當前位置:首頁 » 操作系統 » 遺傳演算法的數學基礎

遺傳演算法的數學基礎

發布時間: 2023-06-03 13:10:41

A. 遺傳演算法求解

遺傳演算法在很多領域都得到應用;從神經網路研究的角度上考慮,最關心的是遺傳演算法在神經網路的應用。在遺傳演算法應用中,應先明確其特點和關鍵問題,才能對這種演算法深入了解,靈活應用,以及進一步研究開發。

一、遺傳演算法的特點

1.遺傳演算法從問題解的中集開始嫂索,而不是從單個解開始。

這是遺傳演算法與傳統優化演算法的極大區別。傳統優化演算法是從單個初始值迭代求最優解的;容易誤入局部最優解。遺傳演算法從串集開始搜索,復蓋面大,利於全局擇優。

2.遺傳演算法求解時使用特定問題的信息極少,容易形成通用演算法程序。

由於遺傳演算法使用適應值這一信息進行搜索,並不需要問題導數等與問題直接相關的信息。遺傳演算法只需適應值和串編碼等通用信息,故幾乎可處理任何問題。

3.遺傳演算法有極強的容錯能力

遺傳演算法的初始串集本身就帶有大量與最優解甚遠的信息;通過選擇、交叉、變異操作能迅速排除與最優解相差極大的串;這是一個強烈的濾波過程;並且是一個並行濾波機制。故而,遺傳演算法有很高的容錯能力。

4.遺傳演算法中的選擇、交叉和變異都是隨機操作,而不是確定的精確規則。

這說明遺傳演算法是採用隨機方法進行最優解搜索,選擇體現了向最優解迫近,交叉體現了最優解的產生,變異體現了全局最優解的復蓋。

5.遺傳演算法具有隱含的並行性

遺傳演算法的基礎理論是圖式定理。它的有關內容如下:

(1)圖式(Schema)概念

一個基因串用符號集{0,1,*}表示,則稱為一個因式;其中*可以是0或1。例如:H=1x x 0 x x是一個圖式。

(2)圖式的階和長度

圖式中0和1的個數稱為圖式的階,並用0(H)表示。圖式中第1位數字和最後位數字間的距離稱為圖式的長度,並用δ(H)表示。對於圖式H=1x x0x x,有0(H)=2,δ(H)=4。

(3)Holland圖式定理

低階,短長度的圖式在群體遺傳過程中將會按指數規律增加。當群體的大小為n時,每代處理的圖式數目為0(n3)。

遺傳演算法這種處理能力稱為隱含並行性(Implicit Parallelism)。它說明遺傳演算法其內在具有並行處理的特質。

二、遺傳演算法的應用關鍵

遺傳演算法在應用中最關鍵的問題有如下3個

1.串的編碼方式

這本質是問題編碼。一般把問題的各種參數用二進制編碼,構成子串;然後把子串拼接構成「染色體」串。串長度及編碼形式對演算法收斂影響極大。

2.適應函數的確定

適應函數(fitness function)也稱對象函數(object function),這是問題求解品質的測量函數;往往也稱為問題的「環境」。一般可以把問題的模型函數作為對象函數;但有時需要另行構造。

3.遺傳演算法自身參數設定

遺傳演算法自身參數有3個,即群體大小n、交叉概率Pc和變異概率Pm。

群體大小n太小時難以求出最優解,太大則增長收斂時間。一般n=30-160。交叉概率Pc太小時難以向前搜索,太大則容易破壞高適應值的結構。一般取Pc=0.25-0.75。變異概率Pm太小時難以產生新的基因結構,太大使遺傳演算法成了單純的隨機搜索。一般取Pm=0.01—0.2。

