當前位置:首頁 » 文件管理 » 小波壓縮域

小波壓縮域

發布時間: 2023-02-09 08:47:04

1. 小波函數的應用

通常來講,DWT用於信號編碼而CWT用於信號分析。所以,DWT通常用於工程和計算機科學而CWT經常用於科學研究。小波變換現在被大量不同的應用領域所採納,經常替代了傅立葉變換的位置。很多物理學的領域經歷了這樣的轉變,包括分子動力學 , 重新計算 (ab initio calculations),天文物理學,密度矩陣局部化,地震地質物理學, 光學 , 湍流 ,和 量子力學。其他經歷了這種變化的學科有圖像處理 ,血壓,心率和心電圖 分析, DNA 分析,蛋白質分析,氣象學 ,通用 信號處理 ,語言識別 ,計算機圖形學 ,和 多分形分析。小波的一個用途是數據壓縮。和其他變換一樣,小波變換可以用於原始數據(例如圖像),然後將變換後的數據編碼,得到有效的壓縮。JPEG 2000 是採用小波的圖像標准。細節請參看 小波壓縮。

2. 用小波分析法除去音頻信號的雜訊

小波變換及其應用是八十年代後期發展起來的應用數學分支,被稱為「Fourier分析方法的突破性進展[1]」。 1986年Meyer Y構造了一個真正的小波基,十多年間小波分析及其應用得到了迅速發展,原則上傳統的傅里葉分析可用小波分析方法取代[2],它能對幾乎所有的常見函數空間給出通過小波展開系數的簡單刻劃,也能用小波展開系數描述函數的局部光滑性質,特別是在信號分析中,由於它的局部分析性能優越,因而在數據壓縮與邊緣檢測等方面它比現有的手段更為有效[3-8]。 小波變換在圖像壓縮中的應用因它的高壓縮比和好的恢復圖像質量而引起了廣泛的注意,且出現了各種基於小波變換的圖像壓縮方案。
小波變換自1992年Bos M等[9]首先應用於流動注射信號的處理,至今雖才8年時間,但由於小波變換其優良的分析特性而迅速滲透至分析化學信號處理的各個領域。本文介紹了小波變換的基本原理及其在分析化學中的應用情況。
1 基本原理
設f(t)為色譜信號,其小波變換在L2(R)中可表示為:

其中a, b∈R,a≠0,參數a稱為尺度因子b為時移因子,而(Wf)(b, a)稱為小波變換系數,y(t)為基本小波。在實際分析化學信號檢測中其時間是有限長度,f(t)通常以離散數據來表達,所以要採用Mallat離散演算法進行數值計算,可用下式表示:
fj+1=θj + f j
其中:N為分解起始尺度;M為分解次數;fj和qj可由下式求得:

此處:Φj, m為尺度函數;Ψj, m 為小波函數;系數Cmj ,dmj可由下式表達:

hk-2m , gk-2m取決於小波母函數的選取。
用圖表示小波分解過程如下:

