python數據交易
1. 用python怎麼做量化投資
本文將會講解量化投資過程中的基本流程,量化投資無非這幾個流程,數據輸入------策略書寫------回測輸出
其中策略書寫部分還涉及到編程語言的選擇,如果不想苦惱數據輸入和回測輸出的話,還要選擇回測平台。
一、數據
首先,必須是數據,數據是量化投資的基礎
如何得到數據?
Wind:數據來源的最全的還是Wind,但是要付費,學生可以有免費試用的機會,之後還會和大家分享一下怎樣才Wind里摘取數據,Wind有很多軟體的借口,Excel,Matlab,Python,C++。
預測者網:不經意間發現,一個免費提供股票數據網站 預測者網,下載的是CSV格式
TB交易開拓者:Tradeblazer,感謝@孫存浩提供數據源
TuShare:TuShare -財經數據介麵包,基於Python的財經數據包,利用Python進行摘取
如何存儲數據?
Mysql
如何預處理數據?
空值處理:利用DataFrame的fill.na()函數,將空值(Nan)替換成列的平均數、中位數或者眾數
數據標准化
數據如何分類?
行情數據
財務數據
宏觀數據
二、計算語言&軟體
已經有很多人在網上詢問過該選擇什麼語言?筆者一開始用的是matlab,但最終選擇了python
python:庫很多,只有你找不到的,沒有你想不到,和量化這塊結合比較緊密的有:
Numpy&Scipy:科學計算庫,矩陣計算
Pandas:金融數據分析神器,原AQR資本員工寫的一個庫,處理時間序列的標配
Matplotlib:畫圖庫
scikit-learn:機器學習庫
statsmodels:統計分析模塊
TuShare:免費、開源的python財經數據介麵包
Zipline:回測系統
TaLib:技術指標庫
matlab:主要是矩陣運算、科學運算這一塊很強大,主要有優點是WorkSpace變數可視化
python的Numpy+Scipy兩個庫完全可以替代Matlab的矩陣運算
Matplotlib完克Matlab的畫圖功能
python還有很多其他的功能
pycharm(python的一款IDE)有很棒的調試功能,能代替Matlab的WorkSpace變數可視化
推薦的python學習文檔和書籍
關於python的基礎,建議廖雪峰Python 2.7教程,適合於沒有程序基礎的人來先看,涉及到python的基本數據類型、循環語句、條件語句、函數、類與對象、文件讀寫等很重要的基礎知識。
涉及到數據運算的話,其實基礎教程沒什麼應用,python各類包都幫你寫好了,最好的學習資料還是它的官方文檔,文檔中的不僅有API,還會有寫實例教程
pandas文檔
statsmodels文檔
scipy和numpy文檔
matplotlib文檔
TuShare文檔
第二,推薦《利用Python進行數據分析》,pandas的開發初衷就是用來處理金融數據的
三、回測框架和網站
兩個開源的回測框架
PyAlgoTrade - Algorithmic Trading
Zipline, a Pythonic Algorithmic Trading Library
2. 如何在yahoo-finance這個Python包中獲取上證的交易數據
yahoo-finance是美股的,國內有另外一個庫,叫tushare
使用前提
安裝Python
安裝pandas
lxml也是必須的,正常情況下安裝了Anaconda後無須單獨安裝,如果沒有可執行:pip install lxml
3. python量化交易半個月可以學會嗎
比較難。
python憑借其突出的語言優勢與特性,已經融入到各行各業的每個領域。一般來說,python培訓需要脫產學習5個月左右,這樣的時長才能夠讓學員既掌握工作所需的技能,還能夠積累一定的項目經驗。當然如果你想要在人工智慧的路上越走越遠,則需要不斷的積累和學習。
python培訓的5個月時間里,有相當大一部分時間是在實戰做項目,第一階段是為期一個月學習python的核心編程,主要是python的語言基礎和高級應用,幫助學員獲得初步軟體工程知識並樹立模塊化編程思想。學完這一階段的內容,學員已經能夠勝任python初級開發工程師的職位。
4. Python和金融分析的關系量化交易內容深度
鏈接:http://pan..com/s/1djPqbCXnQrRpW0dgi2MCJg
華爾街學堂 python金融實務從入門到精通。最近,越來越多的研究員、基金經理甚至財務會計領域的朋友,向小編咨詢:金融人需要學Python么?事實上在現在,這已經不是一個問題了。Python已成為國內很多頂級投行、基金、咨詢等泛金融、商科領域的必備技能。中金公司、銀河證券、南方基金、銀華基金在招聘分析師崗位時,紛紛要求熟練掌握Python數據分析技能。
課程目錄:
Python在金融資管領域中的應用
安裝anaconda步驟
Python基礎知識
Python基礎金融分析應用
成為編程能手:Python知識進階
利用Python實現金融數據收集、分析與可視化
......
