當前位置:首頁 » 操作系統 » c調度演算法

c調度演算法

發布時間: 2022-12-30 02:27:33

『壹』 常見的調度演算法總結

一、FCFS——先來先服務和短作業(進程)優先調度演算法

1. 先來先服務調度演算法。

先來先服務(FCFS)調度演算法是一種最簡單的調度演算法,該演算法既可用於作業調度, 也可用於進程調度。FCFS演算法比較有利於長作業(進程),而不利於短作業(進程)。由此可知,本演算法適合於CPU繁忙型作業, 而不利於I/O繁忙型的作業(進程)。

2. 短作業(進程)優先調度演算法。

短作業(進程)優先調度演算法(SJ/PF)是指對短作業或短進程優先調度的演算法,該演算法既可用於作業調度, 也可用於進程調度。但其對長作業不利;不能保證緊迫性作業(進程)被及時處理;作業的長短只是被估算出來的。

二、FPF高優先權優先調度演算法

1. 優先權調度演算法的類型。

為了照顧緊迫性作業,使之進入系統後便獲得優先處理,引入了最高優先權優先(FPF)調度演算法。 此演算法常被用在批處理系統中,作為作業調度演算法,也作為多種操作系統中的進程調度,還可以用於實時系統中。當其用於作業調度, 將後備隊列中若干個優先權最高的作業裝入內存。當其用於進程調度時,把處理機分配給就緒隊列中優先權最高的進程,此時, 又可以進一步把該演算法分成以下兩種:

1)非搶占式優先權演算法

2)搶占式優先權調度演算法(高性能計算機操作系統)

2. 優先權類型 。

對於最高優先權優先調度演算法,其核心在於:它是使用靜態優先權還是動態優先權, 以及如何確定進程的優先權。

3.動態優先權

高響應比優先調度演算法為了彌補短作業優先演算法的不足,我們引入動態優先權,使作業的優先等級隨著等待時間的增加而以速率a提高。 該優先權變化規律可描述為:優先權=(等待時間+要求服務時間)/要求服務時間;即 =(響應時間)/要求服務時間

三、基於時間片的輪轉調度演算法

1.時間片輪轉法。

時間片輪轉法一般用於進程調度,每次調度,把CPU分配隊首進程,並令其執行一個時間片。 當執行的時間片用完時,由一個記時器發出一個時鍾中斷請求,該進程被停止,並被送往就緒隊列末尾;依次循環。

2. 多級反饋隊列調度演算法

多級反饋隊列調度演算法多級反饋隊列調度演算法,不必事先知道各種進程所需要執行的時間,它是目前被公認的一種較好的進程調度演算法。 其實施過程如下:

1) 設置多個就緒隊列,並為各個隊列賦予不同的優先順序。在優先權越高的隊列中, 為每個進程所規定的執行時間片就越小。

2) 當一個新進程進入內存後,首先放入第一隊列的末尾,按FCFS原則排隊等候調度。 如果他能在一個時間片中完成,便可撤離;如果未完成,就轉入第二隊列的末尾,在同樣等待調度…… 如此下去,當一個長作業(進程)從第一隊列依次將到第n隊列(最後隊列)後,便按第n隊列時間片輪轉運行。

3) 僅當第一隊列空閑時,調度程序才調度第二隊列中的進程運行;

僅當第1到第( i-1 )隊列空時, 才會調度第i隊列中的進程運行,並執行相應的時間片輪轉。

4) 如果處理機正在處理第i隊列中某進程,又有新進程進入優先權較高的隊列, 則此新隊列搶占正在運行的處理機,並把正在運行的進程放在第i隊列的隊尾。

『貳』 操作系統的進程調度演算法[總結]

操作系統的進程調度演算法直接關繫到用戶的使用體驗。

如果把用戶的體驗時間,引入到計算機裡面,我們引入以下幾個概念。

周轉時間,指作業從提交系統開始,直到作業完成為止的時間間隔。包括:

是指作業周轉時間與作業實際運行服務時間的比值。
平均周轉時間和平均帶權周轉時間是衡量批處理系統調度演算法的重要准則。

先來先服務調度演算法(First Come First Served, FCFS)是最簡單的調度演算法,可以用於作業調度和進程調度。
按照作業進入系統後備作業隊列的先後次序來挑選作業,加入就緒隊列,等待執行。