圖中fN 、fN-1....fN-m和θN-1、θN-2....θN-m分別稱為在尺度N上的低頻分量和高頻分量。上述分解過程的逆過程即是信號的重構過程。
2 分析化學中的應用
根據小波變換基本原理及其優良的多分辯分析特性,本文將小波變換在分析化學信號處理中的應用劃歸為以下三個方面:
2.1 信號的濾波
小波濾波方法目前在分析化學中應用主要是小波平滑和小波去噪兩種方法。小波平滑是將某一信號先經小波分解,將在時間域上的單一信號分解為一系列不同尺度上的小波系數(也稱不同頻率上的信號), 然後選定某一截斷尺度,使高於此尺度的小波系數全部為零,再重構信號,這樣就完成了一個低通小波濾波器的設計;而小波去噪,則是在小波分解基礎上選定一閾值,對所有尺度空間的小波系數進行比較,使小於此閾值的小波系數為零,然後重構信號[10]。
邵利民[11]等首次將小波變換應用於高效液相色譜信號的濾波,他們應用了Haar小波母函數,由三次小波分解後所得的低頻部分重構色譜信號,結果成功地去除了雜訊,明顯地提高了色譜信號的信噪比,而色譜峰位保持一致,此法提高了色譜的最低檢測量和色譜峰的計算精度。董雁適[12]等提出了基於色譜信號的小波自適應濾波演算法,使濾波與雜訊的頻帶分布,強度及信噪在頻帶上的交迭程度基本無關,具有較強的魯棒性。
在光譜信號濾噪中的應用,主要為紅外光譜和紫外光譜信號濾噪方面的應用,如Bjorn K A[13]等將小波變換用於紅外光譜信號的去噪,運用6種不同的小波濾噪方法(SURE,VISU,HYBRID,MINMAX,MAD和WP)對加噪後紅外光譜圖進行了去噪,針對加噪與不加噪的譜圖,對Fourier變換、移動平均濾波與小波濾波方法作了性能比較研究,結果認為Fourier變換、移動平均濾波等標准濾波方法在信噪比很低時濾噪性能與小波濾波方法差不多,但對於高信噪比的信號用小波濾噪方法(特別是HYBRID和VISU)則更有效 。閔順耕[14]等對近紅外漫反射光譜進行了小波變換濾波。顧文良[15]等對示波計時電信號進行了濾噪處理。王立世[16]等對電泳信號也做了小波平滑和去噪,都取得了滿意的效果。鄒小勇[17]等利用小波的時頻特性去除了階躍伏安信號中的噪音,並提出了樣條小波多重濾波分析方法,即將過濾後的高頻噪音信號當成原始信號進行濾波處理,使之對有用信號進行補償。鮑倫軍等[18]將樣條小波和傅里葉變換聯用技術應用於高噪音信號的處理。另外,程翼宇[19]等將紫外光譜信號的濾噪和主成分回歸法進行了有機的結合,提出了小波基主成分回歸(PCRW)方法,改善了主成分回歸演算法。
2.1 信號小波壓縮
信號經小波分解之後,噪音信號會在高頻部分出現,而對於有用的信號分量大部分在低頻部分出現,據此可以將高頻部分小波系數中低於某一閾值的系數去除,而對其餘系數重新編碼,只保留編碼後的小波系數,這樣可大大減少數據貯存量,達到信號壓縮的目的。
在近代分析化學中分析儀器的自動化水平在不斷提高,分析儀器所提供的數據量越來越大。尋找一種不丟失有效信息的數據壓縮方法,節省數據的貯存量,或降低與分析化學信息處理有關的一些演算法的處理量,已成為人們關心的問題。Chau F T等[20]用快速小波變換對模擬和實驗所得的紫外可見光譜數據進行了壓縮,討論了不同階數的Daubechies小波基、不同的分解次數及不同的閾值對壓縮結果的影響。Barclay V J和Bonner R F[10]對實驗光譜數據作了壓縮,壓縮率可達1/2~1/10,並指出在數據平滑和濾噪的同時,也能進行數據的壓縮是小波有別與其他濾波方法的一大特點。王洪等[21]用Daubechies二階正交小波基對聚乙烯紅外光譜進行了成功的壓縮,數據可壓縮至原來的1/5以下。邵學廣等[22]對一維核磁共振譜數據作了小波變換壓縮,分別對常用的Haar、Daubechies以及Symmlet小波基作了比較,其結果表明准對稱的Symmlet小波基對數據的復原效果最佳,而且在壓縮到64倍時,均方差仍然較小。章文軍等[23]提出了常用小波變換數據壓縮的三種方法,將緊支集小波和正交三次B-樣條小波壓縮4-苯乙基鄰苯二甲酸酐的紅外光譜數據進行了對比,計算表明正交三次B-樣條小波變換方法效果較好,而在全部保留模糊信號及只保留銳化信號中數值較大的系數時,壓縮比大而重建光譜數據與原始光譜數據間的均方差較小。邵學廣等[24]將小波數據壓縮與窗口因子分析相結合,在很大程度上克服了用窗口因子分析直接處理原始信號時人工尋找最佳窗口的困難,在壓縮比高達8:1的情況下,原始信號中的有用信息幾乎沒有丟失,窗口因子分析的解析時間大為縮短。Bos M等[25]用Daubechies小波對紅外光譜數據進行壓縮,壓縮後的數據作為人工神經網路演算法的輸入接點,從而提高了人工神經網路的訓練速度,預測的效果也比直接用光譜數據訓練的要好。
