當前位置:首頁 » 文件管理 » ftp通信過程中的tcp包格式

ftp通信過程中的tcp包格式

發布時間: 2023-02-16 06:50:30

⑴ 與ftp伺服器建立連接的過程中發送和接收了哪些ftp報文和tcp報文段

在TCP報文的報頭中,有幾個標志欄位:
1、 SYN:同步連接序號,TCP SYN報文就是把這個標志設置為1,來請求建立連接;
2、 ACK:請求/應答狀態。0為請求,1為應答;
3、 FIN:結束連線。如果FIN為0是結束連線請求,FIN為1表示結束連線;
4、 RST:連線復位,首先斷開連接,然後重建;
5、 PSH:通知協議棧盡快把TCP數據提交給上層程序處理。
可能出現的掃描:(33/ppt11 - 43/ppt11 介紹了下面各種掃描的做法及優缺點)
§基本的TCP connect()掃描
§TCP SYN掃描(半開連接掃描, half open)
§TCP Fin掃描(秘密掃描,stealth)
§TCP ftp proxy掃描(bounce attack)
§用IP分片進行SYN/FIN掃描(躲開包過濾防火牆)
§UDP recvfrom掃描
§UDP ICMP埠不可達掃描
§Reverse-ident掃描
(針對TCP中SYN、RST、FIN標志欄位可能出現的攻擊,記一下名稱應該就可以了)
埠掃描攻擊:
攻擊者計算機便可以通過發送合適的報文,判斷目標計算機哪些TCP或UDP埠是開放的,過程如下:
1、 發出埠號從0開始依次遞增的TCP SYN或UDP報文(埠號是一個16比特的數字,這樣最大為65535,數量很有限); 2、 如果收到了針對這個TCP報文的RST報文,或針對這個UDP報文的ICMP不可達報文,則說明這個埠沒有開放; 3、 相反,如果收到了針對這個TCP SYN報文的ACK報文,或者沒有接收到任何針對該UDP報文的ICMP報文,則說明該TCP埠是開放的,UDP埠可能開放(因為有的實現中可能不回應ICMP不可達報文,即使該UDP埠沒有開放)。 這樣繼續下去,便可以很容易的判斷出目標計算機開放了哪些TCP或UDP埠,然後針對埠的具體數字,進行下一步攻擊,這就是所謂的埠掃描攻擊。
TCP SYN拒絕服務攻擊;
1、 攻擊者向目標計算機發送一個TCP SYN報文; 2、 目標計算機收到這個報文後,建立TCP連接控制結構(TCB),並回應一個ACK,等待發起者的回應; 3、 而發起者則不向目標計算機回應ACK報文,這樣導致目標計算機一致處於等待狀態。
分片IP報文攻擊:
為了傳送一個大的IP報文,IP協議棧需要根據鏈路介面的MTU對該IP報文進行分片,通過填充適當的IP頭中的分片指示欄位,接收計算機可以很容易的把這些IP分片報文組裝起來。
目標計算機在處理這些分片報文的時候,會把先到的分片報文緩存起來,然後一直等待後續的分片報文,這個過程會消耗掉一部分內存,以及一些IP協議棧的數據結構。如果攻擊者給目標計算機只發送一片分片報文,而不發送所有的分片報文,這樣攻擊者計算機便會一直等待(直到一個內部計時器到時),如果攻擊者發送了大量的分片報文,就會消耗掉目標計算機的資源,而導致不能相應正常的IP報文,這也是一種DOS攻擊。
SYN比特和FIN比特同時設置:
正常情況下,SYN標志(連接請求標志)和FIN標志(連接拆除標志)是不能同時出現在一個TCP報文中的。而且RFC也沒有規定IP協議棧如何處理這樣的畸形報文,因此,各個操作系統的協議棧在收到這樣的報文後的處理方式也不同,攻擊者就可以利用這個特徵,通過發送SYN和FIN同時設置的報文,來判斷操作系統的類型,然後針對該操作系統,進行進一步的攻擊。

