緩存redis好處
① 使用redis有哪些好處
用redis好處:
1、數據存儲在內存中,讀寫速度快;備缺彎
2、支仿悶持的數據類型資源豐富;
3、支持事務,操作都是原子性操作;
4、可以設置數據扮兄存活的生命周期。
② seoredis緩存還是靜態緩存
首先,需要說明的是SEOREDIS是一款開源的緩存工具,它提供了不同的緩存模式,用戶可以根據自己的需求選擇合適的緩存模式進行使用。
靜態緩存和SEOREDIS緩存都可以提升網站性能和訪問速度,但是兩者有一些區別:
1. 靜態緩存是將頁面生成的靜態HTML文件直接存儲在伺服器唯唯或CDN節點上,當用戶再次請求該頁面時,直接返回這個已經生成好的HTML文件。而SEOREDIS緩存則是通過SEOREDIS緩存伺服器來緩存頁面內容,當用戶指隱培請求頁面時,先檢查SEOREDIS緩存中是否存在該頁面的緩存,如果存在攜返,則直接返回緩存結果。
2. 靜態緩存對於不經常變化的頁面效果較好,但是對於經常變化的頁面效果較差。因為靜態緩存保存的是已經生成的頁面,如果頁面有改動,需要重新生成靜態頁面,並將舊的頁面清除。SEOREDIS緩存相比之下更加靈活,當頁面發生變化時,只需要更新緩存即可,無需重新生成整個頁面。
3. SEOREDIS緩存提供了更多的控制選項,比如緩存的過期時間、緩存的更新策略等,可以更加細致地控制緩存的行為。
綜上所述,SEOREDIS緩存相比靜態緩存具有更高的靈活性和更多的控制選項,能夠更加有效地提升網站的性能和訪問速度。
③ 京東面試官:Redis 這些我必問
緩存好處:高性能 + 高並發
資料庫查詢耗費了800ms,其他用戶對同一個數據再次查詢 ,假設該數據在10分鍾以內沒有變化過,並且 10 分鍾之內有 1000 個用戶 都查詢了同一數據,10 分鍾之內,那 1000 每個用戶,每個人查詢這個數據都感覺很慢 800ms
比如 :某個商品信息,在 一天之內都不會改變,但是這個商品每次查詢一次都要耗費2s,一天之內被瀏覽 100W次
mysql 單機也就 2000qps,緩存單機輕松幾萬幾十萬qps,單機 承載並發量是 mysql 單機的幾十倍。
在中午高峰期,有 100W 個用戶訪問系統 A,每秒有 4000 個請求去查詢資料庫,資料庫承載每秒 4000 個請求會宕機,加上緩存後,可以 3000 個請求走緩存 ,1000 個請求走資料庫。
緩存是走內存的,內存天然可以支撐4w/s的請求,資料庫(基於磁碟)一般建議並發請求不要超過 2000/s
redis 單線程 ,memcached 多線程
redis 是單線程 nio 非同步線程模型
一個線程+一個隊列
redis 基於 reactor 模式開發了網路事件處理器,這個處理器叫做文件事件處理器,file event handler,這個文件事件處理器是單線程的,所以redis 是單線程的模型,採用 io多路復用機制同時監聽多個 socket,根據socket上的事件來選擇對應的事件處理器來處理這個事件。
文件事件處理器包含:多個 socket,io多路復用程序,文件事件分派器,事件處理器(命令請求處理器、命令恢復處理器、連接應答處理器)
文件事件處理器是單線程的,通過 io 多路復用機制監聽多個 socket,實現高性能和線程模型簡單性
被監聽的 socket 准備好執行 accept,read,write,close等操作的時候,會產生對應的文件事件,調用之前關聯好的時間處理器處理
多個 socket並發操作,產生不同的文件事件,i/o多路復用會監聽多個socket,將這些 socket放入一個隊列中排隊。事件分派器從隊列中取出socket給對應事件處理器。
一個socket時間處理完後,事件分派器才能從隊列中拿到下一個socket,給對應事件處理器來處理。
文件事件:
AE_READABLE 對應 socket變得可讀(客戶端對redis執行 write操作)
AE_WRITABLE 對應 socket 變得可寫(客戶端對 redis執行 read操作)
I/O 多路復用可以同時監聽AE_REABLE和 AE_WRITABLE ,如果同時達到則優先處理 AE_REABLE 時間
文件事件處理器:
連接應答處理器 對應 客戶端要連接 redis
命令請求處理器 對應 客戶端寫數據到 redis
命令回復處理器 對應 客戶端從 redis 讀數據
流程:
一秒鍾可以處理幾萬個請求
普通的 set,get kv緩存
類型 map結構,比如一個對象(沒有嵌套對象)緩存到 redis裡面,然後讀寫緩存的時候,可以直接操作hash的欄位(比如把 age 改成 21,其他的不變)
key=150
value = {
}
有序列表 ,元素可以重復
可以通過 list 存儲一些列表型數據結構,類似粉絲列表,文章評論列表。
例如:微信大 V的粉絲,可以以 list 的格式放在 redis 里去緩存
key=某大 V value=[zhangsan,lisi,wangwu]
比如 lrange 可以從某個元素開始讀取多少個元素,可以基於 list 實現分頁查詢功能,基於 redis實現高性能分頁,類似微博下來不斷分頁東西。
可以搞個簡單的消息隊列,從 list頭懟進去(lpush),list尾巴出來 (brpop)
無序集合,自動去重
需要對一些數據快速全局去重,(當然也可以基於 HashSet,但是單機)
基於 set 玩差集、並集、交集的操作。比如:2 個人的粉絲列表整一個交集,看看 2 個人的共同好友是誰?