三、遺傳演算法在神經網路中的應用

遺傳演算法在神經網路中的應用主要反映在3個方面:網路的學習,網路的結構設計,網路的分析。

1.遺傳演算法在網路學習中的應用

在神經網路中,遺傳演算法可用於網路的學習。這時,它在兩個方面起作用

(1)學習規則的優化

用遺傳演算法對神經網路學習規則實現自動優化,從而提高學習速率。

(2)網路權系數的優化

用遺傳演算法的全局優化及隱含並行性的特點提高權系數優化速度。

2.遺傳演算法在網路設計中的應用

用遺傳演算法設計一個優秀的神經網路結構,首先是要解決網路結構的編碼問題;然後才能以選擇、交叉、變異操作得出最優結構。編碼方法主要有下列3種:

(1)直接編碼法

這是把神經網路結構直接用二進制串表示,在遺傳演算法中,「染色體」實質上和神經網路是一種映射關系。通過對「染色體」的優化就實現了對網路的優化。

(2)參數化編碼法

參數化編碼採用的編碼較為抽象,編碼包括網路層數、每層神經元數、各層互連方式等信息。一般對進化後的優化「染色體」進行分析,然後產生網路的結構。

(3)繁衍生長法

這種方法不是在「染色體」中直接編碼神經網路的結構,而是把一些簡單的生長語法規則編碼入「染色體」中;然後,由遺傳演算法對這些生長語法規則不斷進行改變,最後生成適合所解的問題的神經網路。這種方法與自然界生物地生長進化相一致。

3.遺傳演算法在網路分析中的應用

遺傳演算法可用於分析神經網路。神經網路由於有分布存儲等特點,一般難以從其拓撲結構直接理解其功能。遺傳演算法可對神經網路進行功能分析,性質分析,狀態分析。

遺傳演算法雖然可以在多種領域都有實際應用,並且也展示了它潛力和寬廣前景;但是,遺傳演算法還有大量的問題需要研究,目前也還有各種不足。首先,在變數多,取值范圍大或無給定范圍時,收斂速度下降;其次,可找到最優解附近,但無法精確確定最擾解位置;最後,遺傳演算法的參數選擇尚未有定量方法。對遺傳演算法,還需要進一步研究其數學基礎理論;還需要在理論上證明它與其它優化技術的優劣及原因;還需研究硬體化的遺傳演算法;以及遺傳演算法的通用編程和形式等。

B. 基本遺傳演算法介紹

遺傳演算法是群智能優化計算中應用最為廣泛、最為成功、最具代表性的智能優化方法。它是以達爾文的生物進化論和孟德爾的遺傳變異理論為基礎,模擬生物進化過程和機制,產生的一種群體導向隨機搜索技術和方法。

遺傳演算法的基本思想:首先根據待求解優化問題的目標函數構造一個適應度函數。然後,按照一定的規則生成經過基因編碼的初始群體,對群體進行評價、遺傳運算(交叉和變異)、選擇等操作。經過多次進化,獲得適應度最高的一個或幾個最優個體作為問題的最優解。

編碼是對問題的可行解的遺傳表示,是影響演算法執行效率的關鍵因素的之一。遺傳演算法中,一個解 稱為個體或染色體(chromosome),染色體由被稱為基因(gene)的離散單元組成,每個基因控制顏色體的一個或多個特性,通常採用固定長度的0-1二進制編碼,每個解對應一個唯一的二進制編碼串編碼空間中的二進制位串稱為基因型(genotype)。而實際所表示問題的解空間的對應點稱為表現型(phenotype)。

種群由個體構成,每個個體的染色體對應優化問題的一個初始解。

適應度函數是評價種群中個體對環境適應能力的唯一確定性指標,體現出「適者生存,優勝劣汰」這一自然選擇原則。

遺傳演算法在每次迭代過程中,在父代種群中採用某種選擇策略選擇出指定數目的哥特體提進行遺傳操作。最常用的選擇策略是正比選擇(proportional selection)策略。

在 交叉運算元中,通常由兩個被稱為父代(parent)的染色體組合,形成新的染色體,稱為子代(offspring)。父代是在種群中根據個體適應度進行選擇,因此適應度較高的染色體的基因更有可能被遺傳到下一代 。通過在迭代過程中不斷地應用交叉運算元,使優良個體的基因得以在種群中頻繁出現,最終使得整個種群收斂到一個最優解。

