演算法示意圖
⑴ Mallat演算法
6.9.1.1 尺度空間的有限分解
MRA框架表明f(t)∈L2(R)可分解為無窮個小波分量的直和,但在實際應用中,僅知道f(t)的近似函數。為不失一般性,可假設原信號是在a=1或j=0的解析度下測得的,用f0(t)表示,它屬於子空間V0。而子空間V0又可分解成兩個子空間。因此,在MRA框架下理解為f0(t)∈V0,這樣就有如下的尺度空間的有限分解表現
V0=V1⊕W1=(V1⊕W1)⊕W0=(V2⊕W2)⊕W1
=(Vj⊕Wj)⊕Wj-1⊕Wj-2⊕…⊕W1
︙
=VJ+WJ⊕WJ-1⊕WJ-2⊕…⊕W1
其中子空間及分量分別為
地球物理信息處理基礎
V0的有限分解關系僅是MRA無窮分解中的一部分。因此,就子空間而言、就函數分量而言以及就頻率范圍而言,有限分解的含義都與MRA相同。例如,V0中的元素f0(t)是有限頻率范圍的,fJ(t)∈VJ是f0(t)的最低頻表現,Wj中元素δj(t)是具有特定帶寬的,它們互不重疊,這些頻帶的總和就是f0(t)的頻率范圍。
為了數字計算和分析處理的目的,需要將fj(t)和δj(t)用離散數據來表示。顯然,{cj,k}∈l2是合適的,因為
6.9.1.2 分解演算法
分解演算法要實現的目標是:在{φ(t-k)}是標准正交基條件下,已知{cj-1,k}、{hk}和{gk},求出{cj,k}和{dj,k}。
ψ(t)關於φ(t)的兩尺度關系式(6-95)提供了一條由尺度函數φ(t)構造母小波ψ(t)的途徑。根據尺度函數
地球物理信息處理基礎
和小波函數
地球物理信息處理基礎
得到
地球物理信息處理基礎
用l取代2k+l,上式成為
地球物理信息處理基礎
計算f(t)∈L2(R)與上式兩端的內積,便得到如下計算小波級數系數的一個公式
地球物理信息處理基礎
式中cj-1,l=<fj,φj-1,l>=<f,φj-1,l>是信號f(t)與φj-1,l(t)的內積,即cj,l=<f,φj,l>。信號在Vj的正交投影
地球物理信息處理基礎
由此可以計算f(t)與φj,k(t)的內積,即
地球物理信息處理基礎
在數學上,fj(t)是平方可積連續函數,它是L2(R)的元素;cj,l(l∈Z)是平方可和序列,它是平方可和序列矢量空間l2(Z)中的元素。
綜合式(6-109)和(6-110),得到一般的分解公式
地球物理信息處理基礎