⑵ TCP數據包是什麼

概念性的東西就是以下內容:簡單的來說,就是一種傳輸協議發出的一段數據源傳輸控制協議(Transmission Control Protocol, TCP)
TCP協議主為了在主機間實現高可靠性的包交換傳輸協議。本文將描述協議標准和實現的一些方法。因為計算機網路在現代社會中已經是不可缺少的了,TCP協議主要在網路不可靠的時候完成通信,對軍方可能特別有用,但是對於政府和商用部門也適用。TCP是面向連接的端到端的可靠協議。它支持多種網路應用程序。TCP對下層服務沒有多少要求,它假定下層只能提供不可靠的數據報服務,它可以在多種硬體構成的網路上運行。下面的圖是TCP在層次式結構中的位置,它的下層是IP協議,TCP可以根據IP協議提供的服務傳送大小不定的數據,IP協議負責對數據進行分段,重組,在多種網路中傳送。

TCP的上面就是應用程序,下面是IP協議,上層介麵包括一系列類似於操作系統中斷的調用。對於上層應用程序來說,TCP應該能夠非同步傳送數據。下層介面我們假定為IP協議介面。為了在並不可靠的網路上實現面向連接的可靠的傳送數據,TCP必須解決可靠性,流量控制的問題,必須能夠為上層應用程序提供多個介面,同時為多個應用程序提供數據,同時TCP必須解決連接問題,這樣TCP才能稱得上是面向連接的,最後,TCP也必須能夠解決通信安全性的問題。

網路環境包括由網關(或其它設備)連接的網路,網路可以是區域網也可以是一些城域網或廣域網,但無論它們是什麼,它們必須是基於包交換的。主機上不同的協議有不同的埠號,一對進程通過這個埠號進行通信。這個通信不包括計算機內的I/O操作,只包括在網路上進行的操作。網路上的計算機被看作包傳送的源和目的結點。特別應該注意的是:計算機中的不同進程可能同時進行通信,這時它們會用埠號進行區別,不會把發向A進程的數據由B進程接收的。

進程為了傳送數據會調用TCP,將數據和相應的參數傳送給TCP,於是TCP會將數據傳送到目的TCP那裡,當然這是通過將TCP包打包在IP包內在網路上傳送達到的。接收方TCP在接收到數據後會通信上層應用程序,TCP會保證接收數據順序的正確性。雖然下層協議可能不會保證順序是正確的。這里需要說明的是網關在接收到這個包後,會將包解開,看看是不是已經到目的地了,如果沒有到,應該走什麼路由達到目的地,在決定後,網關會根據下一個網路內的協議情況再次將TCP包打包傳送,如果需要,還要把這個包再次分成幾段再傳送。這個落地檢查的過程是一個耗時的過程。從上面,我們可以看出TCP傳送的基本過程,當然具體過程可能要復雜得多。

在實現TCP的主機上,TCP可以被看成是一個模塊,和文件系統區別不大,TCP也可以調用一些操作系統的功能,TCP不直接和網路打交道,控制網路的任務由專門的設備驅動模塊完成。TCP只是調用IP介面,IP向TCP提供所有TCP需要的服務。通過下圖我們可以更清楚地看到TCP協議的結構。

上面已經說過了,TCP連接是可靠的,而且保證了傳送數據包的順序,保證順序是用一個序號來保證的。響應包內也包括一個序列號,表示接收方准備好這個序號的包。在TCP傳送一個數據包時,它同時把這個數據包放入重發隊列中,同時啟動記數器,如果收到了關於這個包的確認信息,將此包從隊列中刪除,如果計時超時則需要重新發送此包。請注意,從TCP返回的確認信息並不保證最終接收者接收到數據,這個責任由接收方負責。

每個用於傳送TCP的通道都有一個埠標記,因為這個標記是由每個TCP終端確定的,因此TCP可能不唯一,為了保證這個數值的唯一,要使用網路地址和埠號的組合達到唯一標識的目的,我們稱這個為了套接字(Socket),一個連接由連接兩端的套接字標識,本地的套接字可能和不同的外部套接字通信,這種通信是全雙工的。

