python中的shape
A. python中a.shape和shape有什麼區別
defshape(a):
"""
Returntheshapeofanarray.
Parameters
----------
a:array_like
Inputarray.
Returns
-------
shape:tupleofints
correspondingarraydimensions.
SeeAlso
--------
alen
ndarray.shape:Equivalentarraymethod.
Examples
--------
>>>np.shape(np.eye(3))
(3,3)
>>>np.shape([[1,2]])
(1,2)
>>>np.shape([0])
(1,)
>>>np.shape(0)
()
>>>a=np.array([(1,2),(3,4)],dtype=[('x','i4'),('y','i4')])
>>>np.shape(a)
(2,)
>>>a.shape
(2,)
"""
try:
result=a.shape
exceptAttributeError:
result=asarray(a).shape
returnresult
B. python可以做哪些數據分析
Python可以做的事情有很多,比如:檢查數據表、數據清洗、數據提取、數據篩選等。
C. Python中a.shape和shape有什麼區別
你想問的是a.shape和shape(a)的區別吧,我來分別解釋一下:
a.shape是把shape方法定義到一個類a中的方法
shape(a)是一個顯式定義的函數。。
def shape(a)
。。。
這樣定義的。
D. Python中a.shape和shape有什麼區別
前者簡潔一點,少一個a 上面開玩笑,下面進行正解: 對於進行加法運算時的a,b來說 兩個式子執行的結果確實沒有什麼區別。但是從編譯的角度看吧,a+=b; 執行的時候效率高。 在Python列表操作符中: '+'代表連接操作,其結果是創建了一個新的列表...
E. python中如何將表中的數據做成一張表,然後再從中取出數據
第一部分是生成數據表,常見的生成方法有兩種,第一種是導入外部數據,第二種是直接寫入數據。 Excel 中的文件菜單中提供了獲取外部數據的功能,支持資料庫和文本文件和頁面的多種數據源導入。
獲取外部數據
python 支持從多種類型的數據導入。在開始使用 python 進行數據導入前需要先導入 pandas 庫,為了方便起見,我們也同時導入 numpy 庫。
1 import numpy as np
2 import pandas as pd
導入數據表
下面分別是從 excel 和 csv 格式文件導入數據並創建數據表的方法。代碼是最簡模式,裡面有很多可選參數設置,例如列名稱,索引列,數據格式等等。感興趣的朋友可以參考 pandas 的
官方文檔。
1 df=pd.DataFrame(pd.read_csv(『name.csv』,header=1))
2 df=pd.DataFrame(pd.read_excel(『name.xlsx』))
創建數據表
另一種方法是通過直接寫入數據來生成數據表,excel 中直接在單元格中輸入數據就可以,python 中通過下面的代碼來實現。生成數據表的函數是 pandas 庫中的 DateFrame 函數,數據表一共有 6 行數據,每行有 6 個欄位。在數據中我們特意設置了一些 NA 值和有問題的欄位,例如包含空格等。後面將在數據清洗步驟進行處理。後面我們將統一以 DataFrame 的簡稱 df 來命名數據表。
1 df = pd.DataFrame({『id』:[1001,1002,1003,1004,1005,1006],
2 『date』:pd.date_range(『20130102』, periods=6),
3 『city』:['Beijing ', 『SH』, 』 guangzhou ', 『Shenzhen』, 『shanghai』, 'BEIJING '],
4 『age』:[23,44,54,32,34,32],
5 『category』:[『100-A』,『100-B』,『110-A』,『110-C』,『210-A』,『130-F』],
6 『price』:[1200,np.nan,2133,5433,np.nan,4432]},
7 columns =[『id』,『date』,『city』,『category』,『age』,『price』])
這是剛剛創建的數據表,我們沒有設置索引列,price 欄位中包含有 NA 值,city 欄位中還包含了一些臟數據。
數據表檢查
python 中處理的數據量通常會比較大,所以就需要我們對數據表進行檢查。比如我們之前的文章中介紹的紐約計程車數據和 Citibike 的騎行數據,數據量都在千萬級,我們無法一目瞭然的了解數據表的整體情況,必須要通過一些方法來獲得數據表的關鍵信息。數據表檢查的另一個目的是了解數據的概況,例如整個數據表的大小,所佔空間,數據格式,是否有空值和重復項和具體的數據內容。為後面的清洗和預處理做好准備。
數據維度(行列)
Excel 中可以通過 CTRL 向下的游標鍵,和 CTRL 向右的游標鍵來查看行號和列號。Python 中使用 shape 函數來查看數據表的維度,也就是行數和列數,函數返回的結果(6,6)表示數據表有 6 行,6 列。下面是具體的代碼。
1 #查看數據表的維度
2 df.shape
3 (6, 6)
數據表信息
使用 info 函數查看數據表的整體信息,這里返回的信息比較多,包括數據維度,列名稱,數據格式和所佔空間等信息。
1 #數據表信息
2 df.info()
4 <class 『pandas.core.frame.DataFrame』>
5 RangeIndex: 6 entries, 0 to 5
6 Data columns (total 6 columns):
7 id 6 non-null int64
8 date 6 non-null datetime64[ns]
9 city 6 non-null object
10 category 6 non-null object
11 age 6 non-null int64
12 price 4 non-null float64
13 dtypes: datetime64ns, float64(1), int64(2), object(2)
14 memory usage: 368.0 bytes
查看數據格式
Excel 中通過選中單元格並查看開始菜單中的數值類型來判斷數據的格式。Python 中使用 dtypes 函數來返回數據格式。