式(6-111)的實現過程如圖6-26所示,每個尺度j所存儲的數據{cj,k}都是按整數編號的。以j尺度層為基礎來觀察j-1尺度層,j尺度層的采樣節點編號k對應著j-1尺度層上編號為2k的采樣節點,或者說。j-1尺度的采樣節點是在j尺度采樣節點基礎上均勻加密的結果;若以j-1尺度層為基礎來觀察j尺度層,則j-1尺度層上隔2取樣(「隔1取1」)的節點正好對應著j尺度層上的采樣節點。圖6-26表明了由j-1尺度向j尺度的變換過程,{hk}可看做濾波器的單位沖激響應(權系數)。假設{hk}僅有6個元素,則式(6-111)所表明的變換過程相當於把{h-2,h-1,h0,h1,h2,h3,}作為權值,其中心點h0對准{cj,k}後再作加權平均,即
地球物理信息處理基礎
這一實現過程是非常快捷的,相當於先計算序列cj-1,k(k∈Z)與
圖6-26 分解演算法計算{cj,k}示意圖
圖6-26雖然僅表明由{cj-1,k}計算{cj,k}的變換過程,它同樣也表明了由{cj-1,k}計算{dj,k}的變換過程,只不過要將{hk}換成{gk}而已。對正交小波而言,gk=(-1)kh-k+1是由{hk}決定的。
由c0,k開始,利用式(6-111)進行迭代運算,陸續計算出c1,k、c2,k等等,與此同時,利用c0,k、c1,k、c2,k等值,同樣不斷計算出d1,k、d2,k等小波級數系數值。
式(6-111)所表明的計算過程由運算元表示會更簡單些。記Aj={cj,k},Dj={dj,k}。記運算元H:l2➝l2,其運算意義如式(6-111)的第1式所示,即
地球物理信息處理基礎
同樣,記運算元G:l2➝l2,其運算意義如式(6-111)的第2式所示,即
地球物理信息處理基礎
採用運算元表示後,式(6-111)所表明的分解演算法結構如圖6-27所示。它表明
Aj=HjA0;Dj=GHj-1A0
即A0經H運算元j次作用後即可獲得Aj,A0經H運算元j-1次作用後再經G運算元作用1次即可獲得Dj。
圖6-27 分解演算法結構示意圖
圖6-27還表明,只要在細密采樣間隔的尺度層次上給定A0,就可利用分解演算法快速地獲得較粗采樣間隔尺度層上的有關數據Aj和Dj(0<j≤J)。假設實際問題中A0有N個數據,則2尺度層上的A1和D1各有N/2個數據,依此類推;還假設{hk}和{gk}分別有M個數據;那麼,用A0計算A1和D1共需2MN/2次運算,從2到3尺度層共需2MN/4次運算,依此類推可知,要得到Aj和Dj(0<j≤J)共需2MN(2-1+2-2+…2-J)次運算。由此可見,分解演算法是快速的。
原信號f0(t)具有下列唯一分解
地球物理信息處理基礎
δj是信號在Wj(j=1,2,…,J)各子空間上的正交投影,它們是從一個較精細的逼近變成較粗略的逼近(兩個逼近的解析度相鄰近)時所丟失的信息,即
地球物理信息處理基礎
可將這一不斷降低逼近解析度的過程看成是「一層又一層地把信號進行剝皮」的過程。當J選得足夠大時,「剝」下來的信息總和
地球物理信息處理基礎