通過向本地埠發送OPEN命令及外部套接字參數建立連接,TCP返回一個標記這個連接的名稱,以後如果用戶需要使用這個名稱標記這個連接。為了保存這個連接的信息,我們假設有一個稱為傳輸控制塊(Transmission Control Block,TCB)的東西來保存。OPEN命令還指定這個連接的建立是主動請求還是被動等待請求。下面我們要涉及具體的功能了,TCP段以internet數據報的形式傳送。IP包頭傳送不同的信息域,包括源地址和目的地址。TCP頭跟在internet包頭後面,提供了一些專用於TCP協議的信息。下圖是TCP包頭格式圖:

源埠:16位;

目的埠:16位

序列碼:32位,當SYN出現,序列碼實際上是初始序列碼(ISN),而第一個數據位元組是ISN+1;

確認碼:32位,如果設置了ACK控制位,這個值表示一個准備接收的包的序列碼;

數據偏移量:4位,指示何處數據開始;

保留:6位,這些位必須是0;

控制位:6位;

窗口:16位;

校驗位:16位;

優先指針:16位,指向後面是優先數據的位元組;

選項:長度不定;但長度必須以位元組記;選項的具體內容我們結合具體命令來看;

填充:不定長,填充的內容必須為0,它是為了保證包頭的結合和數據的開始處偏移量能夠被32整除;



我們前面已經說過有一個TCB的東西了,TCB里有存儲了包括發送方,接收方的套接字,用戶的發送和接收的緩沖區指針等變數。除了這些還有一些變數和發送接收序列號有關:

發送序列變數

SND.UNA - 發送未確認

SND.NXT - 發送下一個

SND.WND - 發送窗口

SND.UP - 發送優先指針

SND.WL1 - 用於最後窗口更新的段序列號

SND.WL2 - 用於最後窗口更新的段確認號

ISS - 初始發送序列號



接收序列號

RCV.NXT - 接收下一個

RCV.WND - 接收下一個

RCV.UP - 接收優先指針

IRS - 初始接收序列號

下圖會幫助您了解發送序列變數間的關系:

當前段變數

SEG.SEQ - 段序列號

SEG.ACK - 段確認標記

SEG.LEN - 段長

SEG.WND - 段窗口

SEG.UP - 段緊急指針

SEG.PRC - 段優先順序

連接進程是通過一系列狀態表示的,這些狀態有:LISTEN,SYN-SENT,SYN-RECEIVED,ESTABLISHED,FIN-WAIT-1,FIN-WAIT-2,CLOSE-WAIT,CLOSING,LAST-ACK,TIME-WAIT和 CLOSED。CLOSED表示沒有連接,各個狀態的意義如下:

LISTEN - 偵聽來自遠方TCP埠的連接請求;

SYN-SENT - 在發送連接請求後等待匹配的連接請求;

SYN-RECEIVED - 在收到和發送一個連接請求後等待對連接請求的確認;

ESTABLISHED - 代表一個打開的連接,數據可以傳送給用戶;

FIN-WAIT-1 - 等待遠程TCP的連接中斷請求,或先前的連接中斷請求的確認;

FIN-WAIT-2 - 從遠程TCP等待連接中斷請求;

CLOSE-WAIT - 等待從本地用戶發來的連接中斷請求;

CLOSING - 等待遠程TCP對連接中斷的確認;

LAST-ACK - 等待原來發向遠程TCP的連接中斷請求的確認;

TIME-WAIT - 等待足夠的時間以確保遠程TCP接收到連接中斷請求的確認;

CLOSED - 沒有任何連接狀態;

TCP連接過程是狀態的轉換,促使發生狀態轉換的是用戶調用:OPEN,SEND,RECEIVE,CLOSE,ABORT和STATUS;傳送過來的數據段,特別那些包括以下標記的數據段SYN,ACK,RST和FIN;還有超時,上面所說的都會時TCP狀態發生變化。