2.3 小波多尺度分析
在多尺度分析方面的應用主要是對化學電信號進行小波分解,使原來單一的時域信號分解為系列不同頻率尺度下的信號,然後對這些信號進行分析研究。
小波在色譜信號處理方面的應用,主要是對重疊色譜峰的解析。邵學廣[26-27]等對苯、甲苯、乙苯三元體系色譜重疊峰信號小波變換後的某些頻率段進行放大,然後重構色譜信號,使重疊色譜峰得到了分離,定量分析結果得到了良好的線性關系。此後邵學廣[28]等利用了譜峰提取法對植物激素重疊色譜峰作了定量計算,此法表明,利用小波變換從重疊色譜信號中提取的各組分的峰高與濃度之間仍然具有良好的線性關系。
重疊伏安峰的分辨是電分析化學中一個長期存在的難題。當溶液中存在兩種或更多的電活性物質,而這些物質的氧化(或還原)電位又很靠近時,就會不可避免地出現重疊峰的現象,而給進一步的定性、定量分析帶來了很大困難。因此,人們做了較多的工作去解決這一難題。數學方法是目前處理重疊峰的重要手段,如Fourier變換去卷積以及曲線擬合。曲線擬合通常用來獲得「定量」的信息,但這種方法有較多的人為因素,重疊峰包含的峰的個數,相對強度都是靠假設得來,因而可能引入嚴重的誤差;去卷積方法則是一種頻域分析手段,但該方法需先找出一個函數來描述伏安峰,然後再根據這個函數來確定去卷積函數,因此,去卷積函數的確定是比較麻煩的,尤其是對不可逆電極過程,無法找到一個合適的函數表達式,而且該方法還需經正、反Fourier變換,比較繁瑣費時, 而小波分析的出現成了電分析化學家關注的熱點。
陳潔等[29]用DOG小波函數處理差分脈沖實驗數據,通過選擇合適的伸縮因子,成功地延長了用DPV法測定Cu2+的線性范圍。鄭建斌等[30-31]將小波變換用於示波計時電位信號的處理,在有用信息提取、重疊峰分辨等方面進行了系統的研究。王洪等[32]將小波邊緣檢測的思想用於電位滴定終點的確定,找到了一種判斷終點准確的終點判斷方法。鄭小萍等[33]將樣條小波變換技術用於分辨重疊的伏安峰,以選定的分辨因子作用於樣條小波濾波器,構造了一個小波峰分辨器,用它來直接處理重疊的伏安峰,取得了較好的分離效果,被處理重疊峰可達到完全基線分離,且峰位置和峰面積的相對誤差均較小。
對於紅外光譜圖,目前也是通過對紅外譜圖進行小波分解,以提高紅外譜圖的分辯率。陳潔[34]等對輻射合成的丙烯醯胺、丙烯酸鈉共聚物水凝膠的紅外光譜信號經小波處理後,使其特徵吸收帶較好地得到分離,成功地提高了紅外光譜圖的解析度。謝啟桃[35]等對不同晶型聚丙烯紅外光譜圖作了小波變換,也得到了可用以區分聚丙烯a、b兩晶型的紅外光譜圖。
3 展望
小波變換由於其優良的局部分析能力,使其在分析化學信號的濾噪、數據壓縮和譜峰的分離方面得到了很好的應用。本人通過對小波變換在化學中應用的探索,認為對於分析化學中各種電信號的平滑、濾波還有待作更深入的研究,以設計出更為合理有效的小波濾波器,以消除由於平滑而導至的尖銳信號的峰高及峰面積的變化或由於去噪而帶來的尖銳信號附近的不應有的小峰的出現;對於重疊峰的分離及其定量計算,還應該探討如色譜峰基線的確定方法以及待分離頻率段的倍乘系數的確定方法;另外對於色譜峰的保留指數定性問題,由於不同化合物在某一確定的分析條件下有可能會出現保留值相同的情況,這將使在未知樣中加標準的峰高疊加法定性或外部標准物對照定性變得困難,我們是否可能對色譜峰進行小波分解,然後在不同的尺度上對其進行考察,以尋求色譜峰的小波定性方法,這可能是個可以進一步研究的問題。
小波變換將在分析化學領域得到更加廣泛的應用,特別對於分析化學中的多元定量分析法,如多元線性回歸法(MLR),主成分回歸法(PCR),偏最小二乘法(PLS)等方法及人工神經網路(ANN)將會同小波變換進行有機的結合,以消除各種雜訊干擾對定量分析的影響;或對相關數據進行壓縮以減少待分析數據的冗餘,提高分析精度和大大減少計算量提高分析速度。小波變換將會成為分析化學中定量和定性分析的一種非常重要的工具。