足夠多,將足以精確表示原信號f0(t),而最終的逼近信號fJ(t)的解析度已經非常低,這樣反而可以把式(6-113)當成原信號的估計,而把fJ(t)看成是估計誤差。這就是說,用小波級數在所有解析度下的全部系數(j=1,2,…,J)來代替原信號,其誤差fJ(t)可以任意小。按照這種解釋,式(6-111)演算法就是將f0(t)的信息(c0,k是它的離散表示)表示成c1,k~cJ,k等信息和一個估計誤差(實際上它是在解析度最低即2J下的逼近)cJ,k。這一過程實際上是在一次又一次地改變著正交基(或子空間)。
6.9.1.3 信號重構演算法
重構演算法是分解演算法的逆過程。此時已知數據{cj,k}和{dj,k}(0≤j≤J),希望利用這些數據快速准確地重構出原始數據。
一般而言,相鄰兩解析度下的逼近信號存在著下列關系:
地球物理信息處理基礎
計算上式左右兩端與φj-l,k(t)的內積,得
地球物理信息處理基礎
為了便於討論運算過程,在上式中令m=p-2k,所以信號重構公式為
地球物理信息處理基礎
根據式(6-115)計算{
可以看出,計算{
地球物理信息處理基礎
第一步計算j-1尺度層上的偶數編號采樣點處的{
地球物理信息處理基礎
計算出j-l尺度層上偶數編號節點處的相應值。
第二步計算j-1尺度層上的奇數編號的采樣點處的{
地球物理信息處理基礎
圖6-28也表明了式(6-115)中{dj,k}計算{
地球物理信息處理基礎
為了更清楚地表明{cj,p}和{dj,p},0≤ j≤J-1重構{c0,p}的關系,與前述的分解情況一樣,記Aj={cj,p},Dj={dj,p},採用運算元的記號H*:l2➝l2,其運算意義為
地球物理信息處理基礎
記G*:l2➝l2,其運算意義為
地球物理信息處理基礎
在這些重構運算元意義下,式(6-115)可表示為
地球物理信息處理基礎
於是從尺度層j=J到尺度層j=0的重構演算法過程可用圖6-29表示。重構演算法也是快速的,現估計其計算量。設{hm}和{gm}分別有M個數據,0尺度層{cj,0}有N個數據,則尺度層1上{cj,1}有N/2個數據,用{c1,p}計算{
2MN(2-1+2-2+…2-J)
圖6-29 信號重構演算法示意圖
圖6-30所示的是信號分解與重構演算法的計算流程示意圖,圖中的「
地球物理信息處理基礎
將合成與分析演算法合起來畫成圖6-30所示的形式,稱之為Mallat演算法。
圖6-30 信號分解與重構演算法示意圖
6.9.1.4 Mallat演算法實現中的一些問題
Mallat演算法是一種純數字的快速遞推演算法,在使用Mallat演算法時,有一些具體問題需引起注意。
(1)對正交尺度函數φ(t)而言,Mallat演算法中僅需數據{c0,k}和{hk}可進行快速的分解和重構遞推運算。要存儲的數據為{cJ,k}和{dj,k},0<j≤J,這些有用的數據的存儲量等於{c0,k}的數據存儲量。特別值得強調的是,Mallat演算法中隱含著兩類關系,一類是關於多分辨分析方面的,例如對0<j≤J,有