下面的圖表示了TCP狀態的轉換,但這圖中沒有包括錯誤的情況和錯誤處理,不要把這幅圖看成是總說明了。



3.3. 序列號

請注意,我們在TCP連接中發送的位元組都有一個序列號。因為編了號,所以可以確認它們的收到。對序列號的確認是累積性的,也就是說,如果用戶收到對X的確認信息,這表示在X以前的數據(不包括X)都收到了。在每個段中位元組是這樣安排的:第一個位元組在包頭後面,按這個順序排列。我們需要認記實際的序列空間是有限的,雖然很大,但是還是有限的,它的范圍是0到2的32次方減1。我想熟悉編程的一定知道為什麼要在計算兩個段是不是相繼的時候要使用2的32次方為模了。TCP必須進行的序列號比較操作種類包括以下幾種:

(a) 決定一些發送了的但未確認的序列號;

(b) 決定所有的序列號都已經收到了;

(c) 決定下一個段中應該包括的序列號。

對於發送的數據TCP要接收確認,處理確認時必須進行下面的比較操作:

SND.UNA = 最老的確認了的序列號;

SND.NXT = 下一個要發送的序列號;

SEG.ACK = 接收TCP的確認,接收TCP期待的下一個序列號;

SEG.SEQ = 一個數據段的第一個序列號;

SEG.LEN = 數據段中包括的位元組數;

SEG.SEQ+SEG.LEN-1 = 數據段的最後一個序列號。

請注意下面的關系:

SND.UNA < SEG.ACK =< SND.NXT

如果一個數據段的序列號小於等於確認號的值,那麼整個數據段就被確認了。而在接收數據時下面的比較操作是必須的:

RCV.NXT = 期待的序列號和接收窗口的最低沿;

RCV.NXT+RCV.WND-1 = 最後一個序列號和接收窗口的最高沿;

SEG.SEQ = 接收到的第一個序列號;

SEG.SEQ+SEG.LEN-1 = 接收到的最後一個序列號;



上面幾個量有如下關系:

RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND 或 RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

測試的第一部分是檢查數據段的開始部分是否在接收窗口中,第二部分是檢查數據段的結束部分是否也在接收窗口內;上面兩個檢查通過任何一個就說明它包括窗口要求的數據。實際中的情況會更復雜一些,因為有零窗口和零數據段長,因此我們有下面四種情況:

段長度
接收窗口
測試

0
0
SEG.SEQ = RCV.NXT

0
>0
RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND

>0
0
不可接受

>0
>0
RCV.NXT =< SEG.SEQ < RCV.NXT+RCV.WND或RCV.NXT =< SEG.SEQ+SEG.LEN-1 < RCV.NXT+RCV.WND

請注意接收窗口的大小可以為零,在窗口為零時它只用來接收ACK信息,因此對於一個TCP來說,它可以使用零大小窗口在發送數據的同時接收數據。即使接收窗口的大小為零,TCP必須處理所有接收到信息的RST和URG域。

我們也應用計數的方式保護了一些特定的控制信息,這是通過隱式地使用一些控制標記使數據段能夠可靠地重新發送(或確認)為達到的。控制信息並不在段數據空間中傳送,因此,我們必須採用隱式指定序列號進行控制。SYN和FIN是需要保護的控制量,這兩個控制量也只在連接打開和關閉時使用。SYN被認為是在第一個實際數據之間的數據,而FIN是最後一個實際數據之後的數據。段長度(SEG.LEN)包括數據和序列號空間,如果出現了SYN,那麼SEG.SEQ是SYN的序列號。

初始序列號選擇

協議對於特定連接被重復使用沒有什麼限制。連接是由一對套接字定義的。新的連接實例被定義為連接的另一次恢復,這就帶來了問題:TCP如果確定多個數據段是從以前連接的另一次恢復中取得的呢?這個問題在連接迅速打開和關閉,或因為內存原因被關閉然後又迅速建立後顯示特別突出。

為了避免混亂,用戶必須避免因此恢復使用某一連接,而使序列號發生混亂。我們必須保證序列號的正確性,即使TCP失敗,根本不知道以前的序列號是什麼的情況下也要保證序列號的正確性。當新的連接被創建時,產生一個新的初始序列號(ISN)產生子,它用來選擇一個新的32位ISN。產生子和32位時鍾的低度位位元組相關,低位位元組的刷新頻率大概是4微秒,因此ISN的循環時間大概是4.55小時。因此我們把網路包的最長生存時間(MSL)小於4.55小時,因此我們可以認為ISN是唯一的。對於每個連接都有發送序列號和接收序列號,初始發送序列號(ISS)由發送TCP選擇,而初始接收序列號是在連接建立過程中產生的。