5. python數據挖掘是什麼
數據挖掘(data mining,簡稱DM),是指從大量的數據中,通過統計學、人工智慧、機器學習等方法,挖掘出未知的、且有價值的信
息和知識的過程。
python數據挖掘常用模塊
numpy模塊:用於矩陣運算、隨機數的生成等
pandas模塊:用於數據的讀取、清洗、整理、運算、可視化等
matplotlib模塊:專用於數據可視化,當然含有統計類的seaborn模塊
statsmodels模塊:用於構建統計模型,如線性回歸、嶺回歸、邏輯回歸、主成分分析等
scipy模塊:專用於統計中的各種假設檢驗,如卡方檢驗、相關系數檢驗、正態性檢驗、t檢驗、F檢驗等
sklearn模塊:專用於機器學習,包含了常規的數據挖掘演算法,如決策樹、森林樹、提升樹、貝葉斯、K近鄰、SVM、GBDT、Kmeans等
數據分析和挖掘推薦的入門方式是?小公司如何利用數據分析和挖掘?
關於數據分析與挖掘的入門方式是先實現代碼和Python語法的落地(前期也需要你了解一些統計學知識、數學知識等),這個過程需要
你多閱讀相關的數據和查閱社區、論壇。然後你在代碼落地的過程中一定會對演算法中的參數或結果產生疑問,此時再去查看統計學和數據
挖掘方面的理論知識。這樣就形成了問題為導向的學習方法,如果將入門順序搞反了,可能在硬著頭皮研究理論演算法的過程中就打退堂鼓
了。
對於小公司來說,你得清楚的知道自己的痛點是什麼,這些痛點是否能夠體現在數據上,公司內部的交易數據、營銷數據、倉儲數據等是
否比較齊全。在這些數據的基礎上搭建核心KPI作為每日或每周的經營健康度衡量,數據分析側重於歷史的描述,數據挖掘則側重於未來
的預測。
差異在於對數據的敏感度和對數據的個性化理解。換句話說,就是懂分析的人能夠從數據中看出破綻,解決問題,甚至用數據創造價值;
不懂分析的人,做不到這些,更多的是描述數據。
更多技術請關注python視頻教程。
6. 中國的 Python 量化交易工具鏈有哪些
萬得的Python API,可以用來獲取實時數據、歷史數據以及下單交易 優點:萬得大而全 缺點:下單交易功能不是事件驅動(例如成交回報需要用戶去查詢,而不是主推)
同花順iFinD的Python API,類似萬得的API 優點:比萬得便宜,同花順的服務態度很好(用戶提出新需求後很快就能給出確定的答復或者解決方案)
掘金的量化平台
通聯數據的量化平台
QuickFix的Python API(可以用來接國信、方正的FIX介面)
Numpy/Scipy/Matplotlib/Pandas(量化分析)
IPyhon/Spyder(適合做量化分析的IDE環境)
Zipline(策略開發回測)
TuShare財經數據介面 - 可以直接抓取新浪財經、鳳凰財經的網站數據,包括行情、基本面、經濟數據等等。完全免費,簡潔易用,API設計得非常友好,提取的數據格式是Pandas的DataFrame。同時可以獲取非高頻實時數據(取決於網站更新速度,同事經驗大約是15秒),一個極好的非高頻股票策略數據解決方案。
恆生電子的量化贏家平台,提供Python介面,鏈接我點進去後沒看到具體的使用教程,希望回頭補一下。
米礦ricequant在我提出這個問題時尚只有Java的API,後來也支持了Python,期待2016有新的突破。
7. python都可以干什麼
Python的應用方向
1. 常規軟體開發
Python支持函數式編程和OOP面向對象編程,能夠承擔任何種類軟體的開發工作,因此常規的軟體開發、腳本編寫、網路編程等都屬於標配能力。
