當前位置:首頁 » 操作系統 » 最新遺傳演算法

最新遺傳演算法

發布時間: 2023-04-23 00:16:12

㈠ 最新的vcu軟體智能演算法有哪些

蟻群其實還是算比較新的
「智能演算法」是指在工程實踐中,經常會接觸到一些比較「新穎」的演算法或理論,比如模擬退火,遺傳演算法,禁忌搜索,神經網路,天牛須搜索演算法,麻雀搜索演算法等。這些演算法或理論都有一些共同的特性(比如模擬自然過程。它們在解決一些復雜的工程問題時大有用武之地。
智能優化演算法要解決的一般是最優化問題。最優化問題可以分為
(1)求解一個函數中,使得函數值最小的自變數取值的函數優化問題和
(2)在一個解空間裡面,尋找最優解,使目標函數值最小的組合優化問題。典型的組合優化問題有:旅行商問題(TravelingSalesmanProblem,TSP),加工調度問題(SchelingProblem),0-1背包問題(KnapsackProblem),以及裝箱問題(BinPackingProblem)等。

㈡ 怎樣解決遺傳演算法的局部最優問題

這個看看遺傳演算法的專著吧。
局部收斂,就是所謂的「早熟現象」是遺傳演算法的一個很讓人頭疼的問題。對應的措施,我舉個例子,可以是提高變異運算元的變異概率。變異運算元是跳出局部收斂的重要操作運算元,當然,遺傳演算法有很多的改進類型。這里不多說了,我介紹本書,叫《MATLAB遺傳演算法工具箱及應用》,雷英傑,西安電子科技大學出版社

