當前位置:首頁 » 文件管理 » 壓縮感知

壓縮感知

發布時間: 2022-01-08 18:36:40

壓縮感知 壓縮比的選取有什麼依據!

壓縮比根據發動機的需要選取 壓縮比高發動機轉速低效率高省油 但重量大馬力小 壓縮比小發動機轉速高馬力大重量小但效率低費油

② 什麼是「壓縮感知」

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業的界的廣泛關注。他在資訊理論、圖像處理、地球科學、光學/微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。
壓縮感知理論的核心思想主要包括兩點。
第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。
另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。壓縮感知壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

③ 壓縮感知究竟是如何降低采樣率的啊,實在不懂,求達人細講,不勝感激

其實就是通過求解最優化問題去解一個欠定方程組,能用比通常方法少很多的采樣值恢復出信號

④ 壓縮感知的主要應用

認知無線電方向:寬頻譜感知技術是認識無線電應用中一個難點和重點。它通過快速尋找監測頻段中沒有利用的無線頻譜,從而為認知無線電用戶提供頻譜接入機會。傳統的濾波器組的寬頻檢測需要大量的射頻前端器件,並且不能靈活調整系統參數。普通的寬頻接收電路要求很高的采樣率,它給模數轉換器帶來挑戰,並且獲得的大量數據處理給數字信號處理器帶來負擔。針對寬頻譜感知的難題,將壓縮感知方法應用到寬頻譜感知中:採用一個寬頻數字電路,以較低的頻譜獲得欠采樣的隨機樣本,然後在數字信號處理器中採用稀疏信號估計演算法得到寬頻譜感知結果。
信道編碼:壓縮感測理論中關於稀疏性、隨機性和凸最優化的結論可以直接應用於設計快速誤差校正編碼, 這種編碼方式在實時傳輸過程中不受誤差的影響。在壓縮編碼過程中, 稀疏表示所需的基對於編碼器可能是未知的. 然而在壓縮感測編碼過程中, 它只在解碼和重構原信號時需要, 因此不需考慮它的結構, 所以可以用通用的編碼策略進行編碼. Haupt等通過實驗表明如果圖像是高度可壓縮的或者SNR充分大, 即使測量過程存在雜訊, 壓縮感測方法仍可以准確重構圖像。 波達方向估計:目標出現的角度在整個掃描空間來看,是極少數。波達方向估計問題在空間譜估計觀點來看是一個欠定的線性逆問題。通過對角度個數的稀疏限制,可以完成壓縮感知的波達方向估計。
波束形成:傳統的 自適應波束形成因其高解析度和抗干擾能力強等優點而被廣泛採用。但同時它的高旁瓣水平和角度失匹配敏感度高問題將大大降低接收性能。為了改進Capon 波束形成的性能,這些通過稀疏波束圖整形的方法限制波束圖中陣列增益較大的元素個數,同時鼓勵較大的陣列增益集中在波束主瓣中,從而達到降低旁瓣水平同時,提高主瓣中陣列增益水平,降低角度失匹配的影響。例如,最大主瓣旁瓣能量比,混合范數法,最小全變差。 運用壓縮感測原理, RICE大學成功研製了單像素壓縮數碼照相機。 設計原理首先是通過光路系統將成像目標投影到一個數字微鏡器件(DMD)上, 其反射光由透鏡聚焦到單個光敏二極體上, 光敏二極體兩端的電壓值即為一個測量值y, 將此投影操作重復M次, 得到測量向量 , 然後用最小全變分演算法構建的數字信號處理器重構原始圖像。數字微鏡器件由數字電壓信號控制微鏡片的機械運動以實現對入射光線的調整。 由於該相機直接獲取的是M次隨機線性測量值而不是獲取原始信號的N(M,N)個像素值, 為低像素相機拍攝高質量圖像提供了可能.。
壓縮感測技術也可以應用於雷達成像領域, 與傳統雷達成像技術相比壓縮感測雷達成像實現了兩個重要改進: 在接收端省去脈沖壓縮匹配濾波器; 同時由於避開了對原始信號的直接采樣, 降低了接收端對模數轉換器件帶寬的要求. 設計重點由傳統的設計昂貴的接收端硬體轉化為設計新穎的信號恢復演算法, 從而簡化了雷達成像系統。 生物感測中的傳統DNA晶元能平行測量多個有機體, 但是只能識別有限種類的有機體, Sheikh等人運用壓縮感測和群組檢測原理設計的壓縮感測DNA晶元克服了這個缺點。 壓縮感測DNA晶元中的每個探測點都能識別一組目標, 從而明顯減少了所需探測點數量. 此外基於生物體基因序列稀疏特性, Sheikh等人驗證了可以通過置信傳播的方法實現壓縮感測DNA晶元中的信號重構。