在染色體交叉之後產生的子代個體,其基因位可能以很小的概率發生轉變,這個過程稱為變異。變異是為了增強種群的多樣性,將搜索跳出局部最優解。

遺傳演算法的停止准則一般採用設定最大迭代次數或適應值函數評估次數,也可以是規定的搜索精度。

已Holland的基本GA為例介紹演算法等具體實現,具體的執行過程描述如下:

Step 1: 初始化 。隨機生成含有 個個體的初始種群 ,每個個體經過編碼對應著待求解優化問題的一個初始解。

Step 2: 計算適應值 。個體 ,由指定的適應度函數評價其適應環境的能力。不同的問題,適應度函數的構造方式也不同。對函數優化問題,通常取目標函數作為適應度函數。

Step 3: 選擇 。根據某種策略從當前種群中選擇出 個個體作為重新繁殖的下一代群體。選擇的依據通常是個體的適應度的高低,適應度高的個體相比適應度低的個體為下一代貢獻一個或多個後代的概率更大。選擇過程提現了達爾文「適者生存」原則。

Step 4: 遺傳操作 。在選出的 個個體中,以事件給定的雜交概率 任意選擇出兩個個體進行 交叉運算 ,產生兩個新的個體,重復此過程直到所有要求雜交的個體雜交完畢。根據預先設定的變異概率 在 個個體中選擇出若干個體,按一定的策略對選出的個體進行 變異運算

Step 5: 檢驗演算法等停止條件 。若滿足,則停止演算法的執行,將最優個體的染色體進行解碼得到所需要的最優解,否則轉到 Step 2 繼續進行迭代過程。

C. 遺傳演算法的核心是什麼!

遺傳操作的交叉運算元。

在自然界生物進化過程中起核心作用的是生物遺傳基因的重組(加上變異)。同樣,遺傳演算法中起核心作用的是遺傳操作的交叉運算元。所謂交叉是指把兩個父代個體的部分結構加以替換重組而生成新個體的操作。通過交叉,遺傳演算法的搜索能力得以飛躍提高。

交叉運算元根據交叉率將種群中的兩個個體隨機地交換某些基因,能夠產生新的基因組合,期望將有益基因組合在一起。

(3)遺傳演算法的數學基礎擴展閱讀

評估編碼策略常採用以下3個規范:

a)完備性(completeness):問題空間中的所有點(候選解)都能作為GA空間中的點(染色體)表現。

b)健全性(soundness): GA空間中的染色體能對應所有問題空間中的候選解。

c)非冗餘性(nonrendancy):染色體和候選解一一對應。

目前的幾種常用的編碼技術有二進制編碼,浮點數編碼,字元編碼,變成編碼等。

而二進制編碼是目前遺傳演算法中最常用的編碼方法。即是由二進制字元集{0,1}產生通常的0,1字元串來表示問題空間的候選解。

D. 遺傳演算法<sup>[1,]</sup>

遺傳演算法,又稱基因演算法(Genetic Algorithm,簡稱GA),也是一種啟發式蒙特卡洛優化演算法。遺傳演算法最早是由Holland(1975)提出,它模擬了生物適者生存、優勝劣汰的進化過程,具有不依賴於初始模型的選擇、不容易陷入局部極小、在反演過程中不用計算偏導數矩陣等優點。遺傳演算法最早由Stoffa和Sen(1991)用於地震波的一維反演,之後在地球物理資料的非線性反演中得到廣泛的應用。GA演算法對模型群體進行追蹤、搜索,即模型狀態通過模型群體傳送,具有比模擬退火法更大、更復雜的「記憶」,潛力更大。

遺傳演算法在反演中的基本思路和過程是:

(1)將生物體看成模型,模型參數看成染色體,有多少個模型的參數就有多少個染色體。對每個模型的參數(染色體)用二進制進行編碼,這個編碼就是基因。

(2)隨機生成一個模型群體(相當於生物的種群),然後在模型群體中進行繁殖,通過母本的選擇、交換和變異等遺傳操作產生下一代,然後保留較好基因,淘汰較差基因。

(3)通過一代一代的繁殖優勝劣汰的進化過程,最後所剩下的種群基本上都是最優的基因,種群趨於一致。所謂群體「一致」,即群體目標函數的方差或標准差很小,或者群體目標函數的均值接近於極值(可能是極大值或極小值),從而獲得非線性反演問題所對應的最優解或近似最優解。

下面以一個實例來簡述遺傳演算法的基本過程。

[例1]設m是正整數,且0≤m≤127,求方程φ(m)=m2的極大值。

這個例子極為簡單,只有一個模型參數,因此只有一條染色體,目標函數的極值是極大值(此例子來自阮百堯課件)。遺傳演算法通過以下7個步驟來實現:

(1)模型參數二進制編碼。

每個模型參數就是一條染色體,把十進制的模型參數表示為二進制,這就是基因。首先確定二進制碼的長度(基因的長度):

2N=[mmax(i)-mmin(i)]/Δm(i) (8.20)

其中:N為第i條染色體基因的長度(也就是第i個模型參數的二進制碼位數);[mmin(i),mmax(i)]為第i個模型參數的取值范圍;Δm(i)為第i個模型參數的解析度。這樣就把模型參數離散化了,它只能按Δm(i)的整數倍變化。基因的長度按下式計算:

地球物理反演教程

其中:c為實數;N為基因長度,是整數;int[ ]為取整函數。上式表示如果c不是整數,那麼基因長度N就是對c取整後加1,這樣保證最小解析度。

基因的編碼按下式進行:

地球物理反演教程

其中:式(8.22)是編碼公式;k為基因編碼的十進制數,是整數;int[ ]為取整函數。把k轉化為二進制就是基因的編碼。解碼是按照式(8.23)進行的。首先把一個基因的二進制編碼轉化為十進制數k,然後按式(8.23)可以計算出第i個模型參數m(i)的十進制值。

例如:電阻率參數ρ(1),它的變化范圍為10~5000Ω·m,解析度為2Ω·m,設當前參數ρ(1)=133Ω·m,按式(8.21)計算得

c=11.28482,N=12

所以二進制基因長度為13位。

利用式(8.22)計算基因編碼k的十進制數:

k=int[(133-10)/2]=61

把它轉化為二進制數為:000000111101。所以ρ(1)=133 的二進制基因編碼為:000000111101。

解碼過程就是把二進制基因編碼變為十進制數k後用式(8.23)計算:

ρ(1)=10+61×2=132(Ω·m)

注意:基因編碼並不是直接把電阻率值變為二進制。此外,133這個值在基因里不會出現,因為解析度是2,所以表示為最接近的132。

對於[例1]問題來說,選解析度為1,0~127用二進制編碼需7位。

(2)產生初始模型種群。

生物繁殖進化需要一定數量的生物體種群,因此遺傳演算法開始時需要一定數量的初始模型。為保證基因的多樣性,隨機產生大量的初始模型作為初始種群,按照上面的編碼方式進行編碼。個體在模型空間中應分布均勻,最好是模型空間各代表區域均有成員。初始模型群體大,有利於搜索,但太大會增加計算量。

為保證演算法收斂,在初始模型群體中,有時候應增加各位都為0和都為1的成員。遺傳演算法就是在這個初始模型種群的基礎上進行繁殖,進化求解的。

對於[例1]問題來說,模型空間是0~127個數字,這樣初始種群最多具有128個個體。為了簡單,隨機選擇4個個體作為初始種群。初始種群的編碼、目標函數值見表8.1。

表8.1 初始種群編碼表

(3)模型選擇。

為了生成新一代模型,需要選擇較優的個體進行配對。生物進化按照自然選擇、優勝劣汰的准則進行。對應地,遺傳演算法按照一定的准則來選擇母本(兩個),然後進行配對繁殖下一代模型,這個選擇稱為模型選擇。模型配對最基本的方法是隨機采樣,用各模型的目標函數值對所有模型目標函數的平均值的比值定義繁殖概率,即