㈢ 量子遺傳演算法的國內外研究現狀

當前科學技術正進入多學科互相交叉、互相滲透、互相影響的時代,生命科學與工程科學的交叉、滲透和相互促進是其中一個典型例子,也是近代科學技術發展的一個顯著特點。遺傳演算法的蓬勃發展正體現了科學發展的這一特點和趨勢。
製造機器智能一直是人類的夢想,人們為此付出了巨大的努力。人工智慧技術的出現,就是人們得到的成果。但是,近年來,隨著人工智慧應用領域的不斷拓廣,傳統的基於符號處理機制的人工智慧方法在知識表示、處理模式信息及解決組合爆炸等方面所碰到的問題已變得越來越突出,這些困難甚至使某些學者對強人工智慧提出了強烈批判,對人工智慧的可能性提出了質疑。
眾所周知,在人工智慧領域中,有不少問題需要在復雜而龐大的搜索空間中尋找最優解或准優解。像貨朗擔問題和規劃問題等組合優化問題就是典型的例子。在求解此類問題時,若不能利用問題的固有知識來縮小搜索空間則會產生搜索的組合爆炸。因此,研究能在搜索過程中自動獲得和積累有關搜索空間的知識,並能自適應地控制搜索過程,從而得到最優解或准有解的通用搜索演算法一直是令人矚目的課題。遺傳演算法就是在這種背景下產生並經實踐證明特別有效的演算法。
遺傳演算法(Genetic Algorithm, GA)是近年來迅速發展起來的一種全新的隨機搜索與優化演算法,其基本思想是基於Darw in的進化論和Mendel的遺傳學說。該演算法由密執安大學教授Holland及其學生於1975年創建。此後,遺傳演算法的研究引起了國內外學者的關注。自1985年以來.國際上已召開了多次遺傳演算法的學術會議和研討會.國際遺傳演算法學會組織召開的ICGA( International Conference on Genetic Algorithms)會議和FOGA( Workshop on Foundation of Genetic Algorithms)會議。為研究和應用遺傳演算法提供了國際交流的機會。
作為一種通用的問題求解方法,遺傳演算法採用簡單的編碼技術來表示各種復雜的結構並通過對一組編碼表示進行簡單的遺傳操作和優勝劣汰的自然選擇來指導學習和確定搜索的方向。
近年來,遺傳演算法已被成功地應用於下業、經濟答理、交通運輸、工業設計等不同領域.解決了許多問題。例如,可靠性優化、流水車間調度、作業車間調度、機器調度、設備布局設計、圖像處理以及數據挖掘等。本文將從遺傳演算法的理論和技術兩方而概述目前的研究現狀。描述遺傳演算法的主要特點、基木原理以及各種改進演算法,介紹遺傳演算法的程序設計。
遺傳程序設計是借鑒生物界的自然選擇和遺傳機制,在遺傳演算法的基礎上發展起來的搜索演算法,它己成為進化計算的一個新分支。在標準的遺傳演算法中,由定長字元串(問題的可行解)組成的群體藉助於復制、交叉、變異等遺傳操作不斷進化找到問題的最優解或次優解。遺傳程序設計運用遺傳演算法的思想,常採用樹的結構來表示計算機程序,從而解決問題。對於許多問題,包括人工智慧和機器學習上的問題都可看作是需要發現一個計算機程序,即對特定輸入產生特定輸出的程序,形式化為程序歸納,那麼遺傳程序設計提供了實現程序歸納的方法。
把遺傳演算法和計算機程序結合起來的思想出現在遺傳演算法中,Holland把產生式語言和遺傳演算法結合起來實現分類系統,還有一些遺傳演算法應用領域的研究者將類似於遺傳演算法的遺傳操作施加於樹結構的程序上。
近年來,遺傳程序設計運用遺傳演算法的思想自動生成計算機程序解決了許多問題,如預測、分類、符號回歸和圖像處理等,作為一種新技術它己經與遺傳演算法並駕齊驅。 1996年,舉行了第1次遺傳程序設計國際會議,該領域己引起越來越多的相關學者們的興趣。
1967年,Holland的學生J.D.Bagley在博士論文中首次提出「遺傳演算法(Genetic Algorithms)」一詞。此後,Holland指導學生完成了多篇有關遺傳演算法研究的論文。1971年,R.B.Hollstien在他的博士論文中首次把遺傳演算法用於函數優化。1975年是遺傳演算法研究歷史上十分重要的一年。這一年Holland出版了他的著名專著《自然系統和人工系統的自適應》(Adaptation in Natural and Artificial Systems),這是第一本系統論述遺傳演算法的專著,因此有人把1975年作為遺傳演算法的誕生年。Holland在該書中系統地闡述了遺傳演算法的基本理論和方法,並提出了對遺傳演算法的理論研究和發展極其重要的模式理論(schema theory)。該理論首次確認了結構重組遺傳操作對於獲得隱並行性的重要性。同年,K.A.De Jong完成了他的博士論文《一類遺傳自適應系統的行為分析》(An Analysis of the Behavior of a Class of Genetic Adaptive System)。該論文所做的研究工作,可看作是遺傳演算法發展進程中的一個里程碑,這是因為,他把Holland的模式理論與他的計算實驗結合起來。盡管De Jong和Hollstien 一樣主要側重於函數優化的應用研究,但他將選擇、交叉和變異操作進一步完善和系統化,同時又提出了諸如代溝(generation gap)等新的遺傳操作技術。可以認為,De Jong的研究工作為遺傳演算法及其應用打下了堅實的基礎,他所得出的許多結論,迄今仍具有普遍的指導意義。
進入八十年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。1985年,在美國召開了第一屆遺傳演算法國際會議(International Conference on Genetic Algorithms ,ICGA),並且成立國際遺傳演算法學會(International Society of Genetic Algorithms ,ISGA),以後每兩年舉行一次。
1989年,Holland的學生D.E.Goldberg出版了專著《搜索、優化和機器學習中的遺傳演算法》(Genetic Algorithms in Search , Optimization, and Machine Learning)。該書總結了遺傳演算法研究的主要成果,對遺傳演算法及其應用作了全面而系統的論述。同年,美國斯坦福大學的Koza基於自然選擇原則創造性地提出了用層次化的計算機程序來表達問題的遺傳程序設計( genetic programming, GP)方法,成功地解決了許多問題。
在歐洲,從1990年開始每隔一年舉辦一次Parallel Problem Solving from Nature 學術會議,其中遺傳演算法是會議主要內容之一。此外,以遺傳演算法的理論基礎為中心的學術會議還有Foundations of Genetic Algorithms,該會也是從1990年開始隔年召開一次。這些國際會議論文,集中反映了遺傳演算法近些年來的最新發展和動向。
1991年,L.Davis編輯出版了《遺傳演算法手冊》(Handbook of Genetic Algorithms),其中包括了遺傳演算法在工程技術和社會生活中的大量應用實例。
1992年,Koza發表了他的專著《遺傳程序設計:基於自然選擇法則的計算機程序設計》」。1994年,他又出版了《遺傳程序設計,第二冊:可重用程序的自動發現》深化了遺傳程序設計的研究,使程序設計自動化展現了新局面。有關遺傳演算法的學術論文也不斷在《Artificial Intelligence》、《Machine Learning》、《Information science》、《Parallel Computing》、《Genetic Programming and Evoluable Machines》\《IEEE Transactions on Neural Networks》,《IEEE Transactions on Signal Processing》等雜志上發表。1993年,MIT出版社創刊了新雜志《Evolutionary Computation》。1997年,IEEE又創刊了《Transactions on Evolutionary Computation》。《Advanced Computational Intelligence》雜志即將發刊,由模糊集合創始人L.A.Zadeh教授為名譽主編。目前,關於遺傳演算法研究的熱潮仍在持續,越來越多的從事不同領域的研究人員已經或正在置身於有關遺傳演算法的研究或應用之中。