Dtypes 是一個查看數據格式的函數,可以一次性查看數據表中所有數據的格式,也可以指定一列來單獨查看。
1#查看數據表各列格式
2df.dtypes
3
4id int64
5date datetime64[ns]
6city object
7category object
8age int64
9price float64
10dtype: object
11
12#查看單列格式
13df[『B』].dtype
14
15dtype(『int64』)
查看空值
Excel 中查看空值的方法是使用「定位條件」功能對數據表中的空值進行定位。「定位條件」在「開始」目錄下的「查找和選擇」目錄中。
Isnull 是 Python 中檢驗空值的函數,返回的結果是邏輯值,包含空值返回 True,不包含則返回 False。可以對整個數據表進行檢查,也可以單獨對某一列進行空值檢查。
df_isnull
1#檢查特定列空值
2df[『price』].isnull()
3
40 False
51 True
62 False
73 False
84 True
95 False
10Name: price, dtype: bool
查看唯一值
Excel 中查看唯一值的方法是使用「條件格式」對唯一值進行顏色標記。Python 中使用 unique 函數查看唯一值。
Unique 是查看唯一值的函數,只能對數據表中的特定列進行檢查。下面是代碼,返回的結果是該列中的唯一值。類似與 Excel 中刪除重復項後的結果。
1 #查看 city 列中的唯一值
2 df[『city』].unique()34array(['Beijing ', 『SH』, 』 guangzhou ', 『Shenzhen』, 『shanghai』, 'BEIJING '], dtype=object)
查看數據表數值
Python 中的 Values 函數用來查看數據表中的數值。以數組的形式返回,不包含表頭信息。
1#查看數據表的值
2df.values
3
4array([[1001, Timestamp(『2013-01-02 00:00:00』), 'Beijing ', 『100-A』, 23,
5 1200.0],
6 [1002, Timestamp(『2013-01-03 00:00:00』), 『SH』, 『100-B』, 44, nan],
7 [1003, Timestamp(『2013-01-04 00:00:00』), 』 guangzhou ', 『110-A』, 54,
8 2133.0],
9 [1004, Timestamp(『2013-01-05 00:00:00』), 『Shenzhen』, 『110-C』, 32,
10 5433.0],
11 [1005, Timestamp(『2013-01-06 00:00:00』), 『shanghai』, 『210-A』, 34,
12 nan],
13 [1006, Timestamp(『2013-01-07 00:00:00』), 'BEIJING ', 『130-F』, 32,
14 4432.0]], dtype=object)
查看列名稱
Colums 函數用來單獨查看數據表中的列名稱。
1 #查看列名稱
2 df.columns
3
4 Index([『id』, 『date』, 『city』, 『category』, 『age』, 『price』], dtype=『object』)
查看前 10 行數據
Head 函數用來查看數據表中的前 N 行數據,默認 head()顯示前 10 行數據,可以自己設置參數值來確定查看的行數。下面的代碼中設置查看前 3 行的數據。
1#查看前 3 行數據``df.head(``3``)
Tail 行數與 head 函數相反,用來查看數據表中後 N 行的數據,默認 tail()顯示後 10 行數據,可以自己設置參數值來確定查看的行數。下面的代碼中設置查看後 3 行的數據。
1#查看最後 3 行df.tail(3)
F. Python中怎樣使用shape計算矩陣的行和列
你得先安裝numpy庫,矩陣(ndarray)的shape屬性可以獲取矩陣的形狀(例如二維數組的行列),獲取的結果是一個元組,因此相關代碼如下:
importnumpyasnp
x=np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]])
#輸出數組的行和列數
printx.shape#(4,3)
#只輸出行數
printx.shape[0]#4
#只輸出列數
printx.shape[1]#3
G. Python中a.shape和shape有什麼區別
import
numpy
a
=
numpy.array([[1,2,3],[4,5,6]])
print
a.shape
矩陣有一個shape屬性,是一個(行,列)形式的元組
H. python 里 np.array 的shape (2,)與(2,1)的分別是什麼意思,區別是什麼
numpy.ndarray.shap是返回一個數組維度的元組。(2,)與(2,1)的區別如下:
I. python數據分析干什麼
第一、檢查數據表
Python中使用shape函數來查看數據表的維度,也就是行數以及列數。你可以使用info函數來查看數據表的整體信息,使用dtype函數來返回數據格式;lsnull是Python中檢驗空值的函數,可以對整個數據表進行檢查,也可以單獨對某一行進行空值檢查,返回的結構是邏輯值,包含空值返回true,不包含則返回false。
第二、數據清洗
Python可以進行數據清洗,Python中處理空值的方法比較靈活,可以使用Dropna函數用來刪除數據表中包含空值的數據,也可以使用fillna函數對空值進行填充;Python中dtype是查看數據格式的函數,與之對應的是astype函數,用來更改數據格式,Rename是更改列名稱的函數,drop_plicates函數刪除重復值,replace函數實現數據替換。
第三、數據提取
進行數據提取時,主要使用三個函數:loc、iloc以及ix。Loc函數按標簽進行提取,iloc按位置進行提取,ix可以同時按照標簽和位置進行提取。除了按標簽和位置提取數據之外,還可以按照具體的條件進行提取,比如使用loc和isin兩個函數配合使用。
第四、數據篩選
Python數據分析還可以進行數據篩選,Python中使用loc函數配合篩選條件來完成篩選功能,配合sum和count函數還能實現Excel中sumif和countif函數的功能。使用的主要函數是groupby和pivot_table;groupby是進行分類匯總的函數,使用方法比較簡單,groupby按列名稱出現的順序進行分組。