對於將要連接或初始化的連接,兩個TCP必須和對方的初始序列號同步。這通過交換一個控制位SYN和初始序列號完成。我們把帶有SYN的數據段稱為"SYNs"。同步的獲得過程這里就不重復了,每方必須發送自己的序列號並返回對對方序列號的確認。

1) A --> B SYN 本方序列號是X

2) A <-- B ACK 本方序列號被確認

3) A <-- B SYN 對方序列號是Y

4) A --> B ACK 確認對方序列號

上面的第2步和第3步可以合並,這時可以成為3階段,所以我們可以稱它為三消息握手。這個過程是必須的,因為序列號不和全局時鍾關聯,TCP也可以有不同的機制選擇ISN。接收到第一個SYN的接收方不可能知道這個數據段是不是被延時,除非它記住了在連接上使用的最近的序列號(這通常是不可能的),因此它必須要求發送者確認。

為了保證TCP獲得的確認是剛才發送的段產生的,而不是仍然在網路中的老數據段產生的,因此TCP必須在MSL時間之內保持沉默。在本文中,我們假設MSL=2小時,這是出於工程的需要,如果用戶覺得可以,他可以改變MSL。請注意如果TCP重新初始化,而內存中的序列號正在使用,不需要等待,但必須確認使用的序列號比當前使用的要大。

如果一台主機在未保留任何序列號的情況下失敗,那麼它應該在MSL時間之內不發出任何數據段。下面將會這一情況進行說明。TCP的實現可以不遵守這個規定,但是這會造成老數據被當成新數據接收,而新數據被當成老數據拒絕的情況。

每當數據段形成並進入輸出隊列,TCP會為它指定序列空間中的一個值。TCP中多復本檢測和序列演算法都依賴於這個地址空間,在對方發送或接收之前不會超過2的32次方個包存在於輸出隊列中。所有多餘的數據段都會被刪除。如果沒有這個規定,會出現多個數據段被指定同一個序列號的情況,會造成混亂。數據段中序列號的多少和數據段中的位元組數一樣多。

在通常情況下,TCP保留下一個要發送的序列號和還未確認的最老的序列號,不要在沒有確認的時候就再次使用,這樣會有些風險,也正是因為這樣的目的,所以序列空間很大。對於2M的網路,要4.5小時來耗盡序列空間,因為一個數據段可能的最大生存時間也不過十幾分之一秒,這就留下了足夠的空間;而在100M的網路上需要5.4分鍾,雖然少了點,但也可以了。

如果在實現TCP時沒有為保存序列號留下空間,那清除多餘的包可能就不能實現了,因此推薦這種類型的TCP實現最好在失敗後等待MSL時間,這樣保證多餘的包被刪除。這種情況有時候也可能會出現在保留序列號的TCP實現中。如果TCP在選擇一個另一個TCP連接正在使用的序列號時,這台主機突然失敗了,這就產生了問題。這個問題的實質在於主機不知道它失敗了多久,也不知道多餘的復本是不是還在網路中。

處理這種問題的方法是等待MSL時間,如果不這樣就要冒著對方錯誤接收數據的危險,要等待的時間也就稱為「沉默時間」。實現者可以讓用戶選擇是不是等待,但是無論用戶如何也不見得非要等待MSL時間。

3.4. 建立一個連接

建立連接應用的是三消息握手。如果雙方同時都發送SYN也沒有關系,雙方會發現這個SYN中沒有確認,於是就知道了這種情況,通常來說,應該發送一個"reset"段來解決這種情況。三消息握手減少了連接失敗的可能性。下面就是一個例子,在尖括弧是的就是數據段中的內容和標記。其它的就不多說了。