把 2 個大 V 的粉絲都放在 2 個 set中,對 2 個 set做交集(sinter)
排序的 set,去重但是可以排序,寫進去的時候給一個分數,自動根據分數排序
排行榜:
zadd board score username
例如:
zadd board 85 zhangsan
zadd board 72 wangwu
zadd board 96 lis
zadd board 62 zhaoliu
自動排序為:
96 lisi
85 zhangsan
72 wangwu
62 zhaoliu
獲取排名前 3 的用戶 : zrevrange board 0 3
96 lisi
85 zhangsan
72 wangwu
查看zhaoliu的排行 :zrank board zhaoliu 返回 4
內存是寶貴的,磁碟是廉價的
給key設置過期時間後,redis對這批key是定期刪除+惰性刪除
定期刪除:
redis 默認每隔 100ms隨機抽取一些設置了過期時間的 key,檢查其是否過期了,如果過期就刪除。
注意:redis是每隔100ms隨機抽取一些 key來檢查和刪除,而不是遍歷所有的設置過期時間的key(否則CPU 負載會很高,消耗在檢查過期 key 上)
惰性刪除:
獲取某個key的時候, redis 會檢查一下,這個key如果設置了過期時間那麼是否過期,如果過期了則刪除。
如果定期刪除漏掉了許多過期key,然後你也沒及時去查,也沒走惰性刪除,如果大量過期的key堆積在內存里,導致 redis 內存塊耗盡,則走內存淘汰機制。
內存淘汰策略:
LRU 演算法:
緩存架構(多級緩存架構、熱點緩存)
redis 高並發瓶頸在單機,讀寫分離,一般是支撐讀高並發,寫請求少,也就 一秒一兩千,大量請求讀,一秒鍾二十萬次。
一主多從,主負責寫,將數據同步復制到其他 slave節點,從節點負責讀,所有讀的請求全部走從節點。主要是解決讀高並發。、
主從架構->讀寫分離->支撐10W+讀QPS架構
master->slave 復制,是非同步的
核心機制:
master持久化對主從架構的意義:
如果開啟了主從架構,一定要開啟 master node的持久化,不然 master宕機重啟數據是空的,一經復制,slave的數據也丟了
主從復制原理:
第一次啟動或者斷開重連情況:
正常情況下:
master 來一條數據,就非同步給 slave
全年 99.99%的時間,都是出於可用的狀態,那麼就可以稱為高可用性
redis 高可用架構叫故障轉移,failover,也可以叫做主備切換,切換的時間不可用,但是整體高可用。
sentinal node(哨兵)
作用:
quorum = 1 (代表哨兵最低個數可以嘗試故障轉移,選舉執行的哨兵)
master 宕機,只有 S2 存活,因為 quorum =1 可以嘗試故障轉移,但是沒達到 majority =2 (最低允許執行故障轉移的哨兵存活數)的標准,無法執行故障轉移
如果 M1 宕機了,S2,S3 認為 master宕機,選舉一個執行故障轉移,因為 3 個哨兵的 majority = 2,所以可以執行故障轉移
丟數據:
解決方案:
sdown 主觀宕機,哨兵覺得一個 master 宕機(ping 超過了 is-master-down-after-milliseconds毫秒數)
odown 客觀宕機,quorum數量的哨兵都覺得 master宕機
哨兵互相感知通過 redis的 pub/sub系統,每隔 2 秒往同一個 channel里發消息(自己的 host,ip,runid),其他哨兵可以消費這個消息
以及同步交換master的監控信息。
哨兵確保其他slave修改master信息為新選舉的master
當一個 master被認為 odown && marjority哨兵都同意,那麼某個哨兵會執行主備切換,選舉一個slave成為master(考慮 1. 跟master斷開連接的時長 2. slave 優先順序 3.復制 offset 4. runid)
選舉演算法:
quorum 數量哨兵認為odown->選舉一個哨兵切換->獲得 majority哨兵的授權(quorum majority 需要 majority個哨兵授權,quorum >= majority 需要 quorum 哨兵授權)
