當前位置:首頁 » 編程語言 » python爬蟲論壇

python爬蟲論壇

發布時間: 2022-12-26 03:19:53

python 新浪微博爬蟲,求助

0x00. 起因
因為參加學校大學生創新競賽,研究有關微博博文表達的情緒,需要大量微博博文,而網上無論是國內的某度、csdn,還是國外谷歌、gayhub、codeproject等都找不到想要的程序,沒辦法只能自己寫一個程序了。
ps.在爬盟找到類似的程序,但是是windows下的,並且閉源,而且最終爬取保存的文件用notepad++打開有很多奇怪的問題,所以放棄了。
0x01. 基礎知識
本程序由Python寫成,所以基本的python知識是必須的。另外,如果你有一定的計算機網路基礎,在前期准備時會有少走很多彎路。
對於爬蟲,需要明確幾點:
1. 對爬取對象分類,可以分為以下幾種:第一種是不需要登錄的,比如博主以前練手時爬的中國天氣網,這種網頁爬取難度較低,建議爬蟲新手爬這類網頁;第二種是需要登錄的,如豆瓣、新浪微博,這些網頁爬取難度較高;第三種獨立於前兩種,你想要的信息一般是動態刷新的,如AJAX或內嵌資源,這種爬蟲難度最大,博主也沒研究過,在此不細舉(據同學說淘寶的商品評論就屬於這類)。
2. 如果同一個數據源有多種形式(比如電腦版、手機版、客戶端等),優先選取較為「純凈的」展現。比如新浪微博,有網頁版,也有手機版,而且手機版可以用電腦瀏覽器訪問,這時我優先選手機版新浪微博。
3. 爬蟲一般是將網頁下載到本地,再通過某些方式提取出感興趣的信息。也就是說,爬取網頁只完成了一半,你還要將你感興趣的信息從下載下來的html文件中提取出來。這時就需要一些xml的知識了,在這個項目中,博主用的是XPath提取信息,另外可以使用XQuery等等其他技術,詳情請訪問w3cschool。
4. 爬蟲應該盡量模仿人類,現在網站反爬機制已經比較發達,從驗證碼到禁IP,爬蟲技術和反爬技術可謂不斷博弈。
0x02. 開始
決定了爬蟲的目標之後,首先應該訪問目標網頁,明確目標網頁屬於上述幾種爬蟲的哪種,另外,記錄為了得到感興趣的信息你需要進行的步驟,如是否需要登錄,如果需要登錄,是否需要驗證碼;你要進行哪些操作才能獲得希望得到的信息,是否需要提交某些表單;你希望得到的信息所在頁面的url有什麼規律等等。
以下博文以博主項目為例,該項目爬取特定新浪微博用戶從注冊至今的所有微博博文和根據關鍵詞爬取100頁微博博文(大約1000條)。
0x03. 收集必要信息
首先訪問目標網頁,發現需要登錄,進入登錄頁面如下新浪微博手機版登錄頁面
注意url後半段有很多形如」%xx」的轉義字元,本文後面將會講到。
從這個頁面可以看到,登錄新浪微博手機版需要填寫賬號、密碼和驗證碼。
這個驗證碼是近期(本文創作於2016.3.11)才需要提供的,如果不需要提供驗證碼的話,將有兩種方法進行登錄。
第一種是填寫賬號密碼之後執行js模擬點擊「登錄」按鈕,博主之前寫過一個Java爬蟲就是利用這個方法,但是現在找不到工程了,在此不再贅述。
第二種需要一定HTTP基礎,提交包含所需信息的HTTP POST請求。我們需要Wireshark 工具來抓取登錄微博時我們發出和接收的數據包。如下圖我抓取了在登錄時發出和接收的數據包Wireshark抓取結果1
在搜索欄提供搜索條件」http」可得到所有http協議數據包,右側info顯示該數據包的縮略信息。圖中藍色一行是POST請求,並且info中有」login」,可以初步判斷這個請求是登錄時發出的第一個數據包,並且這個180.149.153.4應該是新浪微博手機版登錄認證的伺服器IP地址,此時我們並沒有任何的cookie。
在序號為30是數據包中有一個從該IP發出的HTTP數據包,裡面有四個Set-Cookie欄位,這些cookie將是我們爬蟲的基礎。
Wireshark抓取結果2
早在新浪微博伺服器反爬機制升級之前,登錄是不需要驗證碼的,通過提交POST請求,可以拿到這些cookie,在項目源碼中的TestCookie.py中有示例代碼。
ps.如果沒有wireshark或者不想這么麻煩的話,可以用瀏覽器的開發者工具,以chrome為例,在登錄前打開開發者工具,轉到Network,登錄,可以看到發出和接收的數據,登錄完成後可以看到cookies,如下圖chrome開發者工具
接下來訪問所需頁面,查看頁面url是否有某種規律。由於本項目目標之一是獲取某用戶的全部微博,所以直接訪問該用戶的微博頁面,以央視新聞 為例。
央視新聞1
圖為央視新聞微博第一頁,觀察該頁面的url可以發現,新浪微博手機版的微博頁面url組成是 「weibo.cn/(displayID)?page=(pagenum)」 。這將成為我們爬蟲拼接url的依據。
接下來查看網頁源碼,找到我們希望得到的信息的位置。打開瀏覽器開發者工具,直接定位某條微博,可以發現它的位置,如下所示。
xpath