地球物理反演教程

其中:p(mi)為繁殖概率;φ(mi)為第i個模型的目標函數;φAVG為目標函數的平均值。對於極小化問題來說,規定目標函數值高於平均值的不傳代;對於極大化問題來說,反之即可。

就[例1]來說,要求目標函數取極大值,所以規定目標函數小於平均值的模型不傳代,大於它的可以傳代。對第一代,為了防止基因丟失,可先不捨去繁殖概率小的模型,讓它與概率大的模型配對。如:本例中70與56配對,101與15配對產生子代,見表8.2。

表8.2 基因交換表

(4)基因交換。

將配對的兩個親本模型的部分染色體相互交換,其中交換點可隨機選擇,形成兩個新的子代(見表8.2)。兩個染色體遺傳基因的交換過程是遺傳演算法的「繁殖」過程,是母本的重組過程。

為了使染色體的基因交換比較徹底,Stoffa等人提出了一個交換概率px來控制選擇操作的效果。如果px的值較小,那麼交換點的位置就比較靠低位,這時的交換操作基本是低位交換,交換前後模型的染色體變化不是太大。如果px的值較大,那麼交換點的位置就比較靠高位,此時的交換操作可以在較大的染色體空間進行,交換前後模型數值變化可以很大。

在[例1]中:15、101和56、70作為母本通過交換繁殖出子代5、6、111、120。所選擇的基因交換位置見表8.2。有下劃線的,是要交換的基因位置。

(5)更新。

母本模型和子本模型如何選擇保留一定數量作為新的母本,就是模型更新。不同的策略會導致不同的結果。一般而言,若產生的新一代模型較好,則選擇新一代模型而淘汰上一代模型。否則,則必須根據一定的更新概率pu來選擇上一代模型來取代新一代中某些較劣的模型。

經過更新以後,繁殖時對子代再進行優勝劣汰的選擇。對於極大值問題,大於目標函數平均值的子代可以繁殖,小於目標函數平均值的子代不能繁殖。由於新的種群能繁殖的個體數量減小了,所以要多繁殖幾次,維持種群個體的數量保持平衡。

在[例1]中,子代較好,所以完全淘汰上一代模型,完全用子代作為新的母本。選擇子代目標函數最大的兩個模型進行繁殖,分別是111、120。

(6)基因變異。

在新的配對好的母本中,按一定比例隨機選擇模型進行變異,變異操作就是模擬自然界中的環境因素,就是按比較小的變異概率pm將染色體某位或某幾位的基因發生突變(即將0變為1或將1變為0)。

變異操作的作用是使原來的模型發生某些變化,從而成為新的個體。這樣可使群體增加多樣性。變異操作在遺傳演算法中也起著至關重要的作用。實際上,由於搜索空間的性質和初始模型群體的優劣,遺傳演算法搜索過程中往往會出現所謂的「早熟收斂」現象,即在進化過程中早期陷入局部解而中止進化。採用合適的變異策略可提高群體中個體的多樣性,從而防止這種現象的出現,有助於模型跳出局部極值。表8.3為[例1]的基因變異繁殖表。

表8.3 基因變異繁殖表

在[例1]中,用111、120分別繁殖兩次,形成4個子代,維持種群數量平衡。隨機選擇120進行變異,變異的位數也是隨機的。這里把它的第2位進行變異,即從1變為0,繁殖後形成子代為:70、110、121、127。可以看出新的子代比初始種群要好得多,其中甚至已經出現了最優解。如果對於地球物理的極小值問題,我們可以預先設置一個擬合精度,只要在種群中出現一個達到擬合精度的模型就可以終止反演了。

(7)收斂。

重復(3)~(6)的步驟,模型群體經多次選擇、交換、更新、變異後,種群個體數量大小不變,模型目標函數平均值趨於穩定,最後聚集在模型空間中一個小范圍內,則找到了全局極值對應的解,使目標函數最大或最小的模型就是全局最優模型。