第一個選舉出來的哨兵切換失敗了,其他哨兵等待 failover-time之後,重新拿confiuration epoch做為新的version 切換,保證拿到最新配置,用於 configuration傳播(通過 pu/sub消息機制,其他哨兵對比 version 新舊更新 master配置)
高並發:主從架構
高容量:Redis集群,支持每秒幾十萬的讀寫並發
高可用:主從+哨兵
持久化的意義在於故障恢復數據備份(到其他伺服器)+故障恢復(遇到災難,機房斷電,電纜被切)
AOF 只有一個,Redis 中的數據是有一定限量的,內存大小是一定的,AOF 是存放寫命令的,當大到一定的時候,AOF 做 rewrite 操作,就會基於當時 redis 內存中的數據,來重新構造一個更小的 AOF 文件,然後將舊的膨脹很大的文件給刪掉,AOF 文件一直會被限制在和Redis內存中一樣的數據。AOF同步間隔比 RDB 小,數據更完整
優點:
缺點:
AOF 存放的指令日誌,數據恢復的時候,需要回放執行所有指令日誌,RDB 就是一份數據文件,直接載入到內存中。
優點:
缺點:
AOF 來保證數據不丟失,RDB 做不同時間的冷備
支持 N 個 Redis master node,每個 master node掛載多個 slave node
多master + 讀寫分離 + 高可用
數據量很少,高並發 -> replication + sentinal 集群
海量數據 + 高並發 + 高可用 -> redis cluster
hash演算法->一致性 hash 演算法-> redis cluster->hash slot演算法
redis cluster :自動對數據進行分片,每個 master 上放一部分數據,提供內置的高可用支持,部分master不可用時,還是可以繼續工作
cluster bus 通過 16379進行通信,故障檢測,配置更新,故障轉移授權,另外一種二進制協議,主要用於節點間進行高效數據交換,佔用更少的網路帶寬和處理時間
key進行hash,然後對節點數量取模,最大問題只有任意一個 master 宕機,大量數據就要根據新的節點數取模,會導致大量緩存失效。
key進行hash,對應圓環上一個點,順時針尋找距離最近的一個點。保證任何一個 master 宕機,只受 master 宕機那台影響,其他節點不受影響,此時會瞬間去查資料庫。
緩存熱點問題:
可能集中在某個 hash區間內的值特別多,那麼會導致大量的數據都湧入同一個 master 內,造成 master的熱點問題,性能出現瓶頸。
解決方法:
給每個 master 都做了均勻分布的虛擬節點,這樣每個區間內大量數據都會均勻的分布到不同節點內,而不是順時針全部湧入到同一個節點中。
redis cluster 有固定 16384 個 hash slot,對每個key計算 CRC16 值,然後對16384取模,可以獲取 key對應的 hash slot
redis cluster 中每個 master 都會持有部分 slot ,當一台 master 宕機時候,會最快速度遷移 hash slot到可用的機器上(只會短暫的訪問不到)
走同一個 hash slot 通過 hash tag實現
集群元數據:包括 hashslot->node之間的映射表關系,master->slave之間的關系,故障的信息
集群元數據集中式存儲(storm),底層基於zookeeper(分布式協調中間件)集群所有元數據的維護。好處:元數據的更新和讀取,時效性好,一旦變更,其他節點立刻可以感知。缺點:所有元數據的更新壓力全部集中在一個地方,可能會導致元數據的存儲有壓力。
goosip: 好處:元數據的更新比較分散,有一定的延時,降低了壓力。缺點:更新有延時,集群的一些操作會滯後。(reshared操作時configuration error)
自己提供服務的埠號+ 10000 ,每隔一段時間就會往另外幾個節點發送ping消息,同時其他幾點接收到ping之後返回pong
故障信息,節點的增加和移除, hash slot 信息
meet:某個節點發送 meet給新加入的節點,讓新節點加入集群中,然後新節點就會開始於其他節點進行通信
