當前位置:首頁 » 操作系統 » Linux設備驅動宋

Linux設備驅動宋

發布時間: 2023-02-03 09:44:24

1. linux的設備驅動一般分為幾類各有什麼特點

大致分為三類,字元驅動,塊設備驅動,網路設備驅動。
字元設備可以看成是用位元組流存取的文件

塊設備則可以看成是可以任意存取位元組數的字元設備,在應用上只是內核管理數據方式不同

網路設備可以是一個硬體設備,或者是軟體設備,他沒有相應的read write,它是面向流的一種特殊設備。

2. Linux驅動程序的工作原理

由於你的問題太長我只好轉載別人的手打的太累不好意思~~~
Linux是Unix***作系統的一種變種,在Linux下編寫驅動程序的原理和

思想完全類似於其他的Unix系統,但它dos或window環境下的驅動程序有很大的

區別.在Linux環境下設計驅動程序,思想簡潔,***作方便,功芤埠芮看?但是

支持函數少,只能依賴kernel中的函數,有些常用的***作要自己來編寫,而且調

試也不方便.本人這幾周來為實驗室自行研製的一塊多媒體卡編制了驅動程序,

獲得了一些經驗,願與Linux fans共享,有不當之處,請予指正.

以下的一些文字主要來源於khg,johnsonm的Write linux device driver,

Brennan's Guide to Inline Assembly,The Linux A-Z,還有清華BBS上的有關

device driver的一些資料. 這些資料有的已經過時,有的還有一些錯誤,我依

據自己的試驗結果進行了修正.

一. Linux device driver 的概念

系統調用是***作系統內核和應用程序之間的介面,設備驅動程序是***作系統

內核和機器硬體之間的介面.設備驅動程序為應用程序屏蔽了硬體的細節,這樣

在應用程序看來,硬體設備只是一個設備文件, 應用程序可以象***作普通文件

一樣對硬體設備進行***作.設備驅動程序是內核的一部分,它完成以下的功能:

1.對設備初始化和釋放.

2.把數據從內核傳送到硬體和從硬體讀取數據.

3.讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據.

4.檢測和處理設備出現的錯誤.

在Linux***作系統下有兩類主要的設備文件類型,一種是字元設備,另一種是

塊設備.字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際

的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,

當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際

的I/O***作.塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間

來等待.

已經提到,用戶進程是通過設備文件來與實際的硬體打交道.每個設備文件都

都有其文件屬性(c/b),表示是字元設備還蔤強檣璞?另外每個文件都有兩個設

備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個

設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分

他們.設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號

一致,否則用戶進程將無法訪問到驅動程序.

最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是

搶先式調度.也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他

的工作.如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就

是漫長的fsck.//hehe

(請看下節,實例剖析)

讀/寫時,它首先察看緩沖區的內容,如果緩沖區的數據

如何編寫Linux***作系統下的設備驅動程序

Roy G

二.實例剖析

我們來寫一個最簡單的字元設備驅動程序.雖然它什麼也不做,但是通過它

可以了解Linux的設備驅動程序的工作原理.把下面的C代碼輸入機器,你就會

獲得一個真正的設備驅動程序.不過我的kernel是2.0.34,在低版本的kernel

上可能會出現問題,我還沒測試過.//xixi

#define __NO_VERSION__

#include

#include

char kernel_version [] = UTS_RELEASE;

這一段定義了一些版本信息,雖然用處不是很大,但也必不可少.Johnsonm說所

有的驅動程序的開頭都要包含,但我看倒是未必.

由於用戶進程是通過設備文件同硬體打交道,對設備文件的***作方式不外乎就

是一些系統調用,如 open,read,write,close...., 注意,不是fopen, fread.,

但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據

結構:

struct file_operations {

int (*seek) (struct inode * ,struct file *, off_t ,int);

int (*read) (struct inode * ,struct file *, char ,int);

int (*write) (struct inode * ,struct file *, off_t ,int);

int (*readdir) (struct inode * ,struct file *, struct dirent * ,int);

int (*select) (struct inode * ,struct file *, int ,select_table *);

int (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long

int (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);

int (*open) (struct inode * ,struct file *);

int (*release) (struct inode * ,struct file *);

int (*fsync) (struct inode * ,struct file *);

int (*fasync) (struct inode * ,struct file *,int);

int (*check_media_change) (struct inode * ,struct file *);

int (*revalidate) (dev_t dev);

}

這個結構的每一個成員的名字都對應著一個系統調用.用戶進程利用系統調用

在對設備文件進行諸如read/write***作時,系統調用通過設備文件的主設備號

找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制

權交給該函數.這是linux的設備驅動程序工作的基本原理.既然是這樣,則編寫

設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域.

相當簡單,不是嗎?

下面就開始寫子程序.

#include

#include

#include

#include

#include

unsigned int test_major = 0;

static int read_test(struct inode *node,struct file *file,

char *buf,int count)

{

int left;

if (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )

return -EFAULT;

for(left = count left > 0 left--)

{

__put_user(1,buf,1);

buf++;

}

return count;

}

這個函數是為read調用准備的.當調用read時,read_test()被調用,它把用戶的

緩沖區全部寫1.

buf 是read調用的一個參數.它是用戶進程空間的一個地址.但是在read_test

被調用時,系統進入核心態.所以不能使用buf這個地址,必須用__put_user(),

這是kernel提供的一個函數,用於向用戶傳送數據.另外還有很多類似功能的

函數.請參考.在向用戶空間拷貝數據之前,必須驗證buf是否可用.