對於具有多解性的地球物理反演問題來說,通過這一步有可能找到滿足擬合精度的多個模型,對於實際反演解釋、推斷具有較高的指導意義。

遺傳演算法中的各種概率包括交換概率px、變異概率pm以及更新概率pu,這些參數的選擇與設定目前尚無統一的理論指導,多數都視具體問題而定。Stoffa等(1991)的研究表明,適中的交換概率(px≈0.6)、較小的變異概率(pm≈0.01)和較大的更新概率(pu≈0.9),遺傳演算法的性能較優。

與模擬退火反演演算法相同,遺傳演算法與傳統的線性反演方法相比,該方法具有:不依賴初始模型的選擇、能尋找全局最小點而不陷入局部極小、在反演過程中不用計算雅克比偏導數矩陣等優點。另外,遺傳演算法具有並行性,隨著並行計算和集群式計算機技術的發展,該演算法將會得到越來越廣泛的研究與應用。

但是遺傳演算法作為類蒙特卡洛演算法同樣需要進行大量的正演計算,種群個體數量越大,繁衍代數越多,則計算量越大。所以和前面的最小二乘法相比,速度不是它的優勢。

E. 遺傳演算法的基本原理

遺傳演算法本質上是對染色體模式所進行的一系列運算,即通過選擇運算元將當前種群中的優良模式遺傳到下一代種群中,利用交叉運算元進行模式重組,利用變異運算元進行模式突變。

F. 遺傳演算法

遺傳演算法是從代表問題可能潛在解集的一個種群開始的,而一個種群則由經過基因編碼的一定數目的個體組成。每個個體實際上是染色體帶有特徵的實體。染色體作為遺傳物質的主要載體,即多個基因的集合,其內部表現(即基因型)是某種基因的組合,它決定了個體形狀的外部表現,如黑頭發的特徵是由染色體中控制這一特徵的某種基因組合決定的。因此,在一開始需要實現從表現型到基因型的映射即編碼工作。由於仿照基因編碼的工作很復雜,我們往往進行簡化,如二進制編碼。初始種群產生之後,按照適者生存和優勝劣汰的原理,逐代(generation)演化產生出越來越好的近似解。在每一代,根據問題域中個體的適應度(fitness)大小挑選(selection)個體,並藉助於自然遺傳學的遺傳運算元(genetic operators)進行組合交叉(crossover)和變異(mutation),產生出代表新的解集的種群。這個過程將導致種群自然進化一樣的後生代種群比前代更加適應環境,末代種群中的最優個體經過編碼(decoding),可以作為問題近似最優解。

5.4.1 非線性優化與模型編碼

假定有一組未知參量

xi(i=1,2,…,M)

構成模型向量m,它的非線性目標函數為Φ(m)。根據先驗知識,對每個未知量都有上下界αi及bi,即αi≤x≤bi,同時可用間隔di把它離散化,使

di=(bii)/N (5.4.1)

於是,所有允許的模型m將被限制在集

xii+jdi(j=0,1,…,N) (5.4.2)

之內。

通常目標泛函(如經濟學中的成本函數)表示觀測函數與某種期望模型的失擬,因此非線性優化問題即為在上述限制的模型中求使Φ(m)極小的模型。對少數要求擬合最佳的問題,求目標函數的極大與失擬函數求極小是一致的。對於地球物理問題,通常要進行殺重離散化。首先,地球模型一般用連續函數表示,反演時要離散化為參數集才能用於計算。有時,也將未知函數展開成已知基函數的集,用其系數作為離散化的參數集xi,第二次離散化的需要是因為每一個未知參數在其變化范圍內再次被離散化,以使離散模型空間最終包含著有限個非線性優化可選擇的模型,其個數為