ping:每個節點都會頻繁給其他節點發送ping,其中包含自己的狀態還有自己維護的集群元數據,互相通過ping交換元數據
ping:返回ping和meet,包含自己的狀態和其他信息
fail:某個節點判斷另一個節點fail之後,就發送 fail 給其他節點,通知其他節點,指定的節點宕機了
ping 很頻繁,且攜帶元數據,會加重網路負擔
每個節點每秒會執行 10 次 ping,每次選擇 5 個最久沒有通信的其他節點
當如果發現某個節點通信延遲達到了 cluster_node_timeout /2 ,那麼立即發送 ping, 避免數據交換延遲過長,落後時間太長(2 個節點之間 10 分鍾沒有交換數據,整個集群處於嚴重的元數據不一致的情況)。
每次ping,一個是帶上自己的節點信息,還有就是帶上1/10其他節點的信息,發送出去,進行數據交換
至少包含 3 個其他節點信息,最多包含總節點-2 個其他節點的信息
客戶端發送到任意一個redis實例發送命令,每個redis實例接受到命令後,都會計算key對應的hash slot,如果在本地就本地處理,否則返回moved給客戶端,讓客戶端進行重定向 (redis-cli -c)
通過tag指定key對應的slot,同一個 tag 下的 key,都會在一個 hash slot中,比如 set key1:{100} 和 set key2:{100}
本地維護一份hashslot->node的映射表。
JedisCluster 初始化的時候,隨機選擇一個 node,初始化 hashslot->node 映射表,同時為每個節點創建一個JedisPool連接池,每次基於JedisCluster執行操作,首先JedisCluster都會在本地計算key的hashslot,然後再本地映射表中找到對應的節點,如果發現對應的節點返回moved,那麼利用該節點的元數據,更新 hashslot->node映射表(重試超過 5 次報錯)
hash slot正在遷移,那麼會返回ask 重定向給jedis,jedis 接受到ask重定向之後,,會重定向到目標節點去執行
判斷節點宕機:
如果一個節點認為另外一個節點宕機了, 就是pfail,主觀宕機
如果多個節點都認為另外一個節點宕機了,那麼就是fail,客觀宕機(跟哨兵原理一樣)
在cluster-node-timeout內,某個節點一直沒有返回 pong,那麼就被認為是 pfail
如果一個節點認為某個節點pfail了,那麼會在gossip消息中,ping給其他節點,如果超過半數的節點認為pfail了,那麼就會變成fail。
從節點過濾:
對宕機的 mster node ,從其所有的 slave node中,選擇一個切換成 master node
檢查每個 slave node與master node斷開連接的時間,如果超過了cluster-node-timeout * cluster-slave-validity-factor,那麼就沒資格切換成 master(和哨兵一致)
從節點選舉:
每個從節點,根據自己對 master 復制數據的 offset,設置一個選舉時間,offset越大(復制數據越多)的從節點,選舉時間越靠前,所有的 master node 開始投票,給要進行選舉的 slave進行投票,如果大部分 master node(N/2 +1) 都投票給某個從節點,那麼選舉通過,從節點執行主備切換,從節點切換成主節點
總結:和哨兵很像,直接集成了 replication 和 sentinal
方案:
事前:保證 redis 集群高可用性 (主從+哨兵或 redis cluster),避免全盤崩潰
事中:本地 ehcache 緩存 + hystrix 限流(保護資料庫) & 降級,避免 MySQL被打死
事後: redis持久化,快速恢復緩存數據,繼續分流高並發請求
限制組件每秒就 2000 個請求通過限流組件進入資料庫,剩餘的 3000 個請求走降級,返回一些默認 的值,或者友情提示
好處 :
4000 個請求黑客攻擊請求資料庫里沒有的數據
解決方案:把黑客查資料庫中不存在的數據的值,寫到緩存中,比如: set -999 UNKNOWN
讀的時候,先讀緩存,緩存沒有,就讀資料庫,然後取出數據後放入緩存,同時返回響應
