當前位置:首頁 » 操作系統 » 八種排序演算法

八種排序演算法

發布時間: 2025-05-16 00:37:17

1. 數據結構 java開發中常用的排序演算法有哪些

排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。

主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序

一、冒泡(Bubble)排序

----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。

二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。

三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。

四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。

五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。

六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。

七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)

{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------

堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。

堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。

堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。

八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。

2. 面試必會八大排序演算法(Python)

一、插入排序

介紹

插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據。

演算法適用於少量數據的排序,時間復雜度為O(n^2)。

插入排演算法是穩定的排序方法。

步驟

①從第一個元素開始,該元素可以認為已經被排序

②取出下一個元素,在已經排序的元素序列中從後向前掃描

③如果該元素(已排序)大於新元素,將該元素移到下一位置

④重復步驟3,直到找到已排序的元素小於或者等於新元素的位置

⑤將新元素插入到該位置中

⑥重復步驟2

排序演示

演算法實現

二、冒泡排序

介紹

冒泡排序(Bubble Sort)是一種簡單的排序演算法,時間復雜度為O(n^2)。

它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。

這個演算法的名字由來是因為越小的元素會經由交換慢慢「浮」到數列的頂端。

原理

循環遍歷列表,每次循環找出循環最大的元素排在後面;

需要使用嵌套循環實現:外層循環控制總循環次數,內層循環負責每輪的循環比較。

步驟

①比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。

②對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。

③針對所有的元素重復以上的步驟,除了最後一個。

④持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。

演算法實現:

三、快速排序

介紹

快速排序(Quicksort)是對冒泡排序的一種改進,借用了分治的思想,由C. A. R. Hoare在1962年提出。

基本思想

快速排序的基本思想是:挖坑填數 + 分治法。

首先選出一個軸值(pivot,也有叫基準的),通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。

實現步驟

①從數列中挑出一個元素,稱為 「基準」(pivot);

②重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊);

③對所有兩個小數列重復第二步,直至各區間只有一個數。

排序演示

演算法實現

四、希爾排序

介紹

希爾排序(Shell Sort)是插入排序的一種,也是縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法,時間復雜度為:O(1.3n)。

希爾排序是基於插入排序的以下兩點性質而提出改進方法的:

·插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率;

·但插入排序一般來說是低效的, 因為插入排序每次只能將數據移動一位。

基本思想

①希爾排序是把記錄按下標的一定量分組,對每組使用直接插入演算法排序;

②隨著增量逐漸減少,每組包1含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法被終止。

排序演示

演算法實現

五、選擇排序

介紹

選擇排序(Selection sort)是一種簡單直觀的排序演算法,時間復雜度為Ο(n2)。

基本思想

選擇排序的基本思想:比較 + 交換。

第一趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;

第二趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;

以此類推,第 i 趟,在待排序記錄ri ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。

排序演示

選擇排序的示例動畫。紅色表示當前最小值,黃色表示已排序序列,藍色表示當前位置。

演算法實現

六、堆排序

介紹

堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。

利用數組的特點快速指定索引的元素。

基本思想

堆分為大根堆和小根堆,是完全二叉樹。

大根堆的要求是每個節點的值不大於其父節點的值,即A[PARENT[i]] >=A[i]。

在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。

排序演示

演算法實現

七、歸並排序

介紹

歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

基本思想

歸並排序演算法是將兩個(或兩個以上)有序表合並成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合並為整體有序序列。

演算法思想

自上而下遞歸法(假如序列共有n個元素)

① 將序列每相鄰兩個數字進行歸並操作,形成 floor(n/2)個序列,排序後每個序列包含兩個元素;

② 將上述序列再次歸並,形成 floor(n/4)個序列,每個序列包含四個元素;

③ 重復步驟②,直到所有元素排序完畢。

自下而上迭代法

① 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列;

② 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;

③ 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置;

④ 重復步驟③直到某一指針達到序列尾;