這就用到函數verify_area.

static int write_tibet(struct inode *inode,struct file *file,

const char *buf,int count)

{

return count;

}

static int open_tibet(struct inode *inode,struct file *file )

{

MOD_INC_USE_COUNT;

return 0;

} static void release_tibet(struct inode *inode,struct file *file )

{

MOD_DEC_USE_COUNT;

}

這幾個函數都是空***作.實際調用發生時什麼也不做,他們僅僅為下面的結構

提供函數指針。

struct file_operations test_fops = {

NULL,

read_test,

write_test,

NULL, /* test_readdir */

NULL,

NULL, /* test_ioctl */

NULL, /* test_mmap */

open_test,

release_test, NULL, /* test_fsync */

NULL, /* test_fasync */

/* nothing more, fill with NULLs */

};

設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序

可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),

如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能

動態的卸載,不利於調試,所以推薦使用模塊方式。

int init_mole(void)

{

int result;

result = register_chrdev(0, "test", &test_fops);

if (result < 0) {

printk(KERN_INFO "test: can't get major number ");

return result;

}

if (test_major == 0) test_major = result; /* dynamic */

return 0;

}

在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在

這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元

設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是

零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,

參數三用來登記驅動程序實際執行***作的函數的指針。

如果登記成功,返回設備的主設備號,不成功,返回一個負值。

void cleanup_mole(void)

{

unregister_chrdev(test_major, "test");

}

在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test

在系統字元設備表中佔有的表項。

一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。

下面編譯

$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c

得到文件test.o就是一個設備驅動程序。

如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後

ld -r file1.o file2.o -o molename.

驅動程序已經編譯好了,現在把它安裝到系統中去。

$ insmod -f test.o

如果安裝成功,在/proc/devices文件中就可以看到設備test,

並可以看到它的主設備號,。

要卸載的話,運行

$ rmmod test

下一步要創建設備文件。

mknod /dev/test c major minor

c 是指字元設備,major是主設備號,就是在/proc/devices里看到的。

用shell命令

$ cat /proc/devices | awk "\$2=="test" {print \$1}"

就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。

minor是從設備號,設置成0就可以了。

我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。

#include

#include

#include

#include

main()

{

int testdev;

int i;

char buf[10];

testdev = open("/dev/test",O_RDWR);

if ( testdev == -1 )

{

printf("Cann't open file ");

exit(0);

}

read(testdev,buf,10);

for (i = 0; i < 10;i++)

printf("%d ",buf);

close(testdev);

}

編譯運行,看看是不是列印出全1 ?

以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,

DMA,I/O port等問題。這些才是真正的難點。請看下節,實際情況的處理。

如何編寫Linux***作系統下的設備驅動程序

Roy G

三 設備驅動程序中的一些具體問題。

1. I/O Port.

和硬體打交道離不開I/O Port,老的ISA設備經常是佔用實際的I/O埠,

在linux下,***作系統沒有對I/O口屏蔽,也就是說,任何驅動程序都可以

對任意的I/O口***作,這樣就很容易引起混亂。每個驅動程序應該自己避免

誤用埠。

有兩個重要的kernel函數可以保證驅動程序做到這一點。

1)check_region(int io_port, int off_set)

這個函數察看系統的I/O表,看是否有別的驅動程序佔用某一段I/O口。

參數1:io埠的基地址,

參數2:io埠佔用的范圍。

返回值:0 沒有佔用, 非0,已經被佔用。

2)request_region(int io_port, int off_set,char *devname)

如果這段I/O埠沒有被佔用,在我們的驅動程序中就可以使用它。在使用

之前,必須向系統登記,以防止被其他程序佔用。登記後,在/proc/ioports

文件中可以看到你登記的io口。

參數1:io埠的基地址。

參數2:io埠佔用的范圍。

參數3:使用這段io地址的設備名。

在對I/O口登記後,就可以放心地用inb(), outb()之類的函來訪問了。

在一些pci設備中,I/O埠被映射到一段內存中去,要訪問這些埠就相當

於訪問一段內存。經常性的,我們要獲得一塊內存的物理地址。在dos環境下,

(之所以不說是dos***作系統是因為我認為DOS根本就不是一個***作系統,它實

在是太簡單,太不安全了)只要用段:偏移就可以了。在window95中,95ddk

提供了一個vmm 調用 _MapLinearToPhys,用以把線性地址轉化為物理地址。但

在Linux中是怎樣做的呢?

