排序演算法java
⑴ java冒泡排序法代碼
冒泡排序是比較經典的排序演算法。代碼如下:
for(int i=1;i<arr.length;i++){
for(int j=1;j<arr.length-i;j++){
//交換位置
}
拓展資料:
原理:比較兩個相鄰的元素,將值大的元素交換至右端。
思路:依次比較相鄰的兩個數,將小數放在前面,大數放在後面。即在第一趟:首先比較第1個和第2個數,將小數放前,大數放後。然後比較第2個數和第3個數,將小數放前,大數放後,如此繼續,直至比較最後兩個數,將小數放前,大數放後。重復第一趟步驟,直至全部排序完成。
第一趟比較完成後,最後一個數一定是數組中最大的一個數,所以第二趟比較的時候最後一個數不參與比較;
第二趟比較完成後,倒數第二個數也一定是數組中第二大的數,所以第三趟比較的時候最後兩個數不參與比較;
依次類推,每一趟比較次數-1;
……
舉例說明:要排序數組:int[]arr={6,3,8,2,9,1};
for(int i=1;i<arr.length;i++){
for(int j=1;j<arr.length-i;j++){
//交換位置
}
⑵ Java數組排序 幾種排序方法詳細一點
JAVA中在運用數組進行排序功能時,一般有四種方法:快速排序法、冒泡法、選擇排序法、插入排序法。
快速排序法主要是運用了Arrays中的一個方法Arrays.sort()實現。
冒泡法是運用遍歷數組進行比較,通過不斷的比較將最小值或者最大值一個一個的遍歷出來。
選擇排序法是將數組的第一個數據作為最大或者最小的值,然後通過比較循環,輸出有序的數組。
插入排序是選擇一個數組中的數據,通過不斷的插入比較最後進行排序。下面我就將他們的實現方法一一詳解供大家參考。
<1>利用Arrays帶有的排序方法快速排序
publicclassTest2{
publicstaticvoidmain(String[]args){
int[]a={5,4,2,4,9,1};
Arrays.sort(a);//進行排序
for(inti:a){
System.out.print(i);
}
}
}
<2>冒泡排序演算法
publicstaticint[]bubbleSort(int[]args){//冒泡排序演算法
for(inti=0;i<args.length-1;i++){
for(intj=i+1;j<args.length;j++){
if(args[i]>args[j]){
inttemp=args[i];
args[i]=args[j];
args[j]=temp;
}
}
}
returnargs;
}
<3>選擇排序演算法
publicstaticint[]selectSort(int[]args){//選擇排序演算法
for(inti=0;i<args.length-1;i++){
intmin=i;
for(intj=i+1;j<args.length;j++){
if(args[min]>args[j]){
min=j;
}
}
if(min!=i){
inttemp=args[i];
args[i]=args[min];
args[min]=temp;
}
}
returnargs;
}
<4>插入排序演算法
publicstaticint[]insertSort(int[]args){//插入排序演算法
for(inti=1;i<args.length;i++){
for(intj=i;j>0;j--){
if(args[j]<args[j-1]){
inttemp=args[j-1];
args[j-1]=args[j];
args[j]=temp;
}elsebreak;
}
}
returnargs;
}
⑶ JAVA中有哪幾種常用的排序方法
1、冒泡排序
冒泡排序是一個比較簡單的排序方法。在待排序的數列基本有序的情況下排序速度較快。若要排序的數有n個,則需要n-1輪排序,第j輪排序中,從第一個數開始,相鄰兩數比較,若不符合所要求的順序,則交換兩者的位置;直到第n+1-j個數為止,第一個數與第二個數比較,第二個數與第三個數比較,......,第n-j個與第n+1-j個比較,共比較n-1次。此時第n+1-j個位置上的數已經按要求排好,所以不參加以後的比較和交換操作。例如:第一輪排序:第一個數與第二個數進行比較,若不符合要求的順序,則交換兩者的位置,否則繼續進行二個數與第三個數比較......。直到完成第n-1個數與第n個數的比較。此時第n個位置上的數已經按要求排好,它不參與以後的比較和交換操作;第二輪排序:第一個數與第二個數進行比較,......直到完成第n-2個數與第n-1個數的比較;......第n-1輪排序:第一個數與第二個數進行比較,若符合所要求的順序,則結束冒泡法排序;若不符合要求的順序,則交換兩者的位置,然後結束冒泡法排序。
共n-1輪排序處理,第j輪進行n-j次比較和至多n-j次交換。
從以上排序過程可以看出,較大的數像氣泡一樣向上冒,而較小的數往下沉,故稱冒泡法。
2、選擇排序
選擇法的原理是先將第一個數與後面的每一個數依次比較,不斷將將小的賦給第一個數,從而找出最小的,然後第二個數與後面的每一個數依次比較,從而找出第二小的,然後第三個數與後面的
3、插入排序
插入排序的原理是對數組中的第i個元素,認為它前面的i-1個已經排序好,然後將它插入到前面的i-1個元素中。插入排序對少量元素的排序較為有效.