⑤ 將另一序列剩下的所有元素直接復制到合並序列尾。

排序演示

演算法實現

八、基數排序

介紹

基數排序(Radix Sort)屬於「分配式排序」,又稱為「桶子法」。

基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m) ,其中 r 為採取的基數,而m為堆數。

在某些時候,基數排序法的效率高於其他的穩定性排序法。

基本思想

將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。然後,從最低位開始,依次進行一次排序。這樣從最低位排序一直到最高位排序完成以後,數列就變成一個有序序列。

基數排序按照優先從高位或低位來排序有兩種實現方案:

MSD(Most significant digital) 從最左側高位開始進行排序。先按k1排序分組, 同一組中記錄, 關鍵碼k1相等,再對各組按k2排序分成子組, 之後, 對後面的關鍵碼繼續這樣的排序分組, 直到按最次位關鍵碼kd對各子組排序後. 再將各組連接起來,便得到一個有序序列。MSD方式適用於位數多的序列。

LSD (Least significant digital)從最右側低位開始進行排序。先從kd開始排序,再對kd-1進行排序,依次重復,直到對k1排序後便得到一個有序序列。LSD方式適用於位數少的序列。

排序效果

演算法實現

九、總結

各種排序的穩定性、時間復雜度、空間復雜度的總結:

平方階O(n²)排序:各類簡單排序:直接插入、直接選擇和冒泡排序;

從時間復雜度來說:

線性對數階O(nlog₂n)排序:快速排序、堆排序和歸並排序;

O(n1+§))排序,§是介於0和1之間的常數:希爾排序 ;

線性階O(n)排序:基數排序,此外還有桶、箱排序。

3. 八大經典排序演算法原理及實現

該系列文章主要是記錄下自己暑假這段時間的學習筆記,暑期也在實習,抽空學了很多,每個方面的知識我都會另起一篇博客去記錄,每篇頭部主要是另起博客的鏈接。

冒泡排序演算法應該是大家第一個接觸的演算法,其原理都應該懂,但我還是想以自己的語言來敘述下其步奏:

按照計算時間復雜度的規則,去掉常數、去掉最高項系數,其復雜度為O(N^2)
冒泡排序及其復雜度分析

空間復雜度就是在交換元素時那個臨時變數所佔的內存

給定一個整數序列{6,1,2,3,4},每完成一次外層循環的結果為:

我們發現第一次外層循環之後就排序成功了,但是還是會繼續循環下去,造成了不必要的時間復雜度,怎麼優化?

冒泡排序都是相鄰元素的比較,當相鄰元素相等時並不會交換,因此冒泡排序演算法是穩定性演算法

插入排序是對冒泡排序的一種改進

插入排序的思想是數組是部分有序的,再將無序的部分插入有序的部分中去,如圖:
(圖片來自 這里 )

空間復雜度就是在交換元素時那個臨時變數所佔的內存

插入排序的優化,有兩種方案:

文章後面會給出這兩種排序演算法

由於插入排序也是相鄰元素的比較,遇到相等的相鄰元素時不會發生交換,也不會造成相等元素之間的相對位置發生變化

其原理是從未排序的元素中選出最小值(最大值)放在已排序元素的後面

空間復雜度就是在交換元素時那個臨時變數所佔的內存

選擇排序是不穩定的,比如 3 6 3 2 4,第一次外層循環中就會交換第一個元素3和第四個元素2,那麼就會導致原序列的兩個3的相對位置發生變化

希爾排序算是改良版的插入排序演算法,所以也稱為希爾插入排序演算法

其原理是將序列分割成若乾子序列(由相隔某個 增量 的元素組成的),分別進行直接插入排序;接著依次縮小增量繼續進行排序,待整個序列基本有序時,再對全體元素進行插入排序,我們知道當序列基本有序時使用直接插入排序的效率很高。
上述描述只是其原理,真正的實現可以按下述步奏來:

希爾排序的效率取決於 增量值gap 的選取,這涉及到數學上尚未解決的難題,但是某些序列中復雜度可以為O(N 1.3),當然最好肯定是O(N),最壞是O(N 2)

空間復雜度就是在交換元素時那個臨時變數所佔的內存

希爾排序並不只是相鄰元素的比較,有許多跳躍式的比較,難免會出現相同元素之間的相對位置發生變化,所以希爾排序是不穩定的

理解堆排序,就必須得先知道什麼是堆?