在第2行,TCP A發送SYN初始化序列號,表示它要使用序列號100;第3行中,TCP B給出確認,並且期待著A的帶有序列號101的數據段;第4行,TCP A給出確認,而在第5行,它也給出確認,並發送了一些數據,注意第4行的序列號與第5號的一樣,因為ACK信息不佔用序列號空間內的序列號。同時產生請求的情況如下圖所示,只復雜一點。

使用三消息握手的主要原因是為了防止使用過期的數據段。為了這個目的,必須引入新的控制消息,RESET。如果接收TCP處理非同步狀態,在接收到RESET後返回到LISTEN狀態。如果TCP處理下面幾種狀態ESTABLISHED,FIN-WAIT-1,FIN-WAIT-2,CLOSE-WAIT,CLOSING,LAST-ACK,TIME-WAIT時,放棄連接並通過用戶。我們下面就詳細說明後一種情況。

通過上面的例子,我們可以看出TCP連接是如何從過期數據段的干擾下恢復的。請注意第4行和第5行中的RST(RESET信號)。

半開連接和其它非正常狀態

如果一方在未通過另一方的情況下關閉連接,或雙方雖然失敗而不同步的情況我們稱為半開連接狀態。在一方試圖發送數據時連接會自動RESET。然而這種情況畢竟屬於不正常情況。應該做出相應的處理。如果A處的連接已經關閉,B處並不知道。當B希望發送數據到A時,就會收到RESET信號,表示這個TCP連接有誤,要中止當前連接。

假設A和B兩個進程相互通信的時候A的TCP發生了失敗,A依靠操作系統支持TCP的存在,通常這種情況下會有恢復機制起作用,當TCP重新恢復的時候,A可能希望從恢復點開始工作。這樣A可能會試圖OPEN連接,然後在這個它認為還是打開的連接上傳送數據,這時A會從本地(也就是A的)TCP上獲得錯誤消息「未打開連接」。A的TCP將發送包括SYN的數據段。下面的例子將顯示這一過程:

上面這個例子中,A方收到的信息並沒有確認任何東西,這時候A發現出了問題,於是發送了RST控制信息。另一種情況是發生在A失敗,而B方仍然試圖發送數據時,下面的例子可以表示這種情況,請注意第2行中A對B發送來的信息不知所雲。

在下面的例子中,A方和B方進行的被動連接,它們都在等待SYN信息。過期的包傳送到B方使B回應了,而收到回應的A卻發現不對頭,傳送RST控制信息,B方返回被動LISTEN狀態。

現實中的情況太多了,我們列舉一些產生RST控制信息的規則如下:通常情況下,RST在收到的信息不是期待的信息時產生。如果在不能確定時不要輕易發送RST控制信息。下面有三類情況:

如果連接已經不存在,而發送來的消息又不是RST,那麼要返回RST。如果想拒絕對不存在的連接進行SYN,可以使用這種辦法。如果到達的信息有一個ACK域,返回的RST信息可以從ACK域中取得序列號,如果沒有這個域,就把RST的序列號設置為0,ACK域被設備為序列號和到達段長度之和。連接仍然處於CLOSE狀態。

如果連接處於非同步狀態(LISTEN,SYN-SENT,SYN-RECEIVED),而且收到的確認是對未發出包的確認或是接收到數據段的安全級別與不能連接要求的相一一致時,就發送RST。如果SYN未被確認時,而且收到的數據段的優先順序比要求的優先順序要高,那麼要麼提高本地優先順序(得事先徵得用戶和系統的許可)要麼發送RST;如果接收數據段的優先順序比要求的優先順序低,就算是匹配了,當然如果對方發現優先順序不對提高了優先順序,在下一個包中提高了優先順序,這就不算是匹配了。如果連接已經進入SYN,那麼接收到數據段的優先順序必須和本地優先順序一樣,否則發送RST。如果到達的信息有一個ACK域,返回的RST信息可以從ACK域中取得序列號,如果沒有這個域,就把RST的序列號設置為0,ACK域被設備為序列號和到達段長度之和。連接仍然處於與原來相同的狀態。