4、快速排序
快速排序是對冒泡排序的一種改進。它的基本思想是:通過一次排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按次方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此大道整個數據變成有序序列。
⑷ JAVA歸並排序演算法,有兩行代碼看不懂
以var a = [4,2,6,3,1,9,5,7,8,0];為例子。
1.希爾排序。 希爾排序是在插入排序上面做的升級。是先跟距離較遠的進行比較的一些方法。
function shellsort(arr){ var i,k,j,len=arr.length,gap = Math.ceil(len/2),temp; while(gap>0){ for (var k = 0; k < gap; k++) { var tagArr = []; tagArr.push(arr[k]) for (i = k+gap; i < len; i=i+gap) { temp = arr[i]; tagArr.push(temp); for (j=i-gap; j >-1; j=j-gap) { if(arr[j]>temp){ arr[j+gap] = arr[j]; }else{ break; } } arr[j+gap] = temp; } console.log(tagArr,"gap:"+gap);//輸出當前進行插入排序的數組。 console.log(arr);//輸出此輪排序後的數組。 } gap = parseInt(gap/2); } return arr; }
過程輸出:
[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
由輸出可以看到。第一輪間隔為5。依次對這些間隔的數組插入排序。
間隔為5:
[4, 9] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [2, 5] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [6, 7] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [3, 8] "gap:5" [4, 2, 6, 3, 1, 9, 5, 7, 8, 0] [1, 0] "gap:5" [4, 2, 6, 3, 0, 9, 5, 7, 8, 1] [4, 6, 0, 5, 8] "gap:2" [0, 2, 4, 3, 5, 9, 6, 7, 8, 1] [2, 3, 9, 7, 1] "gap:2" [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] [0, 1, 4, 2, 5, 3, 6, 7, 8, 9] "gap:1" [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
間隔為2:
[4, 2, 6, 3, 0, 9, 5, 7, 8, 1] 4 6 0 5 8 2 3 9 7 1
排序後:
[0, 1, 4, 2, 5, 3, 6, 7, 8, 9]
間隔為1:
排序後:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]。
2.快速排序。把一個數組以數組中的某個值為標記。比這個值小的放到數組的左邊,比這個值得大的放到數組的右邊。然後再遞歸 對左邊和右邊的數組進行同樣的操作。直到排序完成。通常以數組的第一個值為標記。
代碼:
function quickSort(arr){ var len = arr.length,leftArr=[],rightArr=[],tag; if(len<2){ return arr; } tag = arr[0]; for(i=1;i<len;i++){ if(arr[i]<=tag){ leftArr.push(arr[i]) }else{ rightArr.push(arr[i]); } } return quickSort(leftArr).concat(tag,quickSort(rightArr)); }
3.歸並排序。把一系列排好序的子序列合並成一個大的完整有序序列。從最小的單位開始合並。然後再逐步合並合並好的有序數組。最終實現歸並排序。
合並兩個有序數組的方法:
function subSort(arr1,arr2){ var len1 = arr1.length,len2 = arr2.length,i=0,j=0,arr3=[],bArr1 = arr1.slice(),bArr2 = arr2.slice(); while(bArr1.length!=0 || bArr2.length!=0){ if(bArr1.length == 0){ arr3 = arr3.concat(bArr2); bArr2.length = 0; }else if(bArr2.length == 0){ arr3 = arr3.concat(bArr1); bArr1.length = 0; }else{ if(bArr1[0]<=bArr2[0]){ arr3.push(bArr1[0]); bArr1.shift(); }else{ arr3.push(bArr2[0]); bArr2.shift(); } } } return arr3; }
歸並排序:
function mergeSort(arr){ var len= arr.length,arrleft=[],arrright =[],gap=1,maxgap=len-1,gapArr=[],glen,n; while(gap<maxgap){ gap = Math.pow(2,n); if(gap<=maxgap){ gapArr.push(gap); } n++; } glen = gapArr.length; for (var i = 0; i < glen; i++) { gap = gapArr[i]; for (var j = 0; j < len; j=j+gap*2) { arrleft = arr.slice(j, j+gap); arrright = arr.slice(j+gap,j+gap*2); console.log("left:"+arrleft,"right:"+arrright); arr = arr.slice(0,j).concat(subSort(arrleft,arrright),arr.slice(j+gap*2)); } } return arr; }
排序[4,2,6,3,1,9,5,7,8,0]輸出:
left:4 right:2 left:6 right:3 left:1 right:9 left:5 right:7 left:8 right:0 left:2,4 right:3,6 left:1,9 right:5,7 left:0,8 right: left:2,3,4,6 right:1,5,7,9 left:0,8 right: left:1,2,3,4,5,6,7,9 right:0,8
看出來從最小的單位入手。
第一輪先依次合並相鄰元素:4,2; 6,3; 1,9; 5,7; 8,0
合並完成之後變成: [2,4,3,6,1,9,5,7,0,8]
第二輪以2個元素為一個單位進行合並:[2,4],[3,6]; [1,9],[5,7]; [0,8],[];
合並完成之後變成:[2,3,4,6,1,5,7,9,0,8]
第三輪以4個元素為一個單位進行合並:[2,3,4,6],[1,5,7,9]; [0,8],[]
合並完成之後變成: [1,2,3,4,5,6,7,9,0,8];
第四輪以8個元素為一個單位進行合並: [1,2,3,4,5,6,7,9],[0,8];
合並完成。 [0,1,2,3,4,5,6,7,8,9];
⑸ Java設計線性表排序演算法
import java.util.Scanner;
import java.util.Arrays;
public class P
{
public static void main(String[] args)
{
Scanner sc=new Scanner(System.in);
float[] A=new float[1],B=new float[1];
int alen=0,blen=0,i,j,k;
String line;
System.out.println("請輸入線性表A的各元素,每行一個(輸入#結束):");
while(true)
{
line=sc.nextLine();
if(line.equals("#"))
break;
A=Arrays.Of(A,++alen);
A[alen-1]=Float.parseFloat(line);
}
System.out.println("請輸入線性表B的各元素,每行一個(輸入#結束):");
while(true)
{
line=sc.nextLine();
if(line.equals("#"))
break;
B=Arrays.Of(B,++blen);
B[blen-1]=Float.parseFloat(line);
}
Arrays.sort(A);
Arrays.sort(B);
System.out.println("升序排序後,線性表A的各元素是:");
for(i=0;i<alen;i++)
{
System.out.print(A[i]+" ");
}
System.out.println();
System.out.println();
System.out.println("升序排序後,線性表B的各元素是:");
for(i=0;i<blen;i++)
{
System.out.print(B[i]+" ");
}
System.out.println();
System.out.println();
A=Arrays.Of(A,alen+blen);
for(i=0;i<blen;i++)
{
if(B[i]>=A[alen-1])
A[alen++]=B[i];
else
{
for(j=0;j<alen-1;j++)
{
if(B[i]<=A[j])
break;
}
for(k=alen-1;k>=j;k--)
{
A[k+1]=A[k];
}
A[j]=B[i];
alen++;
}
}
System.out.println("線性表B按順序插入線性表A中後,線性表A的各元素是:");
for(i=0;i<alen;i++)
{
System.out.print(A[i]+" ");
}
sc.close();
}
}
⑹ 數據結構 java開發中常用的排序演算法有哪些
排序演算法有很多,所以在特定情景中使用哪一種演算法很重要。為了選擇合適的演算法,可以按照建議的順序考慮以下標准:
(1)執行時間
(2)存儲空間
(3)編程工作
對於數據量較小的情形,(1)(2)差別不大,主要考慮(3);而對於數據量大的,(1)為首要。
主要排序法有:
一、冒泡(Bubble)排序——相鄰交換
二、選擇排序——每次最小/大排在相應的位置