2. 科學計算
隨著NumPy,SciPy,Matplotlib,Enthoughtlibrarys等眾多程序庫的開發,Python越來越適合於做科學計算、繪制高質量的2D和3D圖像。和科學計算領域最流行的商業軟體Matlab相比,Python是一門通用的程序設計語言,比Matlab所採用的腳本語言的應用范圍更廣泛,有更多的程序庫的支持。雖然Matlab中的許多高級功能和toolbox目前還是無法替代的,不過在日常的科研開發之中仍然有很多的工作是可以用Python代勞的。
3. 自動化運維
這幾乎是Python應用的自留地,作為運維工程師首選的編程語言,Python在自動化運維方面已經深入人心,比如Saltstack和Ansible都是大名鼎鼎的自動化平台。
4. 雲計算
開源雲計算解決方案OpenStack就是基於Python開發的,搞雲計算的同學都懂的。
5. WEB開發
基於Python的Web開發框架不要太多,比如耳熟能詳的Django,還有Tornado,Flask。其中的Python+Django架構,應用范圍非常廣,開發速度非常快,學習門檻也很低,能夠幫助你快速的搭建起可用的WEB服務。
6. 網路爬蟲
也稱網路蜘蛛,是大數據行業獲取數據的核心工具。沒有網路爬蟲自動地、不分晝夜地、高智能地在互聯網上爬取免費的數據,那些大數據相關的公司恐怕要少四分之三。能夠編寫網路爬蟲的編程語言有不少,但Python絕對是其中的主流之一,其Scripy爬蟲框架應用非常廣泛。
7. 數據分析
在大量數據的基礎上,結合科學計算、機器學習等技術,對數據進行清洗、去重、規格化和針對性的分析是大數據行業的基石。Python是數據分析的主流語言之一。
8. 人工智慧
Python在人工智慧大范疇領域內的機器學習、神經網路、深度學習等方面都是主流的編程語言,得到廣泛的支持和應用。
參考:網頁鏈接
8. python pandas 如何獲取同一用戶、同一日期、收付標志分別是進/出,交易總金額相等的數據
如果每個用戶一天只有一條進、一條出,我覺得你可以把交易總金額和收付標志這兩列重新組織成一列收款金額"earn"、一列付款金額"pay",這樣的話一個條件就篩選出你需要的數據記錄了: df.earn == df.pay。
9. python主要可以做什麼
現在互聯網發展迅速,眾多行業巨頭,都已經轉投到人工智慧領域,而人工智慧的首選編程語言就是python,所以學好Python能夠從事的工作還是很多的,而且前景非常不錯。
學完python可以應用於以下領域:
①Web 和 Internet開發
②科學計算和統計
③人工智慧
④桌面界面開發
⑤軟體開發
⑥後端開發
⑦網路爬蟲
可以從事的崗位也很多,比如Python爬蟲工程師,大數據工程師等等!
互聯網行業目前還是最熱門的行業之一,學習IT技能之後足夠優秀是有機會進入騰訊、阿里、網易等互聯網大廠高薪就業的,發展前景非常好,普通人也可以學習。
想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。
祝你學有所成,望採納。
10. python的量化代碼怎麼用到股市中
2010 ~ 2017 滬深A股各行業量化分析
在開始各行業的量化分析之前,我們需要先弄清楚兩個問題:
第一,A股市場上都有哪些行業;
第二,各行業自2010年以來的營收、凈利潤增速表現如何?