2 內存***作

在設備驅動程序中動態開辟內存,不是用malloc,而是kmalloc,或者用

get_free_pages直接申請頁。釋放內存用的是kfree,或free_pages. 請注意,

kmalloc等函數返回的是物理地址!而malloc等返回的是線性地址!關於

kmalloc返回的是物理地址這一點本人有點不太明白:既然從線性地址到物理

地址的轉換是由386cpu硬體完成的,那樣匯編指令的***作數應該是線性地址,

驅動程序同樣也不能直接使用物理地址而是線性地址。但是事實上kmalloc

返回的確實是物理地址,而且也可以直接通過它訪問實際的RAM,我想這樣可

以由兩種解釋,一種是在核心態禁止分頁,但是這好像不太現實;另一種是

linux的頁目錄和頁表項設計得正好使得物理地址等同於線性地址。我的想法

不知對不對,還請高手指教。

言歸正傳,要注意kmalloc最大隻能開辟128k-16,16個位元組是被頁描述符

結構佔用了。kmalloc用法參見khg.

內存映射的I/O口,寄存器或者是硬體設備的RAM(如顯存)一般佔用F0000000

以上的地址空間。在驅動程序中不能直接訪問,要通過kernel函數vremap獲得

重新映射以後的地址。

另外,很多硬體需要一塊比較大的連續內存用作DMA傳送。這塊內存需要一直

駐留在內存,不能被交換到文件中去。但是kmalloc最多隻能開辟128k的內存。

這可以通過犧牲一些系統內存的方法來解決。

具體做法是:比如說你的機器由32M的內存,在lilo.conf的啟動參數中加上

mem=30M,這樣linux就認為你的機器只有30M的內存,剩下的2M內存在vremap

之後就可以為DMA所用了。

請記住,用vremap映射後的內存,不用時應用unremap釋放,否則會浪費頁表。

3 中斷處理

同處理I/O埠一樣,要使用一個中斷,必須先向系統登記。

int request_irq(unsigned int irq ,

void(*handle)(int,void *,struct pt_regs *),

unsigned int long flags,

const char *device);

irq: 是要申請的中斷。

handle:中斷處理函數指針。

flags:SA_INTERRUPT 請求一個快速中斷,0 正常中斷。

device:設備名。

如果登記成功,返回0,這時在/proc/interrupts文件中可以看你請求的

中斷。

4一些常見的問題。

對硬體***作,有時時序很重要。但是如果用C語言寫一些低級的硬體***作

的話,gcc往往會對你的程序進行優化,這樣時序就錯掉了。如果用匯編寫呢,

gcc同樣會對匯編代碼進行優化,除非你用volatile關鍵字修飾。最保險的

辦法是禁止優化。這當然只能對一部分你自己編寫的代碼。如果對所有的代碼

都不優化,你會發現驅動程序根本無法裝載。這是因為在編譯驅動程序時要

用到gcc的一些擴展特性,而這些擴展特性必須在加了優化選項之後才能體現

出來。

關於kernel的調試工具,我現在還沒有發現有合適的。有誰知道請告訴我,

不勝感激。我一直都在printk列印調試信息,倒也還湊合。

關於設備驅動程序還有很多內容,如等待/喚醒機制,塊設備的編寫等。

我還不是很明白,不敢亂說。

3. linux下的設備驅動

你好,解決驅動問題,最簡單最容易最有效的詳細方法就是:
直接到www.drivergenius.com下載「驅動精靈」軟體,一定要是最新的,舊版的「驅動精靈」不好用,安裝好它後,雙擊打開--驅動更新--自動安裝--開始更新,它會自動在網上搜索最新的最適合你電腦的所有驅動,它會自動下載並自動完整安裝好,根本不用你動手。
這個軟體的最大優點就是:如果你電腦缺少什麼驅動它會一一幫你裝上最適合的,如果你電腦驅動殘舊問題多多它會自動更新好並自動修復。是不是非常非常的方便,推薦不怎麼懂電腦的人使用這個方法。
如果還不行,一定要先採納我的答案再+我314345040,因為這樣電腦會及時提示我,什麼問題被採納了,你具體的問題情況我也能及時打開網頁了解到,要相信你的電腦問題我會盡全力幫你解決的。g

4. LINUX 終端設備驅動

在Linux系統中,終端是一種字元型設備,它有多種類型,通常使用tty (Teletype)來簡稱各種類型的終端設備。對於嵌入式系統而言,最普遍採用的是UART (Universal Asynchronous Receiver/Transmitter)串列埠,日常生活中簡稱串口。
Linux內核中tty的層次結構它包含tty核心tty_10.c、tty或路規在n_tty.C(頭現N_11Y線路規程)和tty驅動實例xxx_tty.c,tty線路規程的工作是以特殊的方式格式化從一個用戶或者硬體收到的數據,這種格式化常常採用一個協議轉換的形式tty _io.c本身是一個標準的字元設備驅動,它對上有字元改備的職貢,買現tle_operatIonS雙貝圖效。但是tty核心層對下又定義了tty_driver的架構,這樣tty設備驅動的主體工作就變成了琪允tty_driVeT依構體中的成員,實現其中的tty_operations的成員函數,而不再是去實現file_operations這一級的工作。tty設備發送數據的流程為:tty核心從一個用戶獲取將要發送給一個tty設備的數據,tty核心將數據傳遞給tty線路規程驅動,接著數據被傳遞到tty驅動,tty驅動將數據轉換為可以發送給硬體的格式。接收數據的流程為:從tty硬體接收到的數據向上交給tty驅動,接著進入tty線路規程驅動,再進入tty核心,在這里它被一個用戶獲取。盡管一個特定的底層UART設備驅動完全可以遵循上述tty_driver的方法來設計,即定義tty_driver並實現tty_operations中的成員函數,但是鑒於串口之間的共性,Linux考慮在文件drivers'ttyliserial'serial_core.c中實現了UART設備的通用tty驅動層(我們可以稱其為串口核心層)。這樣,UART驅動的主要任務就進一步演變成了實現serial-core.c中定義的一組uart_xxx介面而不是tty_xxx介面。因此,按照面向對象的思想,可以認為tty_driver是字元設備的泛化、serial-core是tty_driver的泛化,而具體的串口驅動又是serial-core的泛化。