㈣ Matlab問題--如何用遺傳演算法優化BP神經網路這篇文獻(中文)是如何做的

我上次發給你的程序,只要你從網上下一個matcom45就行了,直接裝在c盤就可以了,你發給我的論文變數太多用一般的遺傳演算法不行,我從網上發現了一個PID神經網路,相當好用,不用計算隱層數目,很適合用遺傳演算法進行優化,我編了一個常式回來發給你。

我真的不會用matlab的工具箱,如果一定要用matlab來做優化,恐怕我幫不了你了。

為什麼一定要用matlab,用C++自己編寫不也很好嗎?

㈤ 遺傳演算法研究進展

遺傳演算法[56,53]研究的興起是在20世紀80年代末和90年代初期,但它的歷史起源可追溯到20世紀60年代初期。早期的研究大多以對自然遺傳系統的計算機模擬為主。早期遺傳演算法的研究特點是側重於對一些復雜的操作的研究。雖然其中像自動博弈、生物系統模擬、模式識別和函數優化等給人以深刻的印象,但總的來說這是一個無明確目標的發展時期,缺乏帶有指導性的理論和計算工具的開拓。這種現象直到20世紀70年代中期由於Holland和De Jong的創造性研究成果的發表才得到改觀。當然,早期的研究成果對於遺傳演算法的發展仍然有一定的影響,尤其是其中一些有代表性的技術和方法已為當前的遺傳演算法所吸收和發展。

在遺傳演算法作為搜索方法用於人工智慧系統中之前,已有不少生物學家用計算機來模擬自然遺傳系統。尤其是Fraser的模擬研究,他於1962年提出了和現在的遺傳演算法十分相似的概念和思想。但是,Fraser和其他一些學者並未認識到自然遺傳演算法可以轉化為人工遺傳演算法。Holland教授及其學生不久就認識到這一轉化的重要性,Holland認為比起尋找這種或那種具體的求解問題的方法來說,開拓一種能模擬自然選擇遺傳機制的帶有一般性的理論和方法更有意義。在這一時期,Holland不但發現了基於適應度的人工遺傳選擇的基本作用,而且還對群體操作等進行了認真的研究。1965年,他首次提出了人工遺傳操作的重要性,並把這些應用於自然系統和人工系統中。

1967年,Bagley在他的論文中首次提出了遺傳演算法(genetic algorithm)這一術語,並討論了遺傳演算法在自動博弈中的應用。他所提出的包括選擇、交叉和變異的操作已與目前遺傳演算法中的相應操作十分接近。尤其是他對選擇操作做了十分有意義的研究。他認識到,在遺傳進化過程的前期和後期,選擇概率應合適地變動。為此,他引入了適應度定標(scaling)概念,這是目前遺傳演算法中常用的技術。同時,他也首次提出了遺傳演算法自我調整概念,即把交叉和變異的概率融於染色體本身的編碼中,從而可實現演算法自我調整優化。盡管Bagley沒有對此進行計算機模擬實驗,但這些思想對於後來遺傳演算法的發展所起的作用是十分明顯的。

在同一時期,Rosenberg也對遺傳演算法進行了研究,他的研究依然是以模擬生物進化為主,但他在遺傳操作方面提出了不少獨特的設想。1970年Cavicchio把遺傳演算法應用於模式識別中。實際上他並未直接涉及到模式識別,而僅用遺傳演算法設計一組用於識別的檢測器。Cavicchio對於遺傳操作以及遺傳演算法的自我調整也做了不少有特色的研究。