地球物理信息處理基礎
fj-1(t)=fj(t)+δj(t)
地球物理信息處理基礎
另一類關系是由於尺度函數φ(t)平移正交性產生的,例如
cj,k=<f,φj,k>;dj,k=<δj,ψj,k>
gk=(-1)kh-k+1,0<j≤J
Mallat演算法正是利用了這些關系,在演算法實施過程中不需尺度函數φ(t)和小波函數ψ(t)的具體形式,只要求它們存在並找出{hk},就可以順利地進行分解和重構處理了。因此,只要查得正交尺度函數雙尺度方程的傳遞系數{hk},就可以應用Mallat演算法了。
順便指出,如果尺度函數φ(t)(例如樣條函數)不是平移正交的,它雖然可以生成MRA,但由此構造出的樣條小波ψ(t)僅關於尺度正交,沒有平移正交性。此時
地球物理信息處理基礎
所以Mallat演算法不再適用,必須另行推導相應的分解和重構演算法。
(2)初始數據{c0,k}的選用,在正交小波分解中,φ(t)是正交尺度函數,0尺度層上的展180開系數{c0,k}=<f(t),φ0,k(t)>,用復雜的計算來確定初始數據{c0,k}是不合算的,應採用變通處理辦法,即簡單採用{c0,k}={f(tk)},用細尺度層上的采樣值作為初始數據{c0,k}。這種做法似乎有些不嚴密,但可以證明,雖然{f(tk)}作為{c0,k}的近似值時有微小誤差,但數據{f(tk)}同樣有效地表現了f0(t)的變化波動狀況和有效的頻率范圍,這種替代不會影響對f0(t)的時頻分析;同時還應看到,用{f(tk)}作初始數值,不僅可使問題簡單化,而且也可使Mallat演算法准確地分解和重構初始數據。總之,用{f(tk)}替代{c0,k}是實用方便的。
(3)分解層數和采樣間隔的關系,這個問題主要從以下幾方面考慮便可得出結論。
第一,因為最細的0尺度層的采樣間隔T決定了f0(t)的頻率范圍,由取樣效應可知,最大的頻率范圍為|ω(f0)|≤1/(2T);同樣,最粗的J尺度層的采樣間隔為J=2JT,最低的頻率范圍為|ω(fJ)|≤1/(2T)=2-J|ω(f0)|。於是可從需要分辨的最高頻率和需要分辨的最低頻率這兩個指標來決定最細尺度層的采樣間隔和數據分解的層數。
第二,在最細的0尺度層上,應取用多少個數據才能滿足J個層次的數據分解呢?在Mallat演算法中,{c1,k}的數據量僅為{c0,k}數據量的一半,依此類推。同樣,在J尺度層至少要取用NJ個數據才能表現低頻量,於是推知,在0尺度層,至少取用N=2JNJ個數據,才能滿足J個分解層次的需要。