3. 攝像頭視頻採集壓縮及傳輸 基本原理

攝像頭視頻採集壓縮及傳輸

引言 :

攝像頭基本的功能還是視頻傳輸,那麼它是依靠怎樣的原理來實現的呢?所謂視頻傳輸:

就是將圖片一張張傳到屏幕,由於傳輸速度很快,所以可以讓大家看到連續動態的畫面,就像放電影一樣。一般當畫面的傳輸數量達到 每秒24幀 時,畫面就有了連續性。

下邊我們將介紹攝像頭視頻採集壓縮及傳輸的整個過程。

一.攝像頭的工作原理(獲取視頻數據)

攝像頭的工作原理大致為:景物通過 鏡頭(LENS) 生成的 光學圖像 投射到 圖像感測器 表面上,然後轉為 電信號 ,經過 A/D (模數轉換)轉換後變為 數字圖像信號 ,再送到 數字信號處理晶元 (DSP)中加工處理,再通過 USB介面 傳輸到電腦中處理,通過顯示器就可以看到圖像了。下圖是攝像頭工作的流程圖:

注1:圖像感測器(SENSOR)是一種半導體晶元,其表麵包含有幾十萬到幾百萬的光電二極體。光電二極體受到光照射時,就會產生電荷。

注2:數字信號處理晶元DSP(DIGITAL SIGNAL PROCESSING)功能:主要是通過一系列復雜的數學演算法運算,對數字圖像信號參數進行優化處理,並把處理後的信號通過USB等介面傳到PC等設備。

1. ISP(image signal processor)(鏡像信號處理器)

2. JPEG encoder(JPEG圖像解碼器)

3. USB device controller(USB設備控制器)

而視頻要求將獲取的視頻圖像通過互聯網傳送到異地的電腦上顯示出來這其中就涉及到對於獲得的視頻圖像的傳輸。

在進行這種圖片的傳輸時,必須將圖片進行壓縮,一般壓縮方式有如H.261、JPEG、MPEG等,否則傳輸所需的帶寬會變得很大。大家用RealPlayer不知是否留意,當播放電影的時候,在播放器的下方會有一個傳輸速度250kbps、400kbps、1000kbps…畫面的質量越高,這個速度也就越大。而攝像頭進行視頻傳輸也是這個原理,如果將攝像頭的解析度調到640×480,捕捉到的圖片每張 大小約為50kb左右,每秒30幀,那麼攝像頭傳輸視頻所需的速度為50×30/s=1500kbps=1.5Mbps。而在實際生活中,人們一般用於網路視頻聊天時的解析度為320×240甚至更低,傳輸的幀數為每秒24幀。換言之,此時視頻傳輸速率將不到300kbps,人們就可以進行較為流暢的視頻傳輸聊天。如果採用更高的壓縮視頻方式,如MPEG-1等等,可以將傳輸速率降低到200kbps不到。這個就是一般視頻聊天時,攝像頭所需的網路傳輸速度。

二.視頻壓縮部分

視頻的壓縮 是視頻處理的核心,按照是否實時性可以分為非實時壓縮和實時壓縮。而視頻傳輸(如QQ視頻即時聊天)屬於要求視頻壓縮為實時壓縮。

下面對於視頻為什麼能壓縮進行說明。

視頻壓縮是有損壓縮,一般說來,視頻壓縮的壓縮率都很高,能夠做到這么高的壓縮率是因為視頻圖像有著非常大的 時間和空間的冗餘度 。所謂的 時間冗餘度 指的是兩幀相鄰的圖像他們相同位置的像素值比較類似,具有很大的相關性,尤其是靜止圖像,甚至兩幀圖像完全相同,對運動圖像,通過某種運算(運動估計),應該說他們也具有很高的相關性;而空間相關性指的是同一幀圖像,相鄰的兩個像素也具備一定的相關性。這些相關性是視頻壓縮演算法的初始假設,換句話說,如果不滿足這兩個條件(全白雜訊圖像,場景頻繁切換圖像等),視頻壓縮的效果是會很差的。

去除時間相關性的關鍵演算法是運動估計,它找出當前圖像宏塊在上一幀圖像中最匹配的位置,很多時候,我們只需要把這個相對坐標記錄下來,就夠了,這樣就節省了大量碼字,提高了壓縮率。視頻壓縮演算法中,運動估計永遠是最關鍵最核心的部分。去除空間相關性是通過DCT變換來實現的,把時域上的數據映射到頻域上,然後對DCT系數進行量化處理,基本上,所有的有損壓縮,都會有量化,它提高壓縮率最明顯。