5. linux驅動程序結構框架及工作原理分別是什麼

一、Linux device driver 的概念x0dx0ax0dx0a系統調用是操作系統內核和應用程序之間的介面,設備驅動程序是操作系統內核和機器硬體之間的介面。設備驅動程序為應用程序屏蔽了硬體的細節,這樣在應用程序看來,硬體設備只是一個設備文件,應用程序可以象操作普通文件一樣對硬體設備進行操作。設備驅動程序是內核的一部分,它完成以下的功能:x0dx0ax0dx0a1、對設備初始化和釋放;x0dx0ax0dx0a2、把數據從內核傳送到硬體和從硬體讀取數據;x0dx0ax0dx0a3、讀取應用程序傳送給設備文件的數據和回送應用程序請求的數據;x0dx0ax0dx0a4、檢測和處理設備出現的錯誤。x0dx0ax0dx0a在Linux操作系統下有三類主要的設備文件類型,一是字元設備,二是塊設備,三是網路設備。字元設備和塊設備的主要區別是:在對字元設備發出讀/寫請求時,實際的硬體I/O一般就緊接著發生了,塊設備則不然,它利用一塊系統內存作緩沖區,當用戶進程對設備請求能滿足用戶的要求,就返回請求的數據,如果不能,就調用請求函數來進行實際的I/O操作。塊設備是主要針對磁碟等慢速設備設計的,以免耗費過多的CPU時間來等待。x0dx0ax0dx0a已經提到,用戶進程是通過設備文件來與實際的硬體打交道。每個設備文件都都有其文件屬性(c/b),表示是字元設備還是塊設備?另外每個文件都有兩個設備號,第一個是主設備號,標識驅動程序,第二個是從設備號,標識使用同一個設備驅動程序的不同的硬體設備,比如有兩個軟盤,就可以用從設備號來區分他們。設備文件的的主設備號必須與設備驅動程序在登記時申請的主設備號一致,否則用戶進程將無法訪問到驅動程序。x0dx0ax0dx0a最後必須提到的是,在用戶進程調用驅動程序時,系統進入核心態,這時不再是搶先式調度。也就是說,系統必須在你的驅動程序的子函數返回後才能進行其他的工作。如果你的驅動程序陷入死循環,不幸的是你只有重新啟動機器了,然後就是漫長的fsck。x0dx0ax0dx0a二、實例剖析x0dx0ax0dx0a我們來寫一個最簡單的字元設備驅動程序。雖然它什麼也不做,但是通過它可以了解Linux的設備驅動程序的工作原理。把下面的C代碼輸入機器,你就會獲得一個真正的設備驅動程序。x0dx0ax0dx0a由於用戶進程是通過設備文件同硬體打交道,對設備文件的操作方式不外乎就是一些系統調用,如 open,read,write,close?, 注意,不是fopen, fread,但是如何把系統調用和驅動程序關聯起來呢?這需要了解一個非常關鍵的數據結構:x0dx0ax0dx0aSTruct file_operatiONs {x0dx0ax0dx0aint (*seek) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*read) (struct inode * ,struct file *, char ,int);x0dx0ax0dx0aint (*write) (struct inode * ,struct file *, off_t ,int);x0dx0ax0dx0aint (*readdir) (struct inode * ,struct file *, struct dirent * ,int);x0dx0ax0dx0aint (*select) (struct inode * ,struct file *, int ,select_table *);x0dx0ax0dx0aint (*ioctl) (struct inode * ,struct file *, unsined int ,unsigned long);x0dx0ax0dx0aint (*mmap) (struct inode * ,struct file *, struct vm_area_struct *);x0dx0ax0dx0aint (*open) (struct inode * ,struct file *);x0dx0ax0dx0aint (*release) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fsync) (struct inode * ,struct file *);x0dx0ax0dx0aint (*fasync) (struct inode * ,struct file *,int);x0dx0ax0dx0aint (*check_media_change) (struct inode * ,struct file *);x0dx0ax0dx0aint (*revalidate) (dev_t dev);x0dx0ax0dx0a}x0dx0ax0dx0a這個結構的每一個成員的名字都對應著一個系統調用。用戶進程利用系統調用在對設備文件進行諸如read/write操作時,系統調用通過設備文件的主設備號找到相應的設備驅動程序,然後讀取這個數據結構相應的函數指針,接著把控制權交給該函數。這是linux的設備驅動程序工作的基本原理。既然是這樣,則編寫設備驅動程序的主要工作就是編寫子函數,並填充file_operations的各個域。x0dx0ax0dx0a下面就開始寫子程序。x0dx0ax0dx0a#include 基本的類型定義x0dx0ax0dx0a#include 文件系統使用相關的頭文件x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0aunsigned int test_major = 0;x0dx0ax0dx0astatic int read_test(struct inode *inode,struct file *file,char *buf,int count)x0dx0ax0dx0a{x0dx0ax0dx0aint left; 用戶空間和內核空間x0dx0ax0dx0aif (verify_area(VERIFY_WRITE,buf,count) == -EFAULT )x0dx0ax0dx0areturn -EFAULT;x0dx0ax0dx0afor(left = count ; left > 0 ; left--)x0dx0ax0dx0a{x0dx0ax0dx0a__put_user(1,buf,1);x0dx0ax0dx0abuf++;x0dx0ax0dx0a}x0dx0ax0dx0areturn count;x0dx0ax0dx0a}x0dx0ax0dx0a這個函數是為read調用准備的。當調用read時,read_test()被調用,它把用戶的緩沖區全部寫1。buf 是read調用的一個參數。它是用戶進程空間的一個地址。但是在read_test被調用時,系統進入核心態。所以不能使用buf這個地址,必須用__put_user(),這是kernel提供的一個函數,用於向用戶傳送數據。另外還有很多類似功能的函數。請參考,在向用戶空間拷貝數據之前,必須驗證buf是否可用。