第一個問題
很好回答,我們使用JQData提供的獲取行業成分股的方法,輸入get_instries(name='sw_l1')
得到申萬一級行業分類結果如下:它們分別是:【農林牧漁、採掘、化工、鋼鐵、有色金屬、電子、家用電器、食品飲料、紡織服裝、輕工製造、醫葯生物、公用事業、交通運輸、房地產、商業貿易、休閑服務、綜合、建築材料、建築裝飾、電器設備、國防軍工、計算機、傳媒、通信、銀行、非銀金融、汽車、機械設備】共計28個行業。
第二個問題
要知道各行業自2010年以來的營收、凈利潤增速表現,我們首先需要知道各行業在各個年度都有哪些成分股,然後加總該行業在該年度各成分股的總營收和凈利潤,就能得到整個行業在該年度的總營收和總利潤了。這部分數據JQData也為我們提供了方便的介面:通過調用get_instry_stocks(instry_code=『行業編碼』, date=『統計日期』),獲取申萬一級行業指定日期下的行業成分股列表,然後再調用查詢財務的數據介面:get_fundamentals(query_object=『query_object』, statDate=year)來獲取各個成分股在對應年度的總營收和凈利潤,最後通過加總得到整個行業的總營收和總利潤。這里為了避免非經常性損益的影響,我們對凈利潤指標最終選取的扣除非經常性損益的凈利潤數據。
我們已經獲取到想要的行業數據了。接下來,我們需要進一步分析,這些行業都有什麼樣的增長特徵。
我們發現,在28個申萬一級行業中,有18個行業自2010年以來在總營收方面保持了持續穩定的增長。它們分別是:【農林牧漁,電子,食品飲料,紡織服裝,輕工製造,醫葯生物,公用事業,交通運輸,房地產,休閑服務,建築裝飾,電氣設備,國防軍工,計算機,傳媒,通信,銀行,汽車】;其他行業在該時間范圍內出現了不同程度的負增長。
那麼,自2010年以來凈利潤保持持續增長的行業又會是哪些呢?結果是只有5個行業保持了基業長青,他們分別是醫葯生物,建築裝飾,電氣設備,銀行和汽車。(註:由於申萬行業在2014年發生過一次大的調整,建築裝飾,電氣設備,銀行和汽車實際從2014年才開始統計。)
從上面的分析結果可以看到,真正能夠保持持續穩定增長的行業並不多,如果以扣非凈利潤為標准,那麼只有醫葯生物,建築裝飾,電氣設備,銀行和汽車這五個行業可以稱之為優質行業,實際投資中,就可以只從這幾個行業中去投資。這樣做的目的是,一方面,能夠從行業大格局層面避免行業下行的風險,繞開一個可能出現負增長的的行業,從而降低投資的風險;另一方面,也大大縮短了我們的投資范圍,讓投資者能夠專注於從真正好的行業去挑選公司進行投資。
「2010-2017」投資於優質行業龍頭的收益表現
選好行業之後,下面進入選公司環節。我們知道,即便是一個好的行業也仍然存在表現不好的公司,那麼什麼是好的公司呢,本文試圖從營業收入規模和利潤規模和來考察以上五個基業長青的行業,從它們中去篩選公司作為投資標的。
3.1按營業收入規模構建的行業龍頭投資組合
首先,我們按照營業收入規模,篩選出以上5個行業【醫葯生物,建築裝飾,電氣設備,銀行和汽車】從2010年至今的行業龍頭如下表所示:
結論
通過以上行業分析和投資組合的歷史回測可以看到:
先選行業,再選公司,即使是從2015年股災期間開始投資,至2018年5月1號,仍然能夠獲得相對理想的收益,可以說,紅杉資本的賽道投資法則對於一般投資者還是比較靠譜的。
在構建行業龍頭投資組合時,凈利潤指標顯著優於營業收入指標,獲得的投資收益能夠更大的跑贏全市場收益率
市場是不斷波動的,如果一個投資者從股災期間開始投資,那麼即使他買入了上述優質行業的龍頭組合,在近3年也只能獲得12%左右的累計收益;而如果從2016年5月3日開始投資,那麼至2018年5月2日,2年時間就能獲得超過50%以上的收益了。所以,在投資過程中選擇時機也非常重要。
出自:JoinQuant 聚寬數據 JQData