫,本文暫不詳細介紹)。
基於中間件(包括SDK和Proxy兩種形式)+傳統關系資料庫(分庫分表)模式是不是分布式架構?我覺得是的,因為存儲確實也分布式了,也能實現橫向擴展。但是不是"偽"分布式資料庫?從架構先進性來看,這么說也有一定道理。"偽"主要體現在中間件層與底層DB重復的SQL解析與執行計劃生成、存儲引擎基於B+Tree等,這在分布式資料庫架構中實際上冗餘低效的。為了避免引起真偽分布式資料庫的口水戰,本文中NewSQL資料庫特指這種新架構NewSQL資料庫。
NewSQL資料庫相比中間件+分庫分表的先進在哪兒?畫一個簡單的架構對比圖:
這些大多也是NewSQL資料庫產品主要宣傳的點,不過這些看起來很美好的功能是否真的如此?接下來針對以上幾點分別闡述下的我的理解。
這是把雙刃劍。
CAP限制
想想更早些出現的NoSQL資料庫為何不支持分布式事務(最新版的mongoDB等也開始支持了),是缺乏理論與實踐支撐嗎?並不是,原因是CAP定理依然是分布式資料庫頭上的頸箍咒,在保證強一致的同時必然會犧牲可用性A或分區容忍性P。為什麼大部分NoSQL不提供分布式事務?
那麼NewSQL資料庫突破CAP定理限制了嗎?並沒有。NewSQL資料庫的鼻主Google Spanner(目前絕大部分分布式資料庫都是按照Spanner架構設計的)提供了一致性和大於5個9的可用性,宣稱是一個「實際上是CA」的,其真正的含義是 系統處於 CA 狀態的概率非常高,由於網路分區導致的服務停用的概率非常小 ,究其真正原因是其打造私有全球網保證了不會出現網路中斷引發的網路分區,另外就是其高效的運維隊伍,這也是cloud spanner的賣點。詳細可見CAP提出者Eric Brewer寫的《Spanner, TrueTime 和CAP理論》。
完備性 :
兩階段提交協議是否嚴格支持ACID,各種異常場景是不是都可以覆蓋?
2PC在commit階段發送異常,其實跟最大努力一階段提交類似也會有部分可見問題,嚴格講一段時間內並不能保證A原子性和C一致性(待故障恢復後recovery機制可以保證最終的A和C)。完備的分布式事務支持並不是一件簡單的事情,需要可以應對網路以及各種硬體包括網卡、磁碟、CPU、內存、電源等各類異常,通過嚴格的測試。之前跟某友商交流,他們甚至說目前已知的NewSQL在分布式事務支持上都是不完整的,他們都有案例跑不過,圈內人士這么篤定,也說明了 分布式事務的支持完整程度其實是層次不齊的。
但分布式事務又是這些NewSQL資料庫的一個非常重要的底層機制,跨資源的DML、DDL等都依賴其實現,如果這塊的性能、完備性打折扣,上層跨分片SQL執行的正確性會受到很大影響。
性能
傳統關系資料庫也支持分布式事務XA,但為何很少有高並發場景下用呢? 因為XA的基礎兩階段提交協議存在網路開銷大,阻塞時間長、死鎖等問題,這也導致了其實際上很少大規模用在基於傳統關系資料庫的OLTP系統中。
NewSQL資料庫的分布式事務實現也仍然多基於兩階段提交協議,例如google percolator分布式事務模型,
採用原子鍾+MVCC+ Snapshot Isolation(SI),這種方式通過TSO(Timestamp Oracle)保證了全局一致性,通過MVCC避免了鎖,另外通過primary lock和secondary lock將提交的一部分轉為非同步,相比XA確實提高了分布式事務的性能。
但不管如何優化,相比於1PC,2PC多出來的GID獲取、網路開銷、prepare日誌持久化還是會帶來很大的性能損失,尤其是跨節點的數量比較多時會更加顯著,例如在銀行場景做個批量扣款,一個文件可能上W個賬戶,這樣的場景無論怎麼做還是吞吐都不會很高。
雖然NewSQL分布式資料庫產品都宣傳完備支持分布式事務,但這並不是說應用可以完全不用關心數據拆分,這些資料庫的最佳實踐中仍然會寫到,應用的大部分場景盡可能避免分布式事務。
既然強一致事務付出的性能代價太大,我們可以反思下是否真的需要這種強一致的分布式事務?尤其是在做微服務拆分後,很多系統也不太可能放在一個統一的資料庫中。嘗試將一致性要求弱化,便是柔性事務,放棄ACID(Atomicity,Consistency, Isolation, Durability),轉投BASE(Basically Available,Soft state,Eventually consistent),例如Saga、TCC、可靠消息保證最終一致等模型,對於大規模高並發OLTP場景,我個人更建議使用柔性事務而非強一致的分布式事務。關於柔性事務,筆者之前也寫過一個技術組件,最近幾年也涌現出了一些新的模型與框架(例如阿里剛開源的Fescar),限於篇幅不再贅述,有空再單獨寫篇文章。