三、插入排序——將下一個插入已排好的序列中
四、殼(Shell)排序——縮小增量
五、歸並排序
六、快速排序
七、堆排序
八、拓撲排序
一、冒泡(Bubble)排序
----------------------------------Code 從小到大排序n個數------------------------------------
void BubbleSortArray()
{
for(int i=1;i<n;i++)
{
for(int j=0;i<n-i;j++)
{
if(a[j]>a[j+1])//比較交換相鄰元素
{
int temp;
temp=a[j]; a[j]=a[j+1]; a[j+1]=temp;
}
}
}
}
-------------------------------------------------Code------------------------------------------------
效率 O(n²),適用於排序小列表。
二、選擇排序
----------------------------------Code 從小到大排序n個數--------------------------------
void SelectSortArray()
{
int min_index;
for(int i=0;i<n-1;i++)
{
min_index=i;
for(int j=i+1;j<n;j++)//每次掃描選擇最小項
if(arr[j]<arr[min_index]) min_index=j;
if(min_index!=i)//找到最小項交換,即將這一項移到列表中的正確位置
{
int temp;
temp=arr[i]; arr[i]=arr[min_index]; arr[min_index]=temp;
}
}
}
-------------------------------------------------Code-----------------------------------------
效率O(n²),適用於排序小的列表。
三、插入排序
--------------------------------------------Code 從小到大排序n個數-------------------------------------
void InsertSortArray()
{
for(int i=1;i<n;i++)//循環從第二個數組元素開始,因為arr[0]作為最初已排序部分
{
int temp=arr[i];//temp標記為未排序第一個元素
int j=i-1;
while (j>=0 && arr[j]>temp)/*將temp與已排序元素從小到大比較,尋找temp應插入的位置*/
{
arr[j+1]=arr[j];
j--;
}
arr[j+1]=temp;
}
}
------------------------------Code--------------------------------------------------------------
最佳效率O(n);最糟效率O(n²)與冒泡、選擇相同,適用於排序小列表
若列表基本有序,則插入排序比冒泡、選擇更有效率。
四、殼(Shell)排序——縮小增量排序
-------------------------------------Code 從小到大排序n個數-------------------------------------
void ShellSortArray()
{
for(int incr=3;incr<0;incr--)//增量遞減,以增量3,2,1為例
{
for(int L=0;L<(n-1)/incr;L++)//重復分成的每個子列表
{
for(int i=L+incr;i<n;i+=incr)//對每個子列表應用插入排序
{
int temp=arr[i];
int j=i-incr;
while(j>=0&&arr[j]>temp)
{
arr[j+incr]=arr[j];
j-=incr;
}
arr[j+incr]=temp;
}
}
}
}
--------------------------------------Code-------------------------------------------
適用於排序小列表。
效率估計O(nlog2^n)~O(n^1.5),取決於增量值的最初大小。建議使用質數作為增量值,因為如果增量值是2的冪,則在下一個通道中會再次比較相同的元素。
殼(Shell)排序改進了插入排序,減少了比較的次數。是不穩定的排序,因為排序過程中元素可能會前後跳躍。
五、歸並排序
----------------------------------------------Code 從小到大排序---------------------------------------
void MergeSort(int low,int high)
{
if(low>=high) return;//每個子列表中剩下一個元素時停止
else int mid=(low+high)/2;/*將列表劃分成相等的兩個子列表,若有奇數個元素,則在左邊子列表大於右側子列表*/
MergeSort(low,mid);//子列表進一步劃分
MergeSort(mid+1,high);
int [] B=new int [high-low+1];//新建一個數組,用於存放歸並的元素
for(int i=low,j=mid+1,k=low;i<=mid && j<=high;k++)/*兩個子列表進行排序歸並,直到兩個子列表中的一個結束*/