⑤ 壓縮感知的基本知識

現代信號處理的一個關鍵基礎是 Shannon 采樣理論:一個信號可以無失真重建所要求的離散樣本數由其帶寬決定。但是Shannon 采樣定理是一個信號重建的充分非必要條件。在過去的幾年內,壓縮感知作為一個新的采樣理論,它可以在遠小於Nyquist 采樣率的條件下獲取信號的離散樣本,保證信號的無失真重建。壓縮感知理論一經提出,就引起學術界和工業界的廣泛關注。
壓縮感知理論的核心思想主要包括兩點。第一個是信號的稀疏結構。傳統的Shannon 信號表示方法只開發利用了最少的被采樣信號的先驗信息,即信號的帶寬。但是,現實生活中很多廣受關注的信號本身具有一些結構特點。相對於帶寬信息的自由度,這些結構特點是由信號的更小的一部分自由度所決定。換句話說,在很少的信息損失情況下,這種信號可以用很少的數字編碼表示。所以,在這種意義上,這種信號是稀疏信號(或者近似稀疏信號、可壓縮信號)。另外一點是不相關特性。稀疏信號的有用信息的獲取可以通過一個非自適應的采樣方法將信號壓縮成較小的樣本數據來完成。理論證明壓縮感知的采樣方法只是一個簡單的將信號與一組確定的波形進行相關的操作。這些波形要求是與信號所在的稀疏空間不相關的。
壓縮感知方法拋棄了當前信號采樣中的冗餘信息。它直接從連續時間信號變換得到壓縮樣本,然後在數字信號處理中採用優化方法處理壓縮樣本。這里恢復信號所需的優化演算法常常是一個已知信號稀疏的欠定線性逆問題。

⑥ 如何理解壓縮感知

壓縮感知的幾個看似稀鬆平常,但是很關鍵的理論基礎如下: 壓縮感知最初提出時,是針對稀疏信號x,給出觀測模型y=Φ*x時,要有怎麼樣的Φ,通過什麼樣的方式可以從y中恢復出x。(PS:稀疏信號,是指在這個信號x中非零元素的個數遠小於其中零元素的個數。) 然而,很多信號本身並非稀疏的,比如圖像信號。此時可以通過正交變換Ψ』,將信號投影到另外一個空間,而在這個空間中,信號a=Ψ'*x(analysis model)變得稀疏了。然後我們可以由模型y=Φ*a,即y=Φ*Ψ'*x,來恢復原始信號x。 後來,人們發現不僅僅能夠通過正交變換,得到稀疏的信號;還可以通過一個字典D,得到稀疏信號x=D*a(synthesis model),a是稀疏的,為了增強變換後信號的稀疏性,通常D是過完備的。即模型y=Φ*x=Φ*D*a,此時記A^{CS}=Φ*D,即為感知矩陣。這個模型,是我們現在最常用的。

⑦ 什麼是「壓縮感知」

壓縮感知,又稱壓縮采樣,壓縮感測。它作為一個新的采樣理論,它通過開發信號的稀疏特性,在遠小於Nyquist 采樣率的條件下,用隨機采樣獲取信號的離散樣本,然後通過非線性重建演算法完美的重建信號。壓縮感知理論一經提出,就引起學術界和工業界的廣泛關注。它在資訊理論、圖像處理、地球科學、光學、微波成像、模式識別、無線通信、大氣、地質等領域受到高度關注,並被美國科技評論評為2007年度十大科技進展。

⑧ 壓縮感知中 稀疏基有很多種 怎麼用matlab表示


  1. CS是個好東西,首先非零個數可以直接用find, length( find(a~=0) ) 就是a中非零元素的個數。

  2. 求解1范數有工具包的,l1-magic.

  3. 你要得到右圖,第一步需要把小波基寫成矩陣Phi,假設要分解的信號是y, 利用l1magic 求解 y=A*Phi*x , A是測量矩陣,如果你只是想用小波分解y,A取1就好了。 得到的x才是稀疏的,否則直接小波分解,得到的系數一般不稀疏

  4. 多看看壓縮感知的基礎,l1magic 也可以適當了解他的用法,對你肯定有幫助

熱點內容
常見linux問題 發布:2024-05-20 17:43:54 瀏覽:162
java架構師之路 發布:2024-05-20 17:23:43 瀏覽:55
貪心演算法作業調度 發布:2024-05-20 17:23:42 瀏覽:714
簡述虛擬存儲技術的工作原理 發布:2024-05-20 17:23:31 瀏覽:385
安卓聯盟手游從哪裡下載 發布:2024-05-20 17:11:39 瀏覽:316
抖音賬號密碼不知道是多少怎麼看 發布:2024-05-20 16:57:26 瀏覽:156
python的init函數 發布:2024-05-20 16:23:46 瀏覽:715
安卓手機連拍限制張數怎麼辦 發布:2024-05-20 16:13:07 瀏覽:289
資料庫精品課程網站 發布:2024-05-20 15:56:06 瀏覽:355
常用的外部存儲器包括 發布:2024-05-20 15:43:19 瀏覽:662