FCFS是非搶占式的,易於實現,效率不高,性能不好.
有利於長作業(CPU繁忙性)而不利於短作業(I/O繁忙性)。

服務時間:作業需要運行的時間
完成時間 = 開始時間 + 服務時間
等待時間 = 開始時間 - 提交時間
周轉時間 = 完成時間 - 提交時間
帶權周轉時間 = 周轉時間 / 服務時間
響應比 = (等待時間 + 服務時間) / 服務時間 = 等待時間/服務時間 + 1

該演算法每次從後備作業隊列中挑選估計服務時間最短的一個或幾個作業,
將他們調入內存,分配必要的資源,創建進程並放入就緒隊列。
在進程調度中的原理類似。

SJF是非搶占式的,優先照顧短作業,具有很好的性能,降低平均等待時間,提高吞吐量。
但是不利於長作業,長作業可能一直處於等待狀態,出現飢餓現象;
完全未考慮作業的優先緊迫程度,不能用於實時系統。

高響應比優先調度演算法(Highest Reponse Ratio First, HRRF)是非搶占式的,主要用於作業調度。
基本思想:每次進行作業調度時,先計算後備作業隊列中每個作業的響應比,挑選最高的作業投入系統運行。
響應比 = (等待時間 + 服務時間) / 服務時間 = 等待時間 / 服務時間 + 1

由響應比分析可知,該演算法介於FCFS和SJF之間,但是每次需要計算每個作業的響應比,增加系統開銷。

『叄』 什麼是進程調度常用的進程調度演算法有哪些

無論是在批處理系統還是分時系統中,用戶進程數一般都多於處理機數、這將導致它們互相爭奪處理機。另外,系統進程也同樣需要使用處理機。這就要求進程調度程序按一定的策略,動態地把處理機分配給處於就緒隊列中的某一個進程,以使之執行。就是調度。
有先來先服務調度演算法、優先數調度演算法、時間片輪轉演算法、分級調度演算法 、最短作業時間優先(搶占式和非搶占式)、最高響應比調度演算法,樂透調度等。

『肆』 進程調度演算法

演算法原理: 就是誰先來誰就先執行

演算法優點 :易於理解且實現簡單,只需要一個隊列,公平
演算法缺點 :有利於長進程,不利於短進程,有利於CPU 繁忙的進程,不利於I/O 繁忙的進程

演算法原理: 對預計執行時間短的進程優先執行。
演算法優點 :相比FCFS 演算法,該演算法可改善平均周轉時間和平均帶權周轉時間,縮短進程的等待時間,提高系統的吞吐量。
演算法缺點: 對長進程不利,可能長時間得不到執行產生飢餓,不能判斷執行的優先順序。

演算法原理: 同時考慮每個作業的等待時間長短和估計需要的執行時間長短,從中選出響應比最高的作業投入執行。響應比R定義: R =(W+T)/T = 1+W/T
T為該作業估計需要的執行時間,W為作業在後備狀態隊列中的等待時間。執行之前系統計算每個作業的響應比,選擇其中R最大者執行。這種演算法是介於前面兩種之間的一種折中演算法。
演算法優點: 長作業也有機會投入運行,避免了飢餓。
演算法缺點: 每次調度前要計算響應比,增加系統開銷。

演算法原理: 設置一個時間片,每個進程輪流使用時間片,若一個時間片內進程還沒結束,也會被其他的進程搶占時間片而退出執行,進入等待隊列。
演算法優點: 簡單易行、平均響應時間短。
演算法缺點: 不利於處理緊急作業。時間片的大小的設置對系統性能的影響很大,因此時間片的大小應選擇恰當

演算法原理: 根據優先順序的來判斷執行哪個進程。可以分為靜態優先順序和動態優先順序,即優先順序可以根據情況改變。比如如果一個進程等了很久,我們就可以把他的優先順序適當的提高。

演算法優點 :可以優先處理緊急事件,適用於實時操作系統。

演算法缺點 :可能導致那些優先順序低的進程飢餓。

UNIX操作系統採取的便是這種調度演算法。
演算法原理

實現先說明執行隊列優先順序Q1>Q2>Q3.......>Qn,分配的時間片Qn>Qn-1>...Q1.