二叉樹的特點:

當父節點的值總是大於子結點時為 最大堆 ;反之為 最小堆 ,下圖就為一個二叉堆

一般用數組來表示堆,下標為 i 的結點的父結點下標為(i-1)/2;其左右子結點分別為 (2 i + 1)、(2 i + 2)

怎麼將給定的數組序列按照堆的性質,調整為堆?

這里以建立最小堆為示例,

很明顯對於其葉子結點來說,已經是一個合法的子堆,所以做堆調整時,子節點沒有必要進行,這里只需從結點為A[4] = 50的結點開始做堆調整,即從(n/2 - 1)位置處向上開始做堆調整:

由於每次重新恢復堆的時間復雜度為O(logN),共N - 1次重新恢復堆操作,再加上前面建立堆時N / 2次向下調整,每次調整時間復雜度也為O(logN),二次操作時間相加還是O(N logN)。故堆排序的時間復雜度為O(N * logN)。

空間復雜度就是在交換元素時那個臨時變數所佔的內存

由於堆排序也是跨越式的交換數據,會導致相同元素之間的相對位置發生變化,則演算法不穩定。比如 5 5 5 ,堆化數組後將堆頂元素5與堆尾元素5交換,使得第一個5和第三個5的相對位置發生變化

歸並排序是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。

快速排序在應該是大家經常看到、聽到的演算法,但是真正默寫出來是有難度的。希望大家看了下面 挖坑填數 方法後,能快速寫出、快速排序。

其原理就這么幾句話,但是現實起來並不是這么簡單,我們採取流行的一種方式 挖坑填數分治法

對於序列: 72 6 57 88 60 42 83 73 48 85

數組變為: 48 6 57 88 60 42 83 73 88 85
再重復上面的步驟,先從後向前找,再從前向後找:

數組變為: 48 6 57 42 60 72 83 73 88 85
可以看出a[5]前面的數字都小於它,a[5]後面的數字都大於它。因此再對a[0…4]和a[6…9]這二個子區間重復上述步驟就可以了

空間復雜度,主要是遞歸造成的棧空間的使用:

快速排序的優化主要在於基準數的選取

快速排序也是跨越式比較及交換數據,易導致相同元素之間的相對位置發生變化,所以快速排序不穩定

前面也說了二分查找排序是改進的插入排序,不同之處在於,在有序區間查找新元素插入位置時,為了減少比較次數提高效率,採用二分查找演算法進行插入位置的確定
具體步驟,設數組為a[0…n]:

二分查找插入位置,因為不是查找相等值,而是基於比較查插入合適的位置,所以必須查到最後一個元素才知道插入位置。
二分查找最壞時間復雜度:當2^X>=n時,查詢結束,所以查詢的次數就為x,而x等於log2n(以2為底,n的對數)。即O(log2n)
所以,二分查找排序比較次數為:x=log2n
二分查找插入排序耗時的操作有:比較 + 後移賦值。時間復雜度如下:

二分查找排序在交換數據時時進行移動,當遇到有相等值插入時也只會插入其後面,不會影響其相等元素之間的相對位置,所以是穩定的

白話經典演算法排序
冒泡排序選擇排序
快速排序復雜度分析
優化的插入排序

熱點內容
美嘉演算法口訣 發布:2025-05-16 06:03:15 瀏覽:952
c程序編譯連接 發布:2025-05-16 06:02:36 瀏覽:964
腳本魔獸 發布:2025-05-16 06:01:52 瀏覽:330
文件夾python 發布:2025-05-16 06:01:43 瀏覽:627
電腦我的世界伺服器游戲幣 發布:2025-05-16 05:27:25 瀏覽:488
索尼手機為什麼不能用安卓10 發布:2025-05-16 05:18:46 瀏覽:784
蔚來es6選擇哪些配置實用 發布:2025-05-16 05:18:05 瀏覽:130
小米如何掃碼wifi密碼 發布:2025-05-16 05:13:38 瀏覽:807
樓層密碼是什麼意思 發布:2025-05-16 05:13:37 瀏覽:13
創建文件夾失敗 發布:2025-05-16 05:12:59 瀏覽:397