地球物理數據處理教程

其中M為未知參數xi的個數。由此式可見,K決定於每個參數離散化的間隔di及其變化范圍(αi,bi),在大多數情況下它們只能靠先驗知識來選擇。

一般而言,優化問題非線性化的程度越高,逐次線性化的方法越不穩定,而對蒙特卡洛法卻沒有影響,因為此法從有限模型空間中隨機地挑選新模型並計算其目標函數 Φ(m)。遺傳演算法與此不同的是同時計算一組模型(開始時是隨機地選擇的),然後把它進行二進制編碼,並通過繁殖、雜交和變異產生一組新模型進一步有限的模型空間搜索。編碼的方法可有多種,下面舉最簡單的例說明之,對於有符號的地球物理參數反演時的編碼方式一般要更復雜些。

假設地球為有三個水平層的層次模型,含層底界面深度hj(j=1,2,3)及層速度vj(j=1,2,3)這兩組參數。如某個模型的參數值為(十進制):

h1=6,h2=18,h3=28,單位為10m

v1=6,v2=18,v3=28,單位為 hm/s

按正常的二進制編碼法它們可分別用以下字元串表示為:

地球物理數據處理教程

為了減少位元組,這種編碼方式改變了慣用的單位制,只是按精度要求(深度為10m,波速為hm/s)來規定參數的碼值,同時也意味著模型空間離散化間距di都規格化為一個單位(即10m,或hm/s)。當然,在此編碼的基礎上,還可以寫出多種新的編碼字元串。例如,三參數值的對應位元組順序重排,就可組成以下新的二進制碼串:

地球物理數據處理教程

模型參數的二進制編碼是一種數學上的抽象,通過編碼把具體的非線性問題和生物演化過程聯系了起來,因為這時形成的編碼字元串就相當於一組遺傳基因的密碼。不僅是二進制編碼,十進制編碼也可直接用於遺傳演算法。根據生物系統傳代過程的規律,這些基因信息將在繁殖中傳到下一帶,而下一代將按照「適者生存」的原則決定種屬的發展和消亡,而優化准則或目標函數就起到了決定「適者生存」的作用,即保留失擬較小的新模型,而放棄失擬大的模型。在傳帶過程中用編碼表示的基因部分地交合和變異,即字元串中的一些子串被保留,有的改變,以使傳代的過程向優化的目標演化。總的來說,遺傳演算法可分為三步:繁殖、雜交和變異。其具體實現過程見圖5.8。

圖5.8 遺傳演算法實現過程

5.4.2 遺傳演算法在地震反演中的應用

以地震走時反演為例,根據最小二乘准則使合成記錄與實測數據的擬合差取極小,目標函數可取為

地球物理數據處理教程

式中:Ti,0為觀測資料中提取出的地震走時;Ti,s為合成地震或射線追蹤算出的地震走時;ΔT為所有合成地震走時的平均值;NA為合成地震數據的個數,它可以少於實測Ti,0的個數,因為在射線追蹤時有陰影區存在,不一定能算出合成數據Tj,0。利用射線追蹤計算走時的方法很多,參見上一章。對於少數幾個波速為常數的水平層,走時反演的參數編碼方法可參照上一節介紹的分別對深度和速度編碼方法,二進制碼的字元串位數1不會太大。要注意的是由深度定出的字元串符合數值由淺到深增大的規律,這一約束條件不應在雜交和傳代過程中破壞。這種不等式的約束(h1<h2<h3…)在遺傳演算法中是容易實現的。

對於波場反演,較方便的做法是將地球介質作等間距的劃分。例如,將水平層狀介質細分為100個等厚度的水平層。在上地殼可假定波速小於6400 m/s(相當於解空間的硬約束),而波速空間距為100m/s,則可將波速用100m/s為單位,每層用6位二進制字元串表示波速,地層模型總共用600位二進制字元串表示(l=600)。初始模型可隨機地選取24~192個,然後通過繁殖雜交與變異。雜交概率在0.5~1.0之間,變異概率小於0.01。目標函數(即失擬方程)在頻率域可表示為

地球物理數據處理教程

式中:P0(ωk,vj)為實測地震道的頻譜;ωk為角頻率;vj為第j層的波速;Ps(ωk,vj)為相應的合成地震道;A(ωk)為地震儀及檢波器的頻率濾波器,例如,可取