(4)在Mallat演算法的運算中,需用到所存儲的數據外面的數據(見圖6-31),圖中實線框內數據是要存儲的。在分解演算法中,若{hk}僅有6個數據,由圖6-26可知,要用到實線框外的數據c0,-2和c0,-1才能計算出c1,-1,要用到c0,N0+1、c0,N0+2和c0,N0+3才能計算出c1,N1,其它層次的情形類似。由於細密采樣層(圖6-31中對應著j=0的尺度層次)中的近似函數f0(t)∈L2(R),當t➝∞時,f0(t)➝0,實線框內足夠多的采樣數據{c0,k},k=0,1,…,N0,已反應了f0(t)的基本特性,f0(t)在圖6-31實線框外的數據幾乎消失,因此在實際分解過程中可簡單地令實線框外的數據為零。同樣,重構過程也會用到實線框以外的數據(見圖6-28),也可以簡單地令實線框外的數據為零。
圖6-31 Mallat演算法涉及沒有存儲的數據示意圖
另一種辦法也是常用的。在最細尺度層上較多地取用數據,在計算過程中適當地多存儲些數據,如圖6-31中虛線框所示。此時應以實線框存儲數據作為分解重構演算法和進行數字分析的依據。
6.9.1.5 Mallat 演算法所表現的頻域分解特點
有限尺度空間的正交小波子空間的直和分解關系,例如,
V0=V1⊕W1=V2⊕W2⊕W1=V3⊕W3⊕W2⊕W1
在Mallat演算法中是通過運算元H和G來表現的。數據Aj表徵fj(t)∈Vj,數據Dj表徵δj(t)∈Wj,那麼在Mallat演算法中,Aj=HAj-1;Dj=GAj-1,從而實現了子空間的分解。這種子空間分解和運算元H與G之間的關系示意於圖6-32中(以V0分解成3層為例)。
圖6-32 Mallat演算法所確定的數據分解和子空間分解的對應關系
因為fj-1(t)和fj(t)都是有限頻率范圍的,fj(t)的頻率范圍僅是fj-1(t)的相對低頻部分,δj(t)的頻率范圍是fj-1(t)的相對高頻部分,所以δj(t)是fj-1(t)的關於高頻帶的分量。換成子空間來描述,Vj-1所表現的頻率范圍被分解為兩部分,一部分是由Vj表現的低頻部分,另一部分是由Wj表現的頻帶部分。因此,V0尺度空間的直和分解,表明把f0(t)的頻率范圍分解為由W1、W2、W3和V3所表現的頻帶,且這些頻帶是互不重疊的。這里所說的W2所表現的頻帶寬度,也就是其基函數ψ2,k(t)(窗函數)的頻窗寬度。由aDω可知,W2所表現的頻帶寬是W1的一半,尺度指標增加,則小波子空間所表現的頻帶寬分半減小。由於對任意尺度而言,小波子空間所表現的時頻窗面積是恆定不變的常數,所以對時頻窗的時窗寬度而言,尺度指標增加,則相應的時窗寬度成倍增加。圖6-33表示了正交小波分解用於分析t*處局部時域信號時,在各個頻帶的時頻窗表現。
圖6-33 正交小波分解在各頻帶的時頻窗示意圖
⑵ 鍥劇墖鏀懼ぇ綆楁硶