HA與異地多活
主從模式並不是最優的方式,就算是半同步復制,在極端情況下(半同步轉非同步)也存在丟數問題,目前業界公認更好的方案是基於paxos分布式一致性協議或者其它類paxos如raft方式,Google Spanner、TiDB、cockcoachDB、OB都採用了這種方式,基於Paxos協議的多副本存儲,遵循過半寫原則,支持自動選主,解決了數據的高可靠,縮短了failover時間,提高了可用性,特別是減少了運維的工作量,這種方案技術上已經很成熟,也是NewSQL資料庫底層的標配。
當然這種方式其實也可以用在傳統關系資料庫,阿里、微信團隊等也有將MySQL存儲改造支持paxos多副本的,MySQL也推出了官方版MySQL Group Cluster,預計不遠的未來主從模式可能就成為 歷史 了。
需要注意的是很多NewSQL資料庫廠商宣傳基於paxos或raft協議可以實現【異地多活】,這個實際上是有前提的,那就是異地之間網路延遲不能太高 。以銀行「兩地三中心」為例,異地之間多相隔數千里,延時達到數十毫秒,如果要多活,那便需異地副本也參與資料庫日誌過半確認,這樣高的延時幾乎沒有OLTP系統可以接受的。
資料庫層面做異地多活是個美好的願景,但距離導致的延時目前並沒有好的方案。 之前跟螞蟻團隊交流,螞蟻異地多活的方案是在應用層通過MQ同步雙寫交易信息,異地DC將交易信息保存在分布式緩存中,一旦發生異地切換,資料庫同步中間件會告之數據延遲時間,應用從緩存中讀取交易信息,將這段時間內涉及到的業務對象例如用戶、賬戶進行黑名單管理,等數據同步追上之後再將這些業務對象從黑名單中剔除。由於雙寫的不是所有資料庫操作日誌而只是交易信息,數據延遲隻影響一段時間內數據,這是目前我覺得比較靠譜的異地度多活方案。
另外有些系統進行了單元化改造,這在paxos選主時也要結合考慮進去,這也是目前很多NewSQL資料庫欠缺的功能。
Scale橫向擴展與分片機制
paxos演算法解決了高可用、高可靠問題,並沒有解決Scale橫向擴展的問題,所以分片是必須支持的。NewSQL資料庫都是天生內置分片機制的,而且會根據每個分片的數據負載(磁碟使用率、寫入速度等)自動識別熱點,然後進行分片的分裂、數據遷移、合並,這些過程應用是無感知的,這省去了DBA的很多運維工作量。以TiDB為例,它將數據切成region,如果region到64M時,數據自動進行遷移。
分庫分表模式下需要應用設計之初就要明確各表的拆分鍵、拆分方式(range、取模、一致性哈希或者自定義路由表)、路由規則、拆分庫表數量、擴容方式等。相比NewSQL資料庫,這種模式給應用帶來了很大侵入和復雜度,這對大多數系統來說也是一大挑戰。
這里有個問題是NewSQL資料庫統一的內置分片策略(例如tidb基於range)可能並不是最高效的,因為與領域模型中的劃分要素並不一致,這導致的後果是很多交易會產生分布式事務。 舉個例子,銀行核心業務系統是以客戶為維度,也就是說客戶表、該客戶的賬戶表、流水表在絕大部分場景下是一起寫的,但如果按照各表主鍵range進行分片,這個交易並不能在一個分片上完成,這在高頻OLTP系統中會帶來性能問題。
分布式SQL支持
常見的單分片SQL,這兩者都能很好支持。NewSQL資料庫由於定位與目標是一個通用的資料庫,所以支持的SQL會更完整,包括跨分片的join、聚合等復雜SQL。中間件模式多面向應用需求設計,不過大部分也支持帶拆分鍵SQL、庫表遍歷、單庫join、聚合、排序、分頁等。但對跨庫的join以及聚合支持就不夠了。
NewSQL資料庫一般並不支持存儲過程、視圖、外鍵等功能,而中間件模式底層就是傳統關系資料庫,這些功能如果只是涉及單庫是比較容易支持的。
NewSQL資料庫往往選擇兼容MySQL或者PostgreSQL協議,所以SQL支持僅局限於這兩種,中間件例如驅動模式往往只需做簡單的SQL解析、計算路由、SQL重寫,所以可以支持更多種類的資料庫SQL。
SQL支持的差異主要在於分布式SQL執行計劃生成器,由於NewSQL資料庫具有底層數據的分布、統計信息,因此可以做CBO,生成的執行計劃效率更高,而中間件模式下沒有這些信息,往往只能基於規則RBO(Rule-Based-Opimization),這也是為什麼中間件模式一般並不支持跨庫join,因為實現了效率也往往並不高,還不如交給應用去做。
存儲引擎