進程在進入待調度的隊列等待時,首先進入優先順序最高的隊列Q1等待。若在Q1隊列裡面還沒執行完,則下放到Q2裡面,等Q1裡面的進程都執行完了之後再執行Q2。以此類推。
若在低優先順序的隊列中的進程在運行時,又有新到達的作業,那麼在運行完這個時間片後,CPU馬上分配給新到達的作業(搶占式)。
在多級反饋隊列調度演算法中,規定第一個隊列的時間片略大於多數人機交互所需之處理時間時,能夠較好的滿足各種類型用戶的需要。

『伍』 什麼是調度演算法

調度演算法

通常將作業或進程歸入各種就緒或阻塞隊列。有的演算法適用於作業調度,有的演算法適用於進程調度,有的兩者都適應。

1.先來先服務(FCFS, First Come First Serve)

先來先服務(FCFS, First Come First Serve)是最簡單的調度演算法,按先後順序進行調度。

1. FCFS演算法

按照作業提交或進程變為就緒狀態的先後次序,分派CPU;

當前作業或進程佔用CPU,直到執行完或阻塞,才出讓CPU(非搶占方式)。

在作業或進程喚醒後(如I/O完成),並不立即恢復執行,通常等到當前作業或進程出讓CPU。最簡單的演算法。

2. FCFS的特點

比較有利於長作業,而不利於短作業。

有利於CPU繁忙的作業,而不利於I/O繁忙的作業。

2. 輪轉法(Round Robin)

輪轉法(Round Robin)是讓每個進程在就緒隊列中的等待時間與享受服務的時間成正比例。

1. 輪轉法

Ø 將系統中所有的就緒進程按照FCFS原則,排成一個隊列。

Ø 每次調度時將CPU分派給隊首進程,讓其執行一個時間片。時間片的長度從幾個ms到幾百ms。

Ø 在一個時間片結束時,發生時鍾中斷。

Ø 調度程序據此暫停當前進程的執行,將其送到就緒隊列的末尾,並通過上下文切換執行當前的隊首進程。

Ø 進程可以未使用完一個時間片,就出讓CPU(如阻塞)。

Ø

2. 時間片長度的確定

Ø 時間片長度變化的影響

² 過長->退化為FCFS演算法,進程在一個時間片內都執行完,響應時間長。

² 過短->用戶的一次請求需要多個時間片才能處理完,上下文切換次數增加,響應時間長。

Ø 對響應時間的要求:T(響應時間)=N(進程數目)*q(時間片)

Ø 就緒進程的數目:數目越多,時間片越小

Ø 系統的處理能力:應當使用戶輸入通常在一個時間片內能處理完,否則使響應時間,平均周轉時間和平均帶權周轉時間延長。

3. 多級反饋隊列演算法(Round Robin with Multiple Feedback)

多級反饋隊列演算法時間片輪轉演算法和優先順序演算法的綜合和發展。

優點:

² 為提高系統吞吐量和縮短平均周轉時間而照顧短進程。

² 為獲得較好的I/O設備利用率和縮短響應時間而照顧I/O型進程。

² 不必估計進程的執行時間,動態調節。

1. 多級反饋隊列演算法

² 設置多個就緒隊列,分別賦予不同的優先順序,如逐級降低,隊列1的優先順序最高。每個隊列執行時間片的長度也不同,規定優先順序越低則時間片越長,如逐級加倍。

² 新進程進入內存後,先投入隊列1的末尾,按FCFS演算法調度;若按隊列1一個時間片未能執行完,則降低投入到隊列2的末尾,同樣按FCFS演算法調度;如此下去,降低到最後的隊列,則按「時間片輪轉」演算法調度直到完成。

² 僅當較高優先順序的隊列為空,才調度較低優先順序的隊列中的進程執行。如果進程執行時有新進程進入較高優先順序的隊列,則搶先執行新進程,並把被搶先的進程投入原隊列的末尾。