這就用到函數verify_area。為了驗證BUF是否可以用。x0dx0ax0dx0astatic int write_test(struct inode *inode,struct file *file,const char *buf,int count)x0dx0ax0dx0a{x0dx0ax0dx0areturn count;x0dx0ax0dx0a}x0dx0ax0dx0astatic int open_test(struct inode *inode,struct file *file )x0dx0ax0dx0a{x0dx0ax0dx0aMOD_INC_USE_COUNT; 模塊計數加以,表示當前內核有個設備載入內核當中去x0dx0ax0dx0areturn 0;x0dx0ax0dx0a}x0dx0ax0dx0astatic void release_test(struct inode *inode,struct file *file )x0dx0ax0dx0a{x0dx0ax0dx0aMOD_DEC_USE_COUNT;x0dx0ax0dx0a}x0dx0ax0dx0a這幾個函數都是空操作。實際調用發生時什麼也不做,他們僅僅為下面的結構提供函數指針。x0dx0ax0dx0astruct file_operations test_fops = {?x0dx0ax0dx0aread_test,x0dx0ax0dx0awrite_test,x0dx0ax0dx0aopen_test,x0dx0ax0dx0arelease_test,x0dx0ax0dx0a};x0dx0ax0dx0a設備驅動程序的主體可以說是寫好了。現在要把驅動程序嵌入內核。驅動程序可以按照兩種方式編譯。一種是編譯進kernel,另一種是編譯成模塊(moles),如果編譯進內核的話,會增加內核的大小,還要改動內核的源文件,而且不能動態的卸載,不利於調試,所以推薦使用模塊方式。x0dx0ax0dx0aint init_mole(void)x0dx0ax0dx0a{x0dx0ax0dx0aint result;x0dx0ax0dx0aresult = register_chrdev(0, "test", &test_fops); 對設備操作的整個介面x0dx0ax0dx0aif (result < 0) {x0dx0ax0dx0aprintk(KERN_INFO "test: can't get major number\n");x0dx0ax0dx0areturn result;x0dx0ax0dx0a}x0dx0ax0dx0aif (test_major == 0) test_major = result; /* dynamic */x0dx0ax0dx0areturn 0;x0dx0ax0dx0a}x0dx0ax0dx0a在用insmod命令將編譯好的模塊調入內存時,init_mole 函數被調用。在這里,init_mole只做了一件事,就是向系統的字元設備表登記了一個字元設備。register_chrdev需要三個參數,參數一是希望獲得的設備號,如果是零的話,系統將選擇一個沒有被佔用的設備號返回。參數二是設備文件名,參數三用來登記驅動程序實際執行操作的函數的指針。x0dx0ax0dx0a如果登記成功,返回設備的主設備號,不成功,返回一個負值。x0dx0ax0dx0avoid cleanup_mole(void)x0dx0ax0dx0a{x0dx0ax0dx0aunregister_chrdev(test_major,"test");x0dx0ax0dx0a}x0dx0ax0dx0a在用rmmod卸載模塊時,cleanup_mole函數被調用,它釋放字元設備test在系統字元設備表中佔有的表項。x0dx0ax0dx0a一個極其簡單的字元設備可以說寫好了,文件名就叫test.c吧。x0dx0ax0dx0a下面編譯 :x0dx0ax0dx0a$ gcc -O2 -DMODULE -D__KERNEL__ -c test.c _c表示輸出制定名,自動生成.o文件x0dx0ax0dx0a得到文件test.o就是一個設備驅動程序。x0dx0ax0dx0a如果設備驅動程序有多個文件,把每個文件按上面的命令行編譯,然後x0dx0ax0dx0ald ?-r ?file1.o ?file2.o ?-o ?molename。x0dx0ax0dx0a驅動程序已經編譯好了,現在把它安裝到系統中去。x0dx0ax0dx0a$ insmod ?_f ?test.ox0dx0ax0dx0a如果安裝成功,在/proc/devices文件中就可以看到設備test,並可以看到它的主設備號。要卸載的話,運行 :x0dx0ax0dx0a$ rmmod testx0dx0ax0dx0a下一步要創建設備文件。x0dx0ax0dx0amknod /dev/test c major minorx0dx0ax0dx0ac 是指字元設備,major是主設備號,就是在/proc/devices里看到的。x0dx0ax0dx0a用shell命令x0dx0ax0dx0a$ cat /proc/devicesx0dx0ax0dx0a就可以獲得主設備號,可以把上面的命令行加入你的shell script中去。x0dx0ax0dx0aminor是從設備號,設置成0就可以了。x0dx0ax0dx0a我們現在可以通過設備文件來訪問我們的驅動程序。寫一個小小的測試程序。x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0a#include x0dx0ax0dx0amain()x0dx0ax0dx0a{x0dx0ax0dx0aint testdev;x0dx0ax0dx0aint i;x0dx0ax0dx0achar buf[10];x0dx0ax0dx0atestdev = open("/dev/test",O_RDWR);x0dx0ax0dx0aif ( testdev == -1 )x0dx0ax0dx0a{x0dx0ax0dx0aprintf("Cann't open file \n");x0dx0ax0dx0aexit(0);x0dx0ax0dx0a}x0dx0ax0dx0aread(testdev,buf,10);x0dx0ax0dx0afor (i = 0; i < 10;i++)x0dx0ax0dx0aprintf("%d\n",buf[i]);x0dx0ax0dx0aclose(testdev);x0dx0ax0dx0a}x0dx0ax0dx0a編譯運行,看看是不是列印出全1 x0dx0ax0dx0a以上只是一個簡單的演示。真正實用的驅動程序要復雜的多,要處理如中斷,DMA,I/O port等問題。這些才是真正的難點。上述給出了一個簡單的字元設備驅動編寫的框架和原理,更為復雜的編寫需要去認真研究LINUX內核的運行機制和具體的設備運行的機制等等。希望大家好好掌握LINUX設備驅動程序編寫的方法。