Weinberg於1971年發表了題為《活細胞的計算機模擬》的論文。由於他和Rosenberg一樣注意於生物遺傳的模擬,所以他對遺傳演算法的貢獻有時被忽略。實際上,他提出的多層次或多級遺傳演算法至今仍給人以深刻的印象。

第一個把遺傳演算法用於函數優化的是Hollstien。1971年他在論文《計算機控制系統中的人工遺傳自適應方法》中闡述了遺傳演算法用於數字反饋控制的方法。實際上,他主要是討論了對於二變數函數的優化問題。其中,對於優勢基因控制、交叉和變異以及各種編碼技術進行了深入的研究。

1975年在遺傳演算法研究的歷史上是十分重要的一年。這一年,Holland出版了他的著名專著《自然系統和人工系統的適配》。該書系統地闡述了遺傳演算法的基本理論和方法,並提出了對遺傳演算法的理論研究和發展極為重要的模式理論(schemata theory)。該理論首次確認了結構重組遺傳操作對於獲得隱並行性的重要性。直到這時才知道遺傳操作到底在干什麼,為什麼又幹得那麼出色,這對於以後陸續開發出來的遺傳操作具有不可估量的指導作用。

同年,De Jong完成了他的重要論文《遺傳自適應系統的行為分析》。他在該論文中所做的研究工作可看作是遺傳演算法發展進程中的一個里程碑,這是因為他把Holland的模式理論與他的計算實驗結合起來。盡管De Jong和Hollstien一樣主要側重於函數優化的應用研究,但他將選擇、交叉和變異操作進一步完善和系統化,同時又提出了諸如代溝(generation gap)等新的遺傳操作技術。可以認為,De Jong的研究工作為遺傳演算法及其應用打下了堅實的基礎,他所得出的許多結論迄今仍具有普遍的指導意義。

進入20世紀80年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。

隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習(Genetic Base Machine Learning),這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其他智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用。五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的智能計算方法,既同遺傳演算法具有相同之處,也有各自的特點。

隨著遺傳演算法研究和應用的不斷深入和發展,一系列以遺傳演算法為主題的國際會議十分活躍。從1985年開始,國際遺傳演算法會議,即ICGA(International Conference on Genetic Algorithm)每兩年舉行一次。在歐洲,從1990年開始也每隔一年舉辦一次類似的會議,即 PPSN(Parallel Problem Solving from Nature)會議。除了遺傳演算法外,大部分有關ES和EP的學術論文也出現在PPSN中。另外,以遺傳演算法的理論基礎為中心的學術會議有FOGA(Foundation of Genetic Algorithm)。它也是從1990年開始,隔年召開一次。這些國際學術會議論文集中反映了遺傳演算法近些年來的最新發展和動向。

㈥ 《Java遺傳演算法編程》pdf下載在線閱讀全文,求百度網盤雲資源

《Java遺傳演算法編程》網路網盤pdf最新全集下載:
鏈接: https://pan..com/s/1l6_14X1Yhcgv8kYwHqyY2g

?pwd=xv3v 提取碼: xv3v
簡介:本書簡單、直接地介紹了遺傳演算法,並且針對所討論的示例問題,給出了Java代碼的演算法實現。全書分為6章。第1章簡單介紹了人工智慧和生物進化的知識背景,這也是遺傳演算法的歷史知識背景。第2章給出了一個基本遺傳演算法的實現;第4章和第5章,分別針對機器人控制器、旅行商問題、排課問題展開分析和討論,並給出了演算法實現。在這些章的末尾,還給出了一些練習供讀者深入學習和實踐。第6章專門討論了各種演算法的優化問題。

熱點內容
xpftp外網 發布:2025-05-17 23:58:11 瀏覽:384
如何評價一個伺服器的性能 發布:2025-05-17 23:40:53 瀏覽:270
淘寶客適合什麼伺服器 發布:2025-05-17 23:39:26 瀏覽:612
python循環文件 發布:2025-05-17 23:39:22 瀏覽:828
androidstudio更新 發布:2025-05-17 23:38:22 瀏覽:643
java項目面試 發布:2025-05-17 23:30:53 瀏覽:780
若主存儲器按位元組編址 發布:2025-05-17 23:30:46 瀏覽:24
kotlinandroid 發布:2025-05-17 23:19:09 瀏覽:974
雲編程英語 發布:2025-05-17 23:18:34 瀏覽:623
androidstudio導入類 發布:2025-05-17 23:15:36 瀏覽:237