圖像的原始文件是比較大的,必須經過圖像壓縮才能夠進行快速的傳輸以及順暢的播放。而壓縮比正是來衡量影像壓縮大小的參數。 一般來說,攝像頭的壓縮比率大都是5:1。也就是說,如果在未壓縮之前30秒的圖像的容量是30MB,那麼按照攝像頭5:1的壓縮比率來對圖像進行壓縮以後,它的大小就變成了6MB了。

主要的視頻壓縮演算法包括:M-JPEG、Mpeg、H.264、Wavelet(小波壓縮)、JPEG 2000、AVS。

基本上視頻壓縮的核心就這些。

三.視頻傳輸部分

為了保證數字視頻網路傳輸的實時性和圖像的質量,傳輸層協議的選擇是整個設計和實現的關鍵。Internet在IP層上使用兩種傳輸協議:一種是TCP(傳輸控制協議),它是面向連接的網路協議;另一種是UDP(用戶數據報協議),它是無連接的網路協議。

TCP 傳輸 :TCP(傳輸控制協議)是一種面向連接的網路傳輸協議。支持多數據流操作,提供流控和錯誤控制,乃至對亂序到達報文的重新排序,因此,TCP傳輸提供了可靠的數據傳輸服務。

使用TCP傳輸的一般的過程:

客戶機向伺服器發出連接的請求後,伺服器接收到後,向客戶機發出連接確認,實現連接後,雙方進行數據傳輸。

UDP 傳輸 : UDP(用戶數據報協議)是一種無連接的網路傳輸協議。提供一種基本的低延時的稱謂數據報的傳輸服務。不需要像TCP傳輸一樣需預先建立一條連接。UDP無計時機制、流控或擁塞管理機制。丟失的數據不會重傳。因此提供一種不可靠的的應用數據傳輸服務。但在一個良好的網路環境下如 區域網內,使用UDP傳輸數據還是比較可靠,且效率很高。

IP 組播技術: 組播技術是一種允許一個或多個發送者發送單一或多個發送者的數據包到多個接收者的網路技術。組播源把數據報發送到特定的組播組,而只有加入到該組播組的主機才能接收到這些數據包。組播可大大節省網路寬頻,因為無論有多少個目標地址,在整個網路的任何一條鏈路上只船送單一的數據包。

1.TCP/IP 協議和實時傳輸

TCP/IP協議最初是為提供非實時數據業務而設計的。IP協議負責主機之間的數據傳輸,不進行檢錯和糾錯。因此,經常發生數據丟失或失序現象。為保證數據的可靠傳輸,人們將TCP協議用於IP數據的傳輸,以提高接收端的檢錯和糾錯能力。當檢測到數據包丟失或錯誤時,就會要求發送端重新發送,這樣一來就不可避免地引起了傳輸延時和耗用網路的帶寬。因此傳統的TCP/IP協議傳輸實時音頻、視頻數據的能力較差。當然在傳輸用於回放的視頻和音頻數據時,TCP協議也是一種選擇。如果有足夠大的緩沖區、充足的網路帶寬,在TCP協議上,接近實時的視音頻傳輸也是可能的。然而,如果在丟包率較高、網路狀況不好的情況下,利用TCP協議進行視頻或音頻通信幾乎是不可能的。

TCP和其它可靠的傳輸層協議如XTP不適合實時視音頻傳輸的原因主要有以下幾個方面:

1 .TCP的重傳機制

我們知道,在TCP/IP協議中,當發送方發現數據丟失時,它將要求重傳丟失的數據包。然而這將需要一個甚至更多的周期(根據TCP/IP的快速重傳機制,這將需要三個額外的幀延遲),這種重傳對於實時性要求較高的視音頻數據通信來說幾乎是災難性的,因為接收方不得不等待重傳數據的到來,從而造成了延遲和斷點(音頻的不連續或視頻的凝固等等)。

2 . TCP的擁塞控制機制

TCP的擁塞控制機制在探測到有數據包丟失時,它就會減小它的擁塞窗口。而另一方面,音頻、視頻在特定的編碼方式下,產生的編碼數量(即碼率)是不可能突然改變的。正確的擁塞控制應該是變換音頻、視頻信息的編碼方式,調節視頻信息的幀頻或圖像幅面的大小等等。