{
if (arr[i]<=arr[j];)
{
B[k]=arr[i];
I++;
}
else
{ B[k]=arr[j]; j++; }
}
for( ;j<=high;j++,k++)//如果第二個子列表中仍然有元素,則追加到新列表
B[k]=arr[j];
for( ;i<=mid;i++,k++)//如果在第一個子列表中仍然有元素,則追加到新列表中
B[k]=arr[i];
for(int z=0;z<high-low+1;z++)//將排序的數組B的 所有元素復制到原始數組arr中
arr[z]=B[z];
}
-----------------------------------------------------Code---------------------------------------------------
效率O(nlogn),歸並的最佳、平均和最糟用例效率之間沒有差異。
適用於排序大列表,基於分治法。
六、快速排序
------------------------------------Code--------------------------------------------
/*快速排序的演算法思想:選定一個樞紐元素,對待排序序列進行分割,分割之後的序列一個部分小於樞紐元素,一個部分大於樞紐元素,再對這兩個分割好的子序列進行上述的過程。*/ void swap(int a,int b){int t;t =a ;a =b ;b =t ;}
int Partition(int [] arr,int low,int high)
{
int pivot=arr[low];//採用子序列的第一個元素作為樞紐元素
while (low < high)
{
//從後往前栽後半部分中尋找第一個小於樞紐元素的元素
while (low < high && arr[high] >= pivot)
{
--high;
}
//將這個比樞紐元素小的元素交換到前半部分
swap(arr[low], arr[high]);
//從前往後在前半部分中尋找第一個大於樞紐元素的元素
while (low <high &&arr [low ]<=pivot )
{
++low ;
}
swap (arr [low ],arr [high ]);//將這個樞紐元素大的元素交換到後半部分
}
return low ;//返回樞紐元素所在的位置
}
void QuickSort(int [] a,int low,int high)
{
if (low <high )
{
int n=Partition (a ,low ,high );
QuickSort (a ,low ,n );
QuickSort (a ,n +1,high );
}
}
----------------------------------------Code-------------------------------------
平均效率O(nlogn),適用於排序大列表。
此演算法的總時間取決於樞紐值的位置;選擇第一個元素作為樞紐,可能導致O(n²)的最糟用例效率。若數基本有序,效率反而最差。選項中間值作為樞紐,效率是O(nlogn)。
基於分治法。
七、堆排序
最大堆:後者任一非終端節點的關鍵字均大於或等於它的左、右孩子的關鍵字,此時位於堆頂的節點的關鍵字是整個序列中最大的。
思想:
(1)令i=l,並令temp= kl ;
(2)計算i的左孩子j=2i+1;
(3)若j<=n-1,則轉(4),否則轉(6);
(4)比較kj和kj+1,若kj+1>kj,則令j=j+1,否則j不變;
(5)比較temp和kj,若kj>temp,則令ki等於kj,並令i=j,j=2i+1,並轉(3),否則轉(6)
(6)令ki等於temp,結束。
-----------------------------------------Code---------------------------
void HeapSort(SeqIAst R)
{ //對R[1..n]進行堆排序,不妨用R[0]做暫存單元 int I; BuildHeap(R); //將R[1-n]建成初始堆for(i=n;i>1;i--) //對當前無序區R[1..i]進行堆排序,共做n-1趟。{ R[0]=R[1]; R[1]=R[i]; R[i]=R[0]; //將堆頂和堆中最後一個記錄交換 Heapify(R,1,i-1); //將R[1..i-1]重新調整為堆,僅有R[1]可能違反堆性質 } } ---------------------------------------Code--------------------------------------
堆排序的時間,主要由建立初始堆和反復重建堆這兩部分的時間開銷構成,它們均是通過調用Heapify實現的。
堆排序的最壞時間復雜度為O(nlgn)。堆排序的平均性能較接近於最壞性能。 由於建初始堆所需的比較次數較多,所以堆排序不適宜於記錄數較少的文件。 堆排序是就地排序,輔助空間為O(1), 它是不穩定的排序方法。
堆排序與直接插入排序的區別:
直接選擇排序中,為了從R[1..n]中選出關鍵字最小的記錄,必須進行n-1次比較,然後在R[2..n]中選出關鍵字最小的記錄,又需要做n-2次比較。事實上,後面的n-2次比較中,有許多比較可能在前面的n-1次比較中已經做過,但由於前一趟排序時未保留這些比較結果,所以後一趟排序時又重復執行了這些比較操作。
堆排序可通過樹形結構保存部分比較結果,可減少比較次數。
八、拓撲排序
例 :學生選修課排課先後順序