傳統關系資料庫的存儲引擎設計都是面向磁碟的,大多都基於B+樹。B+樹通過降低樹的高度減少隨機讀、進而減少磁碟尋道次數,提高讀的性能,但大量的隨機寫會導致樹的分裂,從而帶來隨機寫,導致寫性能下降。NewSQL的底層存儲引擎則多採用LSM,相比B+樹LSM將對磁碟的隨機寫變成順序寫,大大提高了寫的性能。不過LSM的的讀由於需要合並數據性能比B+樹差,一般來說LSM更適合應在寫大於讀的場景。當然這只是單純數據結構角度的對比,在資料庫實際實現時還會通過SSD、緩沖、bloom filter等方式優化讀寫性能,所以讀性能基本不會下降太多。NewSQL數據由於多副本、分布式事務等開銷,相比單機關系資料庫SQL的響應時間並不佔優,但由於集群的彈性擴展,整體QPS提升還是很明顯的,這也是NewSQL資料庫廠商說分布式資料庫更看重的是吞吐,而不是單筆SQL響應時間的原因。
成熟度與生態
分布式資料庫是個新型通用底層軟體,准確的衡量與評價需要一個多維度的測試模型,需包括發展現狀、使用情況、社區生態、監控運維、周邊配套工具、功能滿足度、DBA人才、SQL兼容性、性能測試、高可用測試、在線擴容、分布式事務、隔離級別、在線DDL等等,雖然NewSQL資料庫發展經過了一定時間檢驗,但多集中在互聯網以及傳統企業非核心交易系統中,目前還處於快速迭代、規模使用不斷優化完善的階段。
相比而言,傳統關系資料庫則經過了多年的發展,通過完整的評測,在成熟度、功能、性能、周邊生態、風險把控、相關人才積累等多方面都具有明顯優勢,同時對已建系統的兼容性也更好。
對於互聯網公司,數據量的增長壓力以及追求新技術的基因會更傾向於嘗試NewSQL資料庫,不用再考慮庫表拆分、應用改造、擴容、事務一致性等問題怎麼看都是非常吸引人的方案。
對於傳統企業例如銀行這種風險意識較高的行業來說,NewSQL資料庫則可能在未來一段時間內仍處於 探索 、審慎試點的階段。基於中間件+分庫分表模式架構簡單,技術門檻更低,雖然沒有NewSQL資料庫功能全面,但大部分場景最核心的訴求也就是拆分後SQL的正確路由,而此功能中間件模式應對還是綽綽有餘的,可以說在大多數OLTP場景是夠用的。
限於篇幅,其它特性例如在線DDL、數據遷移、運維工具等特性就不在本文展開對比。
總結
如果看完以上內容,您還不知道選哪種模式,那麼結合以下幾個問題,先思考下NewSQL資料庫解決的點對於自身是不是真正的痛點:
如果以上有2到3個是肯定的,那麼你可以考慮用NewSQL資料庫了,雖然前期可能需要一定的學習成本,但它是資料庫的發展方向,未來收益也會更高,尤其是互聯網行業,隨著數據量的突飛猛進,分庫分表帶來的痛苦會與日俱增。當然選擇NewSQL資料庫你也要做好承擔一定風險的准備。
如果你還未做出抉擇,不妨再想想下面幾個問題:
如果這些問題有多數是肯定的,那還是分庫分表吧。在軟體領域很少有完美的解決方案,NewSQL資料庫也不是數據分布式架構的銀彈。相比而言分庫分表是一個代價更低、風險更小的方案,它最大程度復用傳統關系資料庫生態,通過中間件也可以滿足分庫分表後的絕大多數功能,定製化能力更強。 在當前NewSQL資料庫還未完全成熟的階段,分庫分表可以說是一個上限低但下限高的方案,尤其傳統行業的核心系統,如果你仍然打算把資料庫當做一個黑盒產品來用,踏踏實實用好分庫分表會被認為是個穩妥的選擇。
很多時候軟體選型取決於領域特徵以及架構師風格,限於筆者知識與所屬行業特點所限,以上僅為個人粗淺的一些觀點,歡迎討論。
❿ 如何處理大量數據並發操作
處理大量數據並發操作可以採用如下幾種方法:
1.使用緩存:使用程序直接保存到內存中。或者使用緩存框架: 用一個特定的類型值來保存,以區別空數據和未緩存的兩種狀態。
2.資料庫優化:表結構優化;SQL語句優化,語法優化和處理邏輯優化;分區;分表;索引優化;使用存儲過程代替直接操作。
3.分離活躍數據:可以分為活躍用戶和不活躍用戶。
4.批量讀取和延遲修改: 高並發情況可以將多個查詢請求合並到一個。高並發且頻繁修改的可以暫存緩存中。
5.讀寫分離: 資料庫伺服器配置多個,配置主從資料庫。寫用主資料庫,讀用從資料庫。
6.分布式資料庫: 將不同的表存放到不同的資料庫中,然後再放到不同的伺服器中。
7.NoSql和Hadoop: NoSql,not only SQL。沒有關系型資料庫那麼多限制,比較靈活高效。Hadoop,將一個表中的數據分層多塊,保存到多個節點(分布式)。每一塊數據都有多個節點保存(集群)。集群可以並行處理相同的數據,還可以保證數據的完整性。
拓展資料:
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。