更新的時候,刪除緩存,更新資料庫
為什麼不更新緩存:
更新緩存代價太高(更新 20 次,只讀 1 次),lazy思想,需要的時候再計算,不需要的時候不計算
方案:先刪除緩存,再修改資料庫
方案:寫,讀路由到相同的一個內存隊列(唯一標識,hash,取模)里,更新和讀操作進行串列化(後台線程非同步執行隊列串列化操作),(隊列里只放一個更新查詢操作即可,多餘的過濾掉,內存隊列里沒有該數據更新操作,直接返回 )有該數據更新操作則輪詢取緩存值,超時取不到緩存值,直接取一次資料庫的舊值
TP 99 意思是99%的請求可以在200ms內返回
注意點:多個商品的更新操作都積壓在一個隊列裡面(太多操作積壓只能增加機器),導致讀請求發生大量的超時,導致大量的讀請求走資料庫
一秒 500 寫操作,每200ms,100 個寫操作,20 個內存隊列,每個隊列積壓 5 個寫操作,一般在20ms完成
方案:分布式鎖 + 時間戳比較
10台機器,5 主 5 從,每個節點QPS 5W ,一共 25W QPS(Redis cluster 32G + 8 核 ,Redis 進程不超過 10G)總內存 50g,每條數據10kb,10W 條數據1g,200W 條數據 20G,佔用總內存不到50%,目前高峰期 3500 QPS
作者: mousycoder
④ mysql讀寫分離和用Redis做緩存,這兩種方案有什麼異同
讀寫分離一般都是結合Master/Slave模式使用,Master處理寫請求,Slave處理讀請求,這樣做的好處是:
1、提高資料庫的並發處理能力;
2、避免寫請求鎖表阻塞讀請求;
3、避免單點,提高資料庫的可用性;
而使用Redis作為DB前面的緩存,是為了減少對MySQL的壓力,提高系統的處理效率。
二者解決的問題域不同,不存在誰替代誰。
一般高並發應用都是結合二者使用。
⑤ redis怎麼使用,有什麼好處
應用Redis實現數據的讀寫,同時利用隊列處理器定時將數據寫入mysql。
同時要注意避免沖突,在redis啟動時去mysql讀取所有表鍵值存入redis中,往redis寫數據時,對redis主鍵自增並進行讀取,若mysql更新失敗,則需並物鍵要及絕巧時清除緩存及同步redis主鍵。
這樣處理,主要是實時讀寫redis,而mysql數據則通過隊列非同步處理,緩解mysql壓力,不過這種方法應用場景主螞隱要基於高並發,而且redis的高可用集群架構相對更復雜,一般不是很推薦。
⑥ 一個面試問題,為什麼用redis做緩存
redis不是資料庫,只是一種緩存軟體,為了緩解伺服器頻繁讀資料庫帶來的內存資源消耗,redis將需要和資料庫交互的信息暫存,當下次同樣的http請求,就能直接讀取redis裡面的內容,而不用讀資料庫。
這樣減少了資料庫壓力又能提高伺服器響應時間。
⑦ 用Redis緩存比開啟Mysql自帶的緩存好在哪
用這個緩存的時候,比開啟它的自帶緩存的模式,肯定是要好它的好的方式,就是說它的操作比較簡單。
⑧ 使用Redis有哪些好處
性能極高 – Redis能支持超過 100K+ 每秒的讀寫頻率碧殲。
豐富的數據類型 – Redis支持二進制案例的 Strings, Lists, Hashes, Sets 及 Ordered Sets 數據類型操作。
原子 – Redis的所有操作都是原子性的,同時Redis還支鋒核持悔基沖對幾個操作全並後的原子性執行。
豐富的特性 – Redis還支持 publish/subscribe, 通知, key 過期等等特性。
⑨ 三分鍾讀懂redis資料庫
redis是一個key-value存儲系統。和Memcached類似,它支持存儲的value類型相對更多,包括string(字元串)、list(鏈表)、set(集合)、zset(sorted set --有序集合)和hash(哈希類型)。這些數據類型都支持push/pop、add/remove及取交集並集和差集及更豐富的操作,而且這些操作都是原子性的。在此基礎上,redis支持各種不同方式的排序。與memcached一樣,為了保證效率,數據都是緩存在內存中。區別的是redis會周期性的把更新的數據寫入磁碟或者把修改操作寫入追加的記錄文件,並且在此基礎上實現了master-slave(主從)同步。
1. 使用Redis有哪些好處?