²

2. 幾點說明

² I/O型進程:讓其進入最高優先順序隊列,以及時響應I/O交互。通常執行一個小時間片,要求可處理完一次I/O請求的數據,然後轉入到阻塞隊列。

² 計算型進程:每次都執行完時間片,進入更低級隊列。最終採用最大時間片來執行,減少調度次數。

² I/O次數不多,而主要是CPU處理的進程。在I/O完成後,放回優先I/O請求時離開的隊列,以免每次都回到最高優先順序隊列後再逐次下降。

² 為適應一個進程在不同時間段的運行特點,I/O完成時,提高優先順序;時間片用完時,降低優先順序。

『陸』 任務調度的演算法

任務調度演算法可分為——事件驅動調度演算法:根據事件的先後以及任務的優先順序安排任務的執行;時鍾驅動調度演算法:一般用於周期任務。
事件驅動調度 依賴外部硬體設備,通過產生中斷方式為任務調度提供信號。分兩種,集成事件驅動調度:中斷的優先順序與任務的優先順序相對應,中斷只有在其優先順序高於正在執行的任務時才會被處理器響應。 非集成事件驅動調度:任務通過外部中斷啟動,中斷優先順序與相關任務優先順序沒有關系。

『柒』 作業調度的演算法都有哪些

作業調度的演算法有:演算法有先來先服務、最短作業優先演算法、最高響應比優先演算法、基於優先數調度演算法。

1、演算法有先來先服務

最簡單的調度演算法,按作業的先後順序進行調度,只考慮每個作業的等待時間而未考慮執行時間的長短。

2、最短作業優先演算法

最短作業優先演算法是對先來先服務演算法的改進,其目標是減少平均周轉時間。對預計執行時間短的作業優先分派處理機。通常後來的短作業不搶先正在執行的作業。 只考慮執行時間而未考慮等待時間的長短。

3、最高響應比優先演算法

最高響應比優先演算法是對先來先服務方式和最短作業優先演算法方式的一種綜合平衡。最高響應比優先法調度策略同時考慮每個作業的等待時間的長短和估計需要的執行時間長短,從中選出相應比最高的作業投入執行。

4、基於優先數調度演算法

優先數調度演算法常用於批處理系統中。在進程調度中,每次調度時,系統把處理機分配給就緒隊列中優先數最高的進程。它又分為兩種:非搶占式優先數演算法和搶占式優先數演算法。

(7)c調度演算法擴展閱讀:

作業調度是指按照時間周期(年、月、日、時、分、秒等)對作業進行分割,並根據業務需求、作業長度、存儲管理及依賴性關系對作業的執行方式加以調度。主要任務是從作業後備隊列中選擇作業進入主存運行。作業調度的功能主要有以下幾方面:

1、記錄各作業在系統中的狀態;

2、從後備隊列中挑選一部分作業投入運行;

3、從被選中的作業做好執行前的准備工作;

4、在作業執行結束時,做善後處理工作。

進行作業調度有很多作業調度演算法,這些作業調度演算法要實現的目標是:

1、調度對所有作業都是公平合理的;

2、應使設備有較高的利用率(提供系統利用率);

3、每次運行盡可能多的作業(提高系統吞吐量);

4、較快的相應時間。

『捌』 單道批處理系統作業調度演算法有哪幾種

批處理系統常用調度演算法:
①、先來先服務:FCFS
②、最短作業優先
③、最短剩餘時間優先
④、響應比最高者優先
分時系統調度演算法:
①、輪轉調度
②、優先順序調度
③、多級隊列調度
④、彩票調度
實時系統調度演算法:
①、單比率調度
②、限期調度
③、最少裕度法

『玖』 磁碟調度演算法

  上文介紹了磁碟的結構,本文介紹磁碟的調度演算法相關的內容。
   本文內容

   尋找時間(尋道時間) T s :在讀/寫數據前,需要將磁頭移動到指定磁軌所花費的時間。
  尋道時間分兩步:

  則尋道時間 T s = s + m * n。

  磁頭移動到指定的磁軌,但是不一定正好在所需要讀/寫的扇區,所以需要通過磁碟旋轉使磁頭定位到目標扇區。

   延遲時間T R :通過旋轉磁碟,使磁頭定位到目標扇區所需要的時間。設磁碟轉速為r(單位:轉/秒,或轉/分),則 平均所需延遲時間T R = (1/2)*(1/r) = 1/2r。

   傳輸時間T R :從磁碟讀出或向磁碟中寫入數據所經歷的時間,假設磁碟轉速為r,此次讀/寫的位元組數為b,每個磁軌上的位元組數為N,則傳輸時間 T R = (b/N) * (1/r) = b/(rN)。

  總的平均時間 T a = T s + 1/2r + b/(rN) ,由於延遲時間和傳輸時間都是與磁碟轉速有關的,且是線性相關。而轉速又是磁碟的固有屬性,因此無法通過操作系統優化延遲時間和傳輸時間。所以只能優化尋找時間。

  演算法思想: 根據進程請求訪問磁碟的先後順序進行調度。
  假設磁頭的初始位置是100號磁軌,有多個進程先後陸續地請求訪問55、58、39、18、90、160、150、38、184號磁軌。
  按照先來先服務演算法規則,按照請求到達的順序,磁頭需要一次移動到55、58、39、18、90、160、150、38、184號磁軌。

  磁頭共移動了 45 + 3 + 19 + 21 + 72 + 70 + 10 + 112 + 146 = 498個磁軌。響應一個請求平均需要移動498 / 9 = 55.3個磁軌(平均尋找長度)。
  優點: 公平;如果請求訪問的磁軌比較集中的話,演算法性能還算可以
  缺點: 如果大量進程競爭使用磁碟,請求訪問的磁軌很分散,FCFS在性能上很差,尋道時間長

  演算法思想: 優先處理的磁軌是與當前磁頭最近的磁軌。可以保證每次尋道時間最短,但是不能保證總的尋道時間最短 。(其實是貪心演算法的思想,只是選擇眼前最優,但是總體未必最優)。

  假設磁頭的初始位置是100號磁軌,有多個進程先後陸續地請求訪問55、58、39、18、90、160、150、38、184號磁軌。

  磁頭總共移動了(100 -18)+ (184 -18) = 248個磁軌。響應一個請求平均需要移動248 / 9 = 27.5個磁軌(平均尋找長度)。
  缺點: 可能產生飢餓現象
  本例中,如果在處理18號磁軌的訪問請求時又來了一個38號磁軌的訪問請求,處理38號磁軌的訪問請求又來了一個18號磁軌訪問請求。如果有源源不斷的18號、38號磁軌訪問請求,那麼150、160、184號磁軌請求的訪問就永遠得不到滿足,從而產生飢餓現象。這里產生飢餓的原因是 磁頭在一小塊區域來回移動。

  SSTF演算法會產生飢餓的原因在於:磁頭有可能再一個小區域內來回得移動。為了防止這個問題,可以規定: 磁頭只有移動到請求最外側磁軌或最內側磁軌才可以反向移動,如果在磁頭移動的方向上已經沒有請求,就可以立即改變磁頭移動,不必移動到最內/外側的磁軌。 這就是掃描演算法的思想。由於磁頭移動的方式很像電梯,因此也叫 電梯演算法

  假設某磁碟的磁軌為0~200號,磁頭的初始位置是100號磁軌,且此時磁頭正在往磁軌號增大的方向移動,有多個進程先後陸續的訪問55、58、39、18、90、160、150、38、184號磁軌。

  磁頭共移動了(184 - 100)+ (184 -18) = 250個磁軌。響應一個請求平均需要移動 250 / 9 = 27.5個磁軌(平均尋找長度)。

  優點: 性能較好,尋道時間較短,不會產生飢餓現象。
  缺點: SCAN演算法對於各個位置磁軌的響應頻率不平均 。(假設此時磁頭正在往右移動,且剛處理過90號磁軌,那麼下次處理90號磁軌的請求就需要等待低頭移動很長一段距離;而響應了184號磁軌的請求之後,很快又可以再次響應184號磁軌請求了。)