6. Linux字元設備驅動的組成

在Linux中,字元設備驅動由如下幾個部分組成。
1.字元設備驅動模塊載入與卸載函數
在字元設備驅動模塊載入函數中應該實現設備號的申請和cdev的注冊,而在卸載函數中應實現設備號
的釋放和cdev的注銷。
Linux內核的編碼習慣是為設備定義一個設備相關的結構體,該結構體包含設備所涉及的cdev、私有
數據及鎖等信息。2.字元設備驅動的file_operations結構體中的成員函數
file_operations結構體中的成員函數是字元設備驅動與內核虛擬文件系統的介面,是用戶空間對Linux
進行系統調用最終的落實者。設備驅動的讀函數中,filp是文件結構體指針,buf是用戶空間內存的地址,該地址在內核空間不宜直
接讀寫,count是要讀的位元組數,f_pos是讀的位置相對於文件開頭的偏移。
設備驅動的寫函數中,filp是文件結構體指針,buf是用戶空間內存的地址,該地址在內核空間不宜直
接讀寫,count是要寫的位元組數,f_pos是寫的位置相對於文件開頭的偏移。
由於用戶空間不能直接訪問內核空間的內存,因此藉助了函數_from_user()完成用戶空間緩沖
區到內核空間的復制,以及_to_user()完成內核空間到用戶空間緩沖區的復制,見代碼第6行和第14
行。
完成內核空間和用戶空間內存復制的_from_user()和_to_user()的原型分別為:
unsigned long _from_user(void *to, const void _ _user *from, unsigned long count);
unsigned long _to_user(void _ _user *to, const void *from, unsigned long count);
上述函數均返回不能被復制的位元組數,因此,如果完全復製成功,返回值為0。如果復制失敗,則返
回負值。如果要復制的內存是簡單類型,如char、int、long等,則可以使用簡單的put_user()和
get_user()讀和寫函數中的_user是一個宏,表明其後的指針指向用戶空間,實際上更多地充當了代碼自注釋的
功能。內核空間雖然可以訪問用戶空間的緩沖區,但是在訪問之前,一般需要先檢查其合法性,通過
access_ok(type,addr,size)進行判斷,以確定傳入的緩沖區的確屬於用戶空間。

7. 怎樣寫linux下的USB設備驅動程序

USB驅動程序基礎
在動手寫USB驅動程序這前,讓我們先看看寫的USB驅動程序在內核中的結構,如下圖:



USB通信最基本的形式是通過端點(USB端點分中斷、批量、等時、控制四種,每種用途不同),USB端點只能往一個方向傳送數據,從主機到設備或者從設備到主機,端點可以看作是單向的管道(pipe)。所以我們可以這樣認為:設備通常具有一個或者更多的配置,配置經常具有一個或者更多的介面,介面通常具有一個或者更多的設置,介面沒有或具有一個以上的端點。驅動程序把驅動程序對象注冊到USB子系統中,稍後再使用製造商和設備標識來判斷是否已經安裝了硬體。USB核心使用一個列表(是一個包含製造商ID和設備號ID的一個結構體)來判斷對於一個設備該使用哪一個驅動程序,熱插撥腳本使用它來確定當一個特定的設備插入到系統時該自動裝載哪一個驅動程序。
上面我們簡要說明了驅動程序的基本理論,在寫一個設備驅動程序之前,我們還要了解以下兩個概念:模塊和設備文件。
模塊:是在內核空間運行的程序,實際上是一種目標對象文件,沒有鏈接,不能獨立運行,但是可以裝載到系統中作為內核的一部分運行,從而可以動態擴充內核的功能。模塊最主要的用處就是用來實現設備驅動程序。Linux下對於一個硬體的驅動,可以有兩種方式:直接載入到內核代碼中,啟動內核時就會驅動此硬體設備。另一種就是以模塊方式,編譯生成一個.ko文件(在2.4以下內核中是用.o作模塊文件,我們以2.6的內核為准,以下同)。當應用程序需要時再載入到內核空間運行。所以我們所說的一個硬體的驅動程序,通常指的就是一個驅動模塊。
設備文件:對於一個設備,它可以在/dev下面存在一個對應的邏輯設備節點,這個節點以文件的形式存在,但它不是普通意義上的文件,它是設備文件,更確切的說,它是設備節點。這個節點是通過mknod命令建立的,其中指定了主設備號和次設備號。主設備號表明了某一類設備,一般對應著確定的驅動程序;次設備號一般是區分不同屬性,例如不同的使用方法,不同的位置,不同的操作。這個設備號是從/proc/devices文件中獲得的,所以一般是先有驅動程序在內核中,才有設備節點在目錄中。這個設備號(特指主設備號)的主要作用,就是聲明設備所使用的驅動程序。驅動程序和設備號是一一對應的,當你打開一個設備文件時,操作系統就已經知道這個設備所對應的驅動程序。對於一個硬體,Linux是這樣來進行驅動的:首先,我們必須提供一個.ko的驅動模塊文件。我們要使用這個驅動程序,首先要載入它,我們可以用insmod
xxx.ko,這樣驅動就會根據自己的類型(字元設備類型或塊設備類型,例如滑鼠就是字元設備而硬碟就是塊設備)向系統注冊,注冊成功系統會反饋一個主設備號,這個主設備號就是系統對它的唯一標識。驅動就是根據此主設備號來創建一個一般放置在/dev目錄下的設備文件。在我們要訪問此硬體時,就可以對設備文件通過open、read、write、close等命令進行。而驅動就會接收到相應的read、write操作而根據自己的模塊中的相應函數進行操作了。

USB驅動程序實踐
了解了上述理論後,我們就可以動手寫驅動程序,如果你基本功好,而且寫過linux下的硬體驅動,USB的硬體驅動和pci_driver很類似,那麼寫USB的驅動就比較簡單了,如果你只是大體了解了linux的硬體驅動,那也不要緊,因為在linux的內核源碼中有一個框架程序可以拿來借用一下,這個框架程序在/usr/src/~(你的內核版本,以下同)/drivers/usb下,文件名為usb-skeleton.c。寫一個USB的驅動程序最基本的要做四件事:驅動程序要支持的設備、注冊USB驅動程序、探測和斷開、提交和控制urb(USB請求塊)(當然也可以不用urb來傳輸數據,下文我們會說到)。
驅動程序支持的設備:有一個結構體struct
usb_device_id,這個結構體提供了一列不同類型的該驅動程序支持的USB設備,對於一個只控制一個特定的USB設備的驅動程序來說,struct
usb_device_id表被定義為:
/* 驅動程序支持的設備列表 */
static struct usb_device_id
skel_table [] = {
{ USB_DEVICE(USB_SKEL_VENDOR_ID, USB_SKEL_PRODUCT_ID)
},
{ } /* 終止入口 */
};
MODULE_DEVICE_TABLE (usb,
skel_table);
對於PC驅動程序,MODULE_DEVICE_TABLE是必需的,而且usb必需為該宏的第一個值,而USB_SKEL_VENDOR_ID和USB_SKEL_PRODUCT_ID就是這個特殊設備的製造商和產品的ID了,我們在程序中把定義的值改為我們這款USB的,如:
/*
定義製造商和產品的ID號 */
#define USB_SKEL_VENDOR_ID 0x1234
#define
USB_SKEL_PRODUCT_ID
0x2345
這兩個值可以通過命令lsusb,當然你得先把USB設備先插到主機上了。或者查看廠商的USB設備的手冊也能得到,在我機器上運行lsusb是這樣的結果:
Bus
004 Device 001: ID 0000:0000
Bus 003 Device 002: ID 1234:2345 Abc Corp.