拓撲排序:把有向圖中各頂點按照它們相互之間的優先關系排列成一個線性序列的過程。
方法:
在有向圖中選一個沒有前驅的頂點且輸出
從圖中刪除該頂點和所有以它為尾的弧
重復上述兩步,直至全部頂點均已輸出(拓撲排序成功),或者當圖中不存在無前驅的頂點(圖中有迴路)為止。
---------------------------------------Code--------------------------------------
void TopologicalSort()/*輸出拓撲排序函數。若G無迴路,則輸出G的頂點的一個拓撲序列並返回OK,否則返回ERROR*/
{
int indegree[M];
int i,k,j;
char n;
int count=0;
Stack thestack;
FindInDegree(G,indegree);//對各頂點求入度indegree[0....num]
InitStack(thestack);//初始化棧
for(i=0;i<G.num;i++)
Console.WriteLine("結點"+G.vertices[i].data+"的入度為"+indegree[i]);
for(i=0;i<G.num;i++)
{
if(indegree[i]==0)
Push(thestack.vertices[i]);
}
Console.Write("拓撲排序輸出順序為:");
while(thestack.Peek()!=null)
{
Pop(thestack.Peek());
j=locatevex(G,n);
if (j==-2)
{
Console.WriteLine("發生錯誤,程序結束。");
exit();
}
Console.Write(G.vertices[j].data);
count++;
for(p=G.vertices[j].firstarc;p!=NULL;p=p.nextarc)
{
k=p.adjvex;
if (!(--indegree[k]))
Push(G.vertices[k]);
}
}
if (count<G.num)
Cosole.WriteLine("該圖有環,出現錯誤,無法排序。");
else
Console.WriteLine("排序成功。");
}
----------------------------------------Code--------------------------------------
演算法的時間復雜度O(n+e)。
⑺ JAVA 冒泡排序法的詳細解釋是什麼
冒泡排序的英文Bubble Sort,是一種最基礎的交換排序。
大家一定都喝過汽水,汽水中常常有許多小小的氣泡,嘩啦嘩啦飄到上面來。這是因為組成小氣泡的二氧化碳比水要輕,所以小氣泡可以一點一點向上浮動。而我們的冒泡排序之所以叫做冒泡排序,正是因為這種排序演算法的每一個元素都可以像小氣泡一樣,根據自身大小,一點一點向著數組的一側移動。
冒泡排序演算法的原理如下:
比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。
對每一對相鄰元素做同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。
針對所有的元素重復以上的步驟,除了最後一個。
持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。
具體如何來移動呢?讓我們來看一個栗子:
希望對您有所幫助!~
⑻ Java的排序演算法有哪些
java的排序大的分類可以分為兩種:內排序和外排序。在排序過程中,全部記錄存放在內存,則稱為內排序,如果排序過程中需要使用外存,則稱為外排序。下面講的排序都是屬於內排序。
1.插入排序:直接插入排序、二分法插入排序、希爾排序。
2.選擇排序:簡單選擇排序、堆排序。
3.交換排序:冒泡排序、快速排序。
4.歸並排序
5.基數排序
⑼ Java排序一共有幾種
日常操作中,常見的排序方法有:冒泡排序、快速排序、選擇排序、插入排序、希爾排序,甚至還有基數排序、雞尾酒排序、桶排序、鴿巢排序、歸並排序等。
各類排序方法代碼如圖:
⑽ 用JAVA實現快速排序演算法
本人特地給你編的代碼
親測
public class QuickSort {
public static int Partition(int a[],int p,int r){
int x=a[r-1];
int i=p-1;
int temp;
for(int j=p;j<=r-1;j++){
if(a[j-1]<=x){
// swap(a[j-1],a[i-1]);
i++;
temp=a[j-1];
a[j-1]=a[i-1];
a[i-1]=temp;
}
}
//swap(a[r-1,a[i+1-1]);
temp=a[r-1];
a[r-1]=a[i+1-1];
a[i+1-1]=temp;
return i+1;
}
public static void QuickSort(int a[],int p,int r){
if(p<r){
int q=Partition(a,p,r);
QuickSort(a,p,q-1);
QuickSort(a,q+1,r);
}
}
public static void main(String[] stra){
int a[]={23,53,77,36,84,76,93,13,45,23};
QuickSort(a,1,10);
for (int i=1;i<=10;i++)
System.out.println(a[i-1]);
}
}