  SCAN演算法對各個位置磁軌的響應頻率不平均,而C-SCAN演算法就是為了解決這個問題。規定只有磁頭朝某個特定方向移動時才處理磁軌訪問請求,而 返回時直接快速移動至最靠邊緣的並且需要訪問的磁軌上而不處理任何請求。
  通俗理解就是SCAN算在改變磁頭方向時不處理磁碟訪問請求而是直接移動到另一端最靠邊的磁碟訪問請求的磁軌上。

  假設某磁碟的磁軌為0~200號,磁頭的初始位置是100號磁軌,且此時磁頭正在往磁軌號增大的方向移動,有多個進程先後陸續的訪問55、58、39、18、90、160、150、38、184號磁軌。

  磁頭共移動了(184 -100)+ (184 - 18)+(90 - 18)=322個磁軌。響應一個請求平均需要移動322 / 9 = 35.8個磁軌(平均尋找長度)。

  優點: 相比於SCAN演算法,對於各個位置磁軌響應頻率很平均。
  缺點: 相比於SCAN演算法,平均尋道時間更長。

『拾』 進程調度的方式有哪兩種試列舉至少4種進程調度演算法。

進程調度的方式有非剝奪方式和剝奪方式。
非剝奪方式:
分派程序一旦把處理機分配給某進程後便讓它一直運行下去,直到進程完成或發生某事件而阻塞時,才把處理機分配給另一個進程。
剝奪方式:
當一個進程正在運行時,系統可以基於某種原則,剝奪已分配給它的處理機,將之分配給其它進程。剝奪原則有:優先權原則、短進程優先原則、時間片原則。
進程調度演算法:
1、先進先出演算法(FIFO):
演算法總是把處理機分配給最先進入就緒隊列的進程,一個進程一旦分得處理機,便一直執行下去,直到該進程完成或阻塞時,才釋放處理機。
舉例:有三個進程P1、P2和P3先後進入就緒隊列,它們的執行期分別是21、6和3個單位時間,對於P1、P2、P3的周轉時間為21、27、30,平均周轉時間為26。可見,FIFO演算法服務質量不佳,容易引起作業用戶不滿,常作為一種輔助調度演算法。
2、最短CPU運行期優先調度演算法(SCBF--Shortest CPU Burst First):
該演算法從就緒隊列中選出下一個「CPU執行期最短」的進程,為之分配處理機。
舉例:在就緒隊列中有四個進程P1、P2、P3和P4,它們的下一個執行進程調度期分別是16、12、4和3個單位時間,P1、P2、P3和P4的周轉時間分別為35、19、7、3,平均周轉時間為16。該演算法雖可獲得較好的調度性能,但難以准確地知道下一個CPU執行期,而只能根據每一個進程的執行歷史來預測。
3、時間片輪轉法:
前幾種演算法主要用於批處理系統中,不能作為分時系統中的主調度演算法,在分時系統中,都採用時間片輪轉法。簡單輪轉法:系統將所有就緒進程按FIFO規則排隊,按一定的時間間隔把處理機分配給隊列中的進程。這樣,就緒隊列中所有進程均可獲得一個時間片的處理機而運行。
4、多級反饋隊列:
多級隊列方法:將系統中所有進程分成若干類,每類為一級。多級反饋隊列方式是在系統中設置多個就緒隊列,並賦予各隊列以不同的優先權。

熱點內容
存儲器主要用來 發布:2025-05-10 15:17:34 瀏覽:425
兩台伺服器怎麼部署redis 發布:2025-05-10 15:16:09 瀏覽:902
cocoa編程 發布:2025-05-10 15:15:18 瀏覽:181
中控導航什麼配置好 發布:2025-05-10 15:15:07 瀏覽:789
個人網站的資料庫 發布:2025-05-10 15:10:17 瀏覽:118
會編程好處 發布:2025-05-10 14:58:49 瀏覽:479
編程的過程 發布:2025-05-10 14:58:38 瀏覽:342
怎麼退出伺服器開機硬體監控 發布:2025-05-10 14:53:37 瀏覽:231
長虹安卓電視關閉網路在哪裡 發布:2025-05-10 14:37:04 瀏覽:142
ubuntuhttp伺服器的搭建 發布:2025-05-10 14:33:06 瀏覽:37