3 . TCP報文頭的大小

TCP不適合於實時視音頻傳輸的另一個缺陷是,它的報文頭比UDP的報文頭大。TCP的報文頭為40個位元組,而UDP的報文頭僅為12個位元組。並且,這些可靠的傳輸層協議 不能提供時間戳(Time Stamp)和編解碼信息(Encoding Information) ,而這些信息恰恰是接收方(即客戶端)的應用程序所需要的。因此TCP是不適合於視音頻信息的實時傳輸的。

4 . 啟動速度慢

即便是在網路運行狀態良好、沒有丟包的情況下,由於TCP的啟動需要建立連接,因而在初始化的過程中,需要較長的時間,而在一個實時視音頻傳輸應用中,盡量少的延遲正是我們所期望的。

由此可見,TCP協議是不適合用來傳輸實時視音頻數據的,為了實現視音頻數據的實時傳輸,我們需要尋求其它的途徑。

2.RTP 協議適合實時視音頻傳輸

RTP(Real-Time Transport Protocol)/RTCP(Real-Time Transport Control Protocol)是一種應用型的傳輸層協議,它並不提供任何傳輸可靠性的保證和流量的擁塞控制機制。它是由IETF(Internet Engineering Task Force)為視音頻的實時傳輸而設計的傳輸協議。RTP協議位於UDP協議之上,在功能上獨立於下面的傳輸層(UDP)和網路層,但不能單獨作為一個層次存在,通常是利用低層的UDP協議對實時視音頻數據進行組播(Multicast)或單播(Unicast),從而實現多點或單點視音頻數據的傳輸。

UDP是一種無連接的數據報投遞服務,雖然沒有TCP那麼可靠,並且無法保證實時視音頻傳輸業務的服務質量(QoS),需要RTCP實時監控數據傳輸和服務質量,但是,由於UDP的傳輸延時低於TCP,能與音頻和視頻流很好地匹配。因此,在實際應用中,RTP/RTCP/UDP用於音視頻媒體,而TCP用於數據和控制信令的傳輸。

總結 :如果接收端和發送端處於同一個區域網內,由於有充分的帶寬保證,在滿足視頻傳輸的實時性方面,TCP也可以有比較好的表現,TCP和基於UDP的RTP的視頻傳輸性能相差不大。由於在區域網內帶寬不是主要矛盾,此時視頻數據傳輸所表現出來的延時主要體現為處理延時,它是由處理機的處理能力以及採用的處理機制所決定的 。但是當在廣域網中進行視頻數據傳輸時,此時的傳輸性能極大地取決於可用的帶寬,由於TCP是面向連接的傳輸層協議,它的重傳機制和擁塞控制機制,將使網路狀況進一步惡化,從而帶來災難性的延時。同時,在這種網路環境下,通過TCP傳輸的視頻數據,在接收端重建、回放時,斷點非常明顯,體現為明顯的斷斷續續,傳輸的實時性和傳輸質量都無法保障。相對而言,採用RTP傳輸的視頻數據的實時性和傳輸質量就要好得多。

四.視頻圖像的異地顯示

當壓縮過的視頻通過互聯網傳輸到異地的時候,對於互聯網傳輸過來的視頻信息,首先是要進行解碼,然後才是顯示。解碼的晶元有一定的性能要求,比編碼器低些,但是畢竟是視頻數據處理,通用的晶元(不支持MMX等多媒體指令)可能會比較吃力。顯示設備主要有電視、監視器和顯示器,他們的信號介面是不一樣的,電視監視器是模擬的電信號,顯示器的輸入應該是數字信號。

以上是攝像頭如何獲取圖像數據及獲取的數據存放在什麼地方,如何壓縮和傳輸及如何在異地釋放和播放出來的整個過程

熱點內容
編程師加班 發布:2024-04-27 00:49:24 瀏覽:909
lol四川伺服器雲空間 發布:2024-04-27 00:42:08 瀏覽:933
卡宴怎麼看配置 發布:2024-04-27 00:41:08 瀏覽:941
央視影音緩存視頻怎麼下載視頻 發布:2024-04-27 00:25:55 瀏覽:583
手機緩存的視頻怎麼看 發布:2024-04-27 00:11:05 瀏覽:57
shell腳本平方計算公式 發布:2024-04-26 23:29:26 瀏覽:187
比較實惠的雲伺服器 發布:2024-04-26 23:24:57 瀏覽:974
怎麼增加電腦緩存 發布:2024-04-26 23:23:46 瀏覽:451
android調試gdb 發布:2024-04-26 23:22:27 瀏覽:99
androidsocket服務 發布:2024-04-26 22:49:53 瀏覽:980