Bus 002 Device 001: ID 0000:0000
Bus 001 Device 001: ID
0000:0000
得到這兩個值後把它定義到程序里就可以了。
注冊USB驅動程序:所有的USB驅動程序都必須創建的結構體是struct
usb_driver。這個結構體必須由USB驅動程序來填寫,包括許多回調函數和變數,它們向USB核心代碼描述USB驅動程序。創建一個有效的struct
usb_driver結構體,只須要初始化五個欄位就可以了,在框架程序中是這樣的:
static struct usb_driver skel_driver
= {
.owner = THIS_MODULE,
.name = "skeleton",

.probe = skel_probe,
.disconnect = skel_disconnect,

.id_table = skel_table,
};

8. linux設備驅動程序開發應該怎麼入手

不說說你當前基礎嗎?
1.熟練使用C語言和基本數據結構
2.熟悉Linux環境編程環境
3.良好的數字電路基礎
4.了解操作系統原理,了解linux驅動的基本原理和實現方法
可按上面順序學習,多動手實踐

9. 嵌入式學習書籍有哪些

以下是華清遠見·星創客嵌入式精英訓練營提供的學習嵌入式必看的100本書:
001《大話數據結構》
002《鳥哥的 linux 私房菜》
003《瘋狂 android 講義》
004《第一行代碼》
005《linux 內核設計與實現》
006《驅動設計開發》
007《linux 內核解密》
008《unix 環境高級編程》
009《linux 內核設計與實現》
010《essential C++》
011《嵌入式 linux》
012《linux 設備驅動》
013《c 語言深度解剖》
014《linux 下的 c編程》
015《C Primer Plus(第五版)》
016《ARM 體系結構與編程(第二版)》
017《lINUX 設備驅動開發詳解(第三版)》
018《android 開發藝術探討》
019《c++plus》
020《Unix 環境高級編程》
021《與大數據同行——學習和教育的未來》
022《用戶體驗的要素》
023《編程與藝術》
024《ARM 嵌入式體系結構與介面技術》
025《cortex-m0 介面編程》
026《C 語言程序設計:現代方法》
027《C++ Primer》
028《數據結構》(嚴蔚敏)
029《演算法導論》
030《Linux 設備驅動開發》
031《代碼大全》
032《深入理解計算機系統》
033《UNIX 環境高級編程》
034《計算機安全原理》
035《UNIX 網路編程》
036《HeadFirst 設計模式》
037《linux 驅動》(宋保華)
038《C++ primer4》
039《qt5 精彩實例》
040《ldd3》
041《C++高級編程》
042《C語言教程》
043《實戰 linux 編程精髓》
044《ARM 教程》
045《JAVA 編程思想》
046《HTML+CSS 網頁設計與布局從入門到精通》
047《C 語言深度解剖》
048《深度實踐嵌入式 Linux 系統移植》
049《unix 高級編程》
050《c 嵌入式一站式教學》
051《編譯原理》
052《深度實踐嵌入式 Linux 系統移植》
053《UNIX 環境高級編程》
054《linux 網路編程》
055《C 語言程序設計》
056《unix 環境高級編程》
057《嵌入式 linuxc 語言程序設計基礎教程》
058《Java 編程思想》
059《TCP/IP 詳解》
060《linux 技術手冊》
061《C 語言深度剖析》
062《Unix 高級環境編程》
063《C++primerplus》
064《QT》
065《C 程序設計》
066《C 和指針》
067《C++primer》
068《C 程序設計語言》
069《ProgrammingC#》
070《thinking in C++》
071《Linux Device driver》
072《Linux kernel development》
073《軟體工程》
074《C 和指針》
075《Android 核心代碼》
076《Android 技術內幕》
077《Android 底層移植》
078《Unix 編程手冊(上下卷)》
079《Linux 驅動設計第三版》
080《ARM 實戰開發》
081《unix 環境高級編程》
082《tcp/ip 編程詳解》
083《Linux 網路編程》
084《Unix 編程藝術》
085《計算機程序的構造和解釋》
086《C Primer plus》
087《LINUX 權威指南》
088《LINUX 設備驅動程序》
089《The C Programming Language》
090《ajax 高級程序設計》
091《angula js 權威教程》
092《ARM 體系結構》
093《Unix 環境高級編程》
094《Linux 設備驅動程序》
095《現代操作系統》
096《TCP/IP 協議詳解》
097《嵌入式 C 語言設計模式》
098《Struts In Action》
099《c 程序設計語言(第二版)》
100《深入理解 Linux 內核(第三版)》

熱點內容
得到腳本 發布:2024-04-27 12:06:25 瀏覽:935
三星手機鎖屏忘記密碼了怎麼辦 發布:2024-04-27 12:05:41 瀏覽:518
python基礎語言 發布:2024-04-27 11:54:40 瀏覽:83
ioshttp伺服器搭建 發布:2024-04-27 11:40:26 瀏覽:912
忘記密碼如何強制刷機vivo 發布:2024-04-27 11:28:40 瀏覽:384
c語言讀取指定行 發布:2024-04-27 11:28:30 瀏覽:51
c語言中a10什麼意思 發布:2024-04-27 10:45:43 瀏覽:58
物聯網中ftp是什麼意思 發布:2024-04-27 10:41:17 瀏覽:986
銀行密碼保護在哪裡 發布:2024-04-27 10:25:23 瀏覽:189
tomcat源碼導入eclipse 發布:2024-04-27 10:25:15 瀏覽:194