A(ω)=sinC4(ω/ωN) (5.4.6)

式中ωN為Nyquist頻率,即ωN=π/Δt,Δt為時間采樣率。參數C為振幅擬合因子,它起到合成與觀測記錄之間幅度上匹配的作用。C的計算常用地震道的包絡函數的平均比值。例如,設E[]為波動信號的包絡函數,可令

地球物理數據處理教程

式中:tmax為包絡極大值的對應時間;J為總層數。包絡函數可通過復數道的模擬取得。

用遺傳演算法作波速反演時失擬最小的模型將一直保存到迭代停止。什麼時候停止傳代還沒有理論上可計算的好辦法,一般要顯示解空間的搜索范圍及局部密度,以此來判斷是否可以停止傳代。值得指出的是,由(5.4.4)和(5.4.5)式給出的目標函數對於有誤差的數據是有問題的,反演的目標不是追求對有誤差數據的完美擬合,而是要求出准確而且解析度最高的解估計。

遺傳演算法在執行中可能出現兩類問題。其一稱為「早熟」問題,即在傳代之初就隨機地選中了比較好的模型,它在傳代中起主導作用,而使其後的計算因散不開而白白浪費。通常,增加Q值可以改善這種情況。另一類問題正相反,即傳相當多代後仍然找不到一個特別好的解估計,即可能有幾百個算出的目標函數值都大同小異。這時,最好修改目標函數的比例因子(即(5.4.5)式的分母),以使繁殖概率Ps的變化范圍加大。

對於高維地震模型的反演,由於參數太多,相應的模型字元串太長,目前用遺傳演算法作反演的計算成本還嫌太高。實際上,為了加快計算,不僅要改進反演技巧和傳代的控制技術,而且還要大幅度提高正演計算的速度,避免對遺傳演算法大量的計算花費在正演合成上。

G. 遺傳演算法的基本步驟

遺傳演算法的基本步驟如下:

(1)初始化:設置進化代數計數器t=0,設置最大進化代數T,隨機生成M個個體作為初始群體P(0)。

(2)個體評價:計算群體P(t)中各個個體的適應度。

(3)選擇運算:將選擇運算元作用於群體。選擇的目的是把優化的個體直接遺傳到下一代或通過配對交叉產生新的個體再遺傳到下一代。選擇操作是建立在群體中個體的適應度評估基礎上的。

遺傳演算法根據大自然中生物體進化規律而設計提出的。是模擬達爾文生物進化論的自然選擇和遺傳學機理的生物進化過程的計算模型,是一種通過模擬自然進化過程搜索最優解的方法。該演算法通過數學的方式,利用計算機模擬運算,將問題的求解過程轉換成類似生物進化中的染色體基因的交叉、變異等過程。

在求解較為復雜的組合優化問題時,相對一些常規的優化演算法,通常能夠較快地獲得較好的拍昌唯優化結果。遺傳演算法已被人們廣泛地應用於組合優化、機器學習、信號處理、自適應控制和人工生命等襲培領域。

熱點內容
關閉ip訪問 發布:2024-04-19 15:59:18 瀏覽:728
大屏安卓系統哪個好 發布:2024-04-19 15:49:10 瀏覽:790
解壓瀏覽器 發布:2024-04-19 15:39:22 瀏覽:573
pythonutfgbk 發布:2024-04-19 15:32:20 瀏覽:219
騰訊雲伺服器搭建網站打不開 發布:2024-04-19 15:32:15 瀏覽:965
光遇腳本輔助下載免費ios 發布:2024-04-19 15:22:11 瀏覽:241
表格VB腳本 發布:2024-04-19 15:13:07 瀏覽:778
python生成器表達式 發布:2024-04-19 15:12:10 瀏覽:745
獲取文件夾文件名 發布:2024-04-19 14:45:51 瀏覽:247
嗶咔本地緩存怎麼看 發布:2024-04-19 14:36:00 瀏覽:105