如果連接處於同步狀態(ESTABLISHED,FIN-WAIT-1,FIN-WAIT-2,CLOSE-WAIT,CLOSING,LAST-ACK,TIME-WAIT),任何超出接收窗口的序列號的數據段都產生如下結果:發出一個空確認數據段,此段中包括當前發送序列號,另外還包括一個確認指出希望接收的下一個數據段的序列號,連接仍然保存在原來的狀態。如果因為安全級,優先順序之類的問題,那就發送RST信號然後進入CLOSED狀態。

⑶ 向遠程ftp上傳文件的過程中,用到TCP/IP協議中四層的哪些協議

FTP一般是通過建立兩個TCP連接來完成文件傳輸。因此傳輸層用的主要就是TCP協議。(如果是TFTP則是UDP協議了)
在網路層IP協議是必須的。而上層使用的TCP,可靠傳輸,則必然也有使用ICMP,對出錯的數據報能有報告機制。
ARP和RARP其實從原理上說,應該也屬於網際層。
若果本次FTP傳輸兩端的機器有區域網情形,則必然有ARP協議使用到。。而RARP,主要是針對無盤工作站,目前的情形,比較難碰到吧。

⑷ FTP使用傳輸層的什麼協議

FTP使用傳輸層的TCP協議。

TCP旨在適應支持多網路應用的分層協議層次結構。連接到不回同但互答連的計算機通信網路的主計算機中的成對進程之間依靠TCP提供可靠的通信服務。

TCP假設它可以從較低級別的協議獲得簡單的,可能不可靠的數據報服務。原則上,TCP應該能夠在從硬線連接到分組交換或電路交換網路的各種通信系統之上操作。

(4)ftp通信過程中的tcp包格式擴展閱讀:

TCP協議的主要功能:

1、在數據正確性與合法性上,TCP用一個校驗和函數來檢驗數據是否有錯誤,在發送和接收時都要計算校驗和;同時可以使用md5認證對數據進行加密

2、在保證可靠性上,採用超時重傳和捎帶確認機制。

3、在流量控制上,採用滑動窗口協議,協議中規定,對於窗口內未經確認的分組需要重傳。

⑸ ftp是基於什麼協議的 TCP還是UDP

tcp。

文件傳輸協議(File Transfer Protocol,FTP)是用於在網路上進行文件傳輸的一套標准協議,它工作在 OSI 模型的第七層, TCP 模型的第四層, 即應用層, 使用 TCP 傳輸而不是 UDP, 客戶在和伺服器建立連接前要經過一個「三次握手」的過程, 保證客戶與伺服器之間的連接是可靠的, 而且是面向連接, 為數據傳輸提供可靠保證。

(5)ftp通信過程中的tcp包格式擴展閱讀:


FTP客戶端發起FTP會話,與FTP伺服器建立相應的連接。FTP會話期間要建立控制信息進程與數據進程兩個連接。控制連接不能完成傳輸數據的任務,只能用來傳送FTP執行的內部命令以及命令的響應等控制信息;數據連接是伺服器與客戶端之間傳輸文件的連接,是全雙工的,允許同時進行雙向數據傳輸。當數據傳輸完成後,數據連接會撤消,再回到FTP會話狀態,直到控制連接被撤消,並退出會話為止。

熱點內容
java返回this 發布:2025-10-20 08:28:16 瀏覽:712
製作腳本網站 發布:2025-10-20 08:17:34 瀏覽:974
python中的init方法 發布:2025-10-20 08:17:33 瀏覽:685
圖案密碼什麼意思 發布:2025-10-20 08:16:56 瀏覽:837
怎麼清理微信視頻緩存 發布:2025-10-20 08:12:37 瀏覽:743
c語言編譯器怎麼看執行過程 發布:2025-10-20 08:00:32 瀏覽:1085
郵箱如何填寫發信伺服器 發布:2025-10-20 07:45:27 瀏覽:314
shell腳本入門案例 發布:2025-10-20 07:44:45 瀏覽:194
怎麼上傳照片瀏覽上傳 發布:2025-10-20 07:44:03 瀏覽:882
python股票數據獲取 發布:2025-10-20 07:39:44 瀏覽:840