(1) 速度快,因為數據存在內存中,類似於HashMap,HashMap的優勢就是查找和操作的時間復雜度都是O(1)
(2) 支持豐富數據類型,支持string,list,set,sorted set,hash
(3) 支持事務,操作都是原子性,所謂的原子性就是對數據的更改要麼全部執行,要麼全部不執行
(4) 豐富的特性:可用於緩存,消息,按key設置過期時間,過期後將會自動刪除
2. redis相比memcached有哪些優勢?
(1) memcached所有的值均是簡單的字元串,redis作為其替代者,支持更為豐富的數據類型
(2) redis的速度比memcached快很多
(3) redis可以持久化其數據
3. redis常見性能問題和解決方案:
(1) Master最好不要做任何持久化工作,如RDB內存快照和AOF日誌文件
(2) 如果數據比較重要,某個Slave開啟AOF備份數據,策略設置為每秒同步一次
(3) 為了主從復制的速度和連接的穩定性,Master和Slave最好在同一個區域網內
(4) 盡量避免在壓力很大的主庫上增加從庫
(5) 主從復制不要用圖狀結構,用單向鏈表結構更為穩定,即:Master <- Slave1 <- Slave2 <- Slave3...
這樣的結構方便解決單點故障問題,實現Slave對Master的替換。如果Master掛了,可以立刻啟用Slave1做Master,其他不變。
4. MySQL里有2000w數據,redis中只存20w的數據,如何保證redis中的數據都是熱點數據
相關知識:redis 內存數據集大小上升到一定大小的時候,就會施行數據淘汰策略。redis 提供 6種數據淘汰策略:
voltile-lru:從已設置過期時間的數據集(server.db[i].expires)中挑選最近最少使用的數據淘汰
volatile-ttl:從已設置過期時間的數據集(server.db[i].expires)中挑選將要過期的數據淘汰
volatile-random:從已設置過期時間的數據集(server.db[i].expires)中任意選擇數據淘汰
allkeys-lru:從數據集(server.db[i].dict)中挑選最近最少使用的數據淘汰
allkeys-random:從數據集(server.db[i].dict)中任意選擇數據淘汰
no-enviction(驅逐):禁止驅逐數據
相關推薦:《Python視頻教程》
5. Memcache與Redis的區別都有哪些?
1)、存儲方式
Memecache把數據全部存在內存之中,斷電後會掛掉,數據不能超過內存大小。
Redis有部份存在硬碟上,這樣能保證數據的持久性。
2)、數據支持類型
Memcache對數據類型支持相對簡單。
Redis有復雜的數據類型。
3),value大小
redis最大可以達到1GB,而memcache只有1MB
6. Redis 常見的性能問題都有哪些?如何解決?
1).Master寫內存快照,save命令調度rdbSave函數,會阻塞主線程的工作,當快照比較大時對性能影響是非常大的,會間斷性暫停服務,所以Master最好不要寫內存快照。
2).Master AOF持久化,如果不重寫AOF文件,這個持久化方式對性能的影響是最小的,但是AOF文件會不斷增大,AOF文件過大會影響Master重啟的恢復速度。Master最好不要做任何持久化工作,包括內存快照和AOF日誌文件,特別是不要啟用內存快照做持久化,如果數據比較關鍵,某個Slave開啟AOF備份數據,策略為每秒同步一次。
3).Master調用BGREWRITEAOF重寫AOF文件,AOF在重寫的時候會佔大量的CPU和內存資源,導致服務load過高,出現短暫服務暫停現象。
4). Redis主從復制的性能問題,為了主從復制的速度和連接的穩定性,Slave和Master最好在同一個區域網內
7. redis 最適合的場景
Redis最適合所有數據in-momory的場景,雖然Redis也提供持久化功能,但實際更多的是一個disk-backed的功能,跟傳統意義上的持久化有比較大的差別,那麼可能大家就會有疑問,似乎Redis更像一個加強版的Memcached,那麼何時使用Memcached,何時使用Redis呢?