鍥懼儚鏀懼ぇ鏈夎稿氱畻娉曪紝鍏跺叧閿鍦ㄤ簬瀵規湭鐭ュ儚緔犱嬌鐢ㄤ綍縐嶆彃鍊兼柟寮忋備互涓嬫垜浠灝嗗叿浣撳垎鏋愬嚑縐嶅父瑙佺殑綆楁硶錛岀劧鍚庝粠鏀懼ぇ鍚庣殑鍥懼儚鏄鍚﹀瓨鍦ㄨ壊褰╁け鐪燂紝鍥懼儚鐨勭粏鑺傛槸鍚﹀緱鍒拌緝濂界殑淇濆瓨錛屾斁澶ц繃紼嬫墍闇鏃墮棿鏄鍚﹀垎閰嶅悎鐞嗙瓑澶氭柟闈㈡潵姣旇緝瀹冧滑鐨勪紭鍔c
褰撴妸涓涓灝忓浘鍍忔斁澶х殑鏃跺欙紝姣斿傛斁澶400%錛屾垜浠鍙浠ラ栧厛渚濇嵁鍘熸潵鐨勭浉閭4涓鍍忕礌鐐圭殑鑹插僵鍊礆紝鎸夌収鏀懼ぇ鍊嶆暟鎵懼埌鏂扮殑ABCD鍍忕礌鐐圭殑浣嶇疆騫惰繘琛屽瑰簲鐨勫~鍏咃紝浣嗘槸瀹冧滑涔嬮棿瀛樺湪鐨勫ぇ閲忕殑鍍忕礌鐐癸紝姣斿俻鐐圭殑鑹插僵鍊煎嵈鏄涓嶅彲鐭ョ殑錛岄渶瑕佽繘琛屼及綆椼
鏈閭昏繎鐐規彃鍊肩畻娉曟槸鏈綆鍗曚篃鏄閫熷害鏈蹇鐨勪竴縐嶇畻娉曪紝鍏跺仛娉曟槸灝嗘斁澶у悗鏈鐭ョ殑鍍忕礌鐐筆錛屽皢鍏朵綅緗鎹㈢畻鍒板師濮嬪獎鍍忎笂錛屼笌鍘熷嬬殑閭昏繎鐨4鍛ㄥ儚緔犵偣A,B,C,D鍋氭瘮杈冿紝浠P鐐圭殑鍍忕礌鍊肩瓑浜庢渶闈犺繎鐨勯偦榪戠偣鍍忕礌鍊煎嵆鍙銆傚備笂鍥句腑鐨凱鐐癸紝鐢變簬鏈鎺ヨ繎D鐐癸紝鎵浠ュ氨鐩存帴鍙朠=D銆
榪欑嶆柟娉曚細甯︽潵鏄庢樉鐨勫け鐪熴傚湪A,B涓鐐瑰勭殑鍍忕礌鍊間細紿佺劧鍑虹幇涓涓璺寵穬錛岃繖灝辨槸鍑虹幇椹璧涘厠鍜岄敮榻跨瓑鏄庢樉璧版牱鐨勫師鍥犮傛渶涓磋繎鎻掑兼硶鍞涓鐨勪紭鐐瑰氨鏄閫熷害蹇銆
鍏跺仛娉曟槸灝嗘斁澶у悗鏈鐭ョ殑鍍忕礌鐐筆錛屽皢鍏朵綅緗鎹㈢畻鍒板師濮嬪獎鍍忎笂錛岃$畻鐨勫洓涓鍍忕礌鐐笰,B,C,D瀵筆鐐圭殑褰卞搷(瓚婇潬榪慞鐐瑰彇鍊艱秺澶э紝琛ㄦ槑褰卞搷涔熻秺澶)錛屽叾紺烘剰鍥懼備笅銆
鍏跺叿浣撶殑綆楁硶鍒嗕笁姝ワ細
絎涓姝ユ彃鍊艱$畻鍑篈B涓ょ偣瀵筆鐐圭殑褰卞搷寰楀埌e鐐圭殑鍊箋
瀵圭嚎鎬ф彃鍊肩殑鐞嗚В鏄榪欐牱鐨勶紝瀵逛簬AB涓ゅ儚緔犵偣涔嬮棿鐨勫叾瀹冨儚緔犵偣鐨勮壊褰╁礆紝璁ゅ畾涓虹洿綰垮彉鍖栫殑錛岃佹眰e鐐瑰勭殑鍊礆紝鍙闇瑕佹壘鍒板瑰簲浣嶇疆鐩寸嚎涓婄殑鐐瑰嵆鍙銆傛崲鍙ヨ瘽璇達紝A,B闂翠換鎰忎竴鐐圭殑鍊煎彧璺烝,B鏈夊叧銆
絎浜屾ワ紝鎻掑艱$畻鍑篊D涓ょ偣瀵筆鐐圭殑褰卞搷寰楀埌f鐐圭殑鍊箋
絎涓夋ワ紝鎻掑艱$畻鍑篹f涓ょ偣瀵筆鐐圭殑褰卞搷鍊箋
鍙岀嚎鎬ф彃鍊肩畻娉曠敱浜庢彃鍊肩殑緇撴灉鏄榪炵畫鐨勶紝鎵浠ヨ嗚変笂浼氭瘮鏈閭昏繎鐐規彃鍊肩畻娉曡佸ソ涓浜涳紝涓嶈繃榪愮畻閫熷害紼嶅井瑕佹參涓鐐癸紝濡傛灉璁茬┒閫熷害錛屾槸涓涓涓嶉敊鐨勬姌琛楓
鍙岀珛鏂規彃鍊肩畻娉曚笌鍙岀嚎鎬ф彃鍊肩畻娉曠被浼礆紝瀵逛簬鏀懼ぇ鍚庢湭鐭ョ殑鍍忕礌鐐筆錛屽皢瀵瑰叾褰卞搷鐨勮寖鍥存墿澶у埌閭昏繎鐨16涓鍍忕礌鐐癸紝渚濇嵁瀵筆鐐圭殑榪滆繎褰卞搷榪涜屾彃鍊艱$畻錛屽洜P鐐圭殑鍍忕礌鍊間俊鎮鏉ヨ嚜16涓閭昏繎鐐癸紝鎵浠ュ彲寰楀埌杈冪粏鑷寸殑褰卞儚錛屼笉榪囬熷害姣旇緝鎱銆