如果簡單地比較Redis與Memcached的區別,大多數都會得到以下觀點:
1.Redis不僅僅支持簡單的k/v類型的數據,同時還提供list,set,zset,hash等數據結構的存儲。
2.Redis支持數據的備份,即master-slave模式的數據備份。
3.Redis支持數據的持久化,可以將內存中的數據保持在磁碟中,重啟的時候可以再次載入進行使用。
(1)會話緩存(Session Cache)
最常用的一種使用Redis的情景是會話緩存(session cache)。用Redis緩存會話比其他存儲(如Memcached)的優勢在於:Redis提供持久化。當維護一個不是嚴格要求一致性的緩存時,如果用戶的購物車信息全部丟失,大部分人都會不高興的,現在,他們還會這樣嗎?
幸運的是,隨著 Redis 這些年的改進,很容易找到怎麼恰當的使用Redis來緩存會話的文檔。甚至廣為人知的商業平台Magento也提供Redis的插件。
(2)全頁緩存(FPC)
除基本的會話token之外,Redis還提供很簡便的FPC平台。回到一致性問題,即使重啟了Redis實例,因為有磁碟的持久化,用戶也不會看到頁面載入速度的下降,這是一個極大改進,類似PHP本地FPC。
再次以Magento為例,Magento提供一個插件來使用Redis作為全頁緩存後端。
此外,對WordPress的用戶來說,Pantheon有一個非常好的插件 wp-redis,這個插件能幫助你以最快速度載入你曾瀏覽過的頁面。
(3)隊列
Reids在內存存儲引擎領域的一大優點是提供 list 和 set 操作,這使得Redis能作為一個很好的消息隊列平台來使用。Redis作為隊列使用的操作,就類似於本地程序語言(如Python)對 list 的 push/pop 操作。
如果你快速的在Google中搜索「Redis queues」,你馬上就能找到大量的開源項目,這些項目的目的就是利用Redis創建非常好的後端工具,以滿足各種隊列需求。例如,Celery有一個後台就是使用Redis作為broker,你可以從這里去查看。
(4)排行榜/計數器
Redis在內存中對數字進行遞增或遞減的操作實現的非常好。集合(Set)和有序集合(Sorted Set)也使得我們在執行這些操作的時候變的非常簡單,Redis只是正好提供了這兩種數據結構。所以,我們要從排序集合中獲取到排名最靠前的10個用戶–我們稱之為「user_scores」,我們只需要像下面一樣執行即可:
當然,這是假定你是根據你用戶的分數做遞增的排序。如果你想返回用戶及用戶的分數,你需要這樣執行:
ZRANGE user_scores 0 10 WITHSCORES
Agora Games就是一個很好的例子,用Ruby實現的,它的排行榜就是使用Redis來存儲數據的,你可以在這里看到。
(5)發布/訂閱
最後(但肯定不是最不重要的)是Redis的發布/訂閱功能。發布/訂閱的使用場景確實非常多。我已看見人們在社交網路連接中使用,還可作為基於發布/訂閱的腳本觸發器,甚至用Redis的發布/訂閱功能來建立聊天系統!(不,這是真的,你可以去核實)。
⑩ redis和mysql區別是什麼
1.mysql和redis的資料庫類型
mysql是關系型資料庫,主要用於存放持久化數據,將數據存儲在硬碟中,讀取速度較慢。
redis是NOSQL,即非關系型資料庫,也是緩存資料庫,即將數據存儲在緩存中,緩存的讀取速度快,能夠大大的提高運行效率,但是保存時間有限
2.mysql的運行機制
mysql作為持久化存儲的關系型資料庫,相對薄弱的地方在於每次請求訪問資料庫時,都存在著I/O操作,如果反復頻繁的訪問資料庫。第一:會在反復鏈接資料庫上花費大量時間,從而導致運行效率過慢;第二:反復的訪問資料庫也會導致資料庫的負載過高,那麼此時緩存的概念就衍生了出來。
3.緩存
緩存就是數據交換的緩沖區(cache),當瀏覽器執行請求時,首先會對在緩存中進行查找,如果存在,就獲取;否則就訪問資料庫。
緩存的好處就是讀取速度快
4.redis資料庫
redis資料庫就是一款緩存資料庫,用於存儲使用頻繁的數據,這樣減少訪問資料庫的次數,提高運行效率。
5.redis和mysql的區別總結
(1)類型上
從類型上來說,mysql是關系型資料庫,redis是緩存資料庫
(2)作用上
mysql用於持久化的存儲數據到硬碟,功能強大,但是速度較慢
redis用於存儲使用較為頻繁的數據到緩存中,讀取速度快
(3)需求上
mysql和redis因為需求的不同,一般都是配合使用。