涓嶈繃鍙岀珛鏂規彃鍊肩畻娉曚笌鍙岀嚎鎬ф彃鍊肩畻娉曠殑鏈璐ㄥ尯鍒涓嶄粎鍦ㄤ簬鎵╁ぇ浜嗗獎鍝嶇偣鐨勮寖鍥達紝榪橀噰鐢ㄩ珮綰х殑鎻掑肩畻娉曪紝濡傚浘鎵紺
瑕佹眰A錛孊涓ょ偣涔嬮棿e鐐圭殑鍊礆紝闇瑕佸埄鐢ˋ,B鍛ㄥ洿A-1,A,B,B 1鍥涗釜鐐圭殑鍍忕礌鍊礆紝閫氳繃鏌愮嶉潪綰挎х殑璁$畻錛屽緱鍒板厜婊戠殑鏇茬嚎錛屼粠鑰岀畻鍑篹鐐圭殑鍊兼潵銆
鎵璋撯滃弻鈥濇垨鑰呭彨鈥滀簩嬈♀濈殑鎰忔濆氨鏄鍦ㄨ$畻浜嗘í鍚戞彃鍊煎獎鍝嶇殑鍩虹涓婏紝鎶婁笂榪拌繍綆楁嫇灞曞埌浜岀淮絀洪棿錛屽啀璁$畻綰靛悜鎻掑煎獎鍝嶇殑鎰忔濄
鍙岀珛鏂規彃鍊肩畻娉曡兘澶熷緱鍒扮浉瀵規竻鏅扮殑鐢婚潰璐ㄩ噺錛屼笉榪囪$畻閲忎篃鍙樺ぇ銆傝ョ畻娉曞湪鐜板湪鐨勪紬澶氬浘鍍忓勭悊杞浠朵腑鏈涓哄父鐢錛屾瘮濡侾hotoshop,After Effects,Avid,Final Cut Pro絳夈
涓轟簡寰楀埌鏇村ソ鐨勫浘鍍忚川閲忥紝鍦ㄤ互涓婄殑鍩虹涓婏紝璁稿氭柊鐨勭畻娉曚笉鏂娑岀幇錛屽畠浠浣跨敤浜嗘洿鍔犲嶆潅鐨勬敼榪涚殑鎻掑兼柟寮忋傝濡侭鏍鋒潯錛圔-SPline錛, 綾沖垏灝旓紙Mitchell錛夌瓑鎻掑肩畻娉曪紝瀹冧滑鐨勭洰鐨勬槸浣挎彃鍊肩殑鏇茬嚎鏄懼緱鏇村鉤婊戱紝鍥懼儚杈圭紭鐨勮〃鐜版洿鍔犲畬緹庛
涓庝笂榪扮粡鍏哥殑鎻掑兼柟娉曟渶澶х殑鍖哄埆鍦ㄤ簬錛 S-Spline 閲囩敤浜嗕竴縐嶈嚜閫傚簲鎶鏈錛岄偅浜涗紶緇熺殑鏂規硶鎬繪槸渚濇嵁鍛ㄥ洿鐨勫儚緔犵偣鏉ユ眰鏈鐭ョ偣鐨勮壊褰╁礆紝涔熷氨鏄璇撮渶瑕佹眰瑙g殑鑹插僵鍊間粎浠呬緷闈犺ュ儚緔犵偣鍦ㄥ浘鍍忎腑鐨勪綅緗錛岃岄潪瀹為檯鐨勫浘鍍忕殑鍍忕礌淇℃伅錛岃岃嚜閫傚簲鏍鋒潯綆楁硶榪樹細鑰冭檻瀹為檯鍥懼儚鐨勫儚緔犱俊鎮銆 瀹為獙琛ㄦ槑錛岀粡榪 S-Spline 綆楁硶寰楀埌鐨勫浘鍍忔晥鏋滆佷紭浜庡弻絝嬫柟鎻掑肩畻娉曘
鐜板湪 S-Spline 綆楁硶鍙堝嚭鐜頒簡澧炲己鐗 S-Spline XL錛屾柊鐗堟湰鐨 S-Spline XL 綆楁硶杈 S-Spline 鑰岃█鐢婚潰鐨勯攼搴﹀緱鍒拌繘涓姝ュ炲己錛岀墿浣撶殑杞寤撴洿鍔犳竻鏅幫紝杈圭紭鐨勯敮榻跨幇璞″ぇ澶у噺寮憋紝鍥懼儚鎰熷彈鏇村姞鑷鐒躲
鐜板湪鎴戜滑鏉ュ逛互涓婂嚑縐嶆彃鍊肩畻娉曡繘琛屽疄闄呮祴璇曪紝鐪嬬湅瀹冧滑鐨勬晥鏋溿傞栧厛鎵撳紑鍘熷嬬殑鍥懼儚bird.jpg.榪欐槸涓涓鍒嗚鯨鐜囦負360脳270鐨勫浘鍍忋
鎴戜滑閲囩敤 BenVista 鍏鍙歌憲鍚嶇殑 PhotoZoom Pro 2 杞浠訛紝鍦╬c鐢佃剳涓婅繘琛屾祴璇曪紝鐢佃剳鐨凜PU閰嶇疆涓篒nter Core 2 T5500 1.66GHz,鍒嗗埆閲囩敤浠ヤ笂5縐嶆彃鍊兼柟娉曟妸鍘熷嬪浘鍍忔斁澶8鍊嶅緱鍒5涓2880脳2160鐨勫浘鍍
瀵規瘮浠ヤ笂鍚勫浘騫剁粨鍚堝疄楠屾暟鎹錛屾垜鎶婃晥鏋滃弬鏁板垪涓懼備笅琛ㄣ