觀察html代碼發現,所有的微博都在<div>標簽里,並且這個標簽里有兩個屬性,其中class屬性為」c」,和一個唯一的id屬性值。得到這個信息有助於將所需信息提取出來。
另外,還有一些需要特別注意的因素
* 微博分為原創微博和轉發微博
* 按照發布時間至當前時間的差距,在頁面上有」MM分鍾前」、」今天HH:MM」、」mm月dd日 HH:MM」、」yyyy-mm-dd HH:MM:SS」等多種顯示時間的方式* 手機版新浪微博一個頁面大約顯示10條微博,所以要注意對總共頁數進行記錄以上幾點都是細節,在爬蟲和提取的時候需要仔細考慮。
0x04. 編碼
1.爬取用戶微博
本項目開發語言是Python 2.7,項目中用了一些第三方庫,第三方庫可以用pip的方法添加。
既然程序自動登錄的想法被驗證碼擋住了,想要訪問特定用戶微博頁面,只能使用者提供cookies了。
首先用到的是Python的request模塊,它提供了帶cookies的url請求。
import request
print request.get(url, cookies=cookies).content使用這段代碼就可以列印帶cookies的url請求頁面結果。
首先取得該用戶微博頁面數,通過檢查網頁源碼,查找到表示頁數的元素,通過XPath等技術提取出頁數。
頁數
項目使用lxml模塊對html進行XPath提取。
首先導入lxml模塊,在項目里只用到了etree,所以from lxml import etree
然後利用下面的方法返回頁數
def getpagenum(self):
url = self.geturl(pagenum=1)
html = requests.get(url, cookies=self.cook).content # Visit the first page to get the page number.
selector = etree.HTML(html)
pagenum = selector.xpath('//input[@name="mp"]/@value')[0]
return int(pagenum)
接下來就是不斷地拼接url->訪問url->下載網頁。
需要注意的是,由於新浪反爬機制的存在,同一cookies訪問頁面過於「頻繁」的話會進入類似於「冷卻期」,即返回一個無用頁面,通過分析該無用頁面發現,這個頁面在特定的地方會出現特定的信息,通過XPath技術來檢查這個特定地方是否出現了特定信息即可判斷該頁面是否對我們有用。
def ispageneeded(html):
selector = etree.HTML(html)
try:
title = selector.xpath('//title')[0]
except:
return False
return title.text != '微博廣場' and title.text != '微博'
如果出現了無用頁面,只需簡單地重新訪問即可,但是通過後期的實驗發現,如果長期處於過頻訪問,返回的頁面將全是無用頁面,程序也將陷入死循環。為了避免程序陷入死循環,博主設置了嘗試次數閾值trycount,超過這個閾值之後方法自動返回。
下面代碼片展示了單線程爬蟲的方法。
def startcrawling(self, startpage=1, trycount=20):
attempt = 0
try:
os.mkdir(sys.path[0] + '/Weibo_raw/' + self.wanted)except Exception, e:
print str(e)
isdone = False
while not isdone and attempt < trycount:
try:
pagenum = self.getpagenum()
isdone = True
except Exception, e:
attempt += 1
if attempt == trycount:
return False
i = startpage
while i <= pagenum:
attempt = 0
isneeded = False
html = ''
while not isneeded and attempt < trycount:
html = self.getpage(self.geturl(i))
isneeded = self.ispageneeded(html)
if not isneeded:
attempt += 1
if attempt == trycount:
return False
self.savehtml(sys.path[0] + '/Weibo_raw/' + self.wanted + '/' + str(i) + '.txt', html)print str(i) + '/' + str(pagenum - 1)
i += 1
return True
考慮到程序的時間效率,在寫好單線程爬蟲之後,博主也寫了多線程爬蟲版本,基本思想是將微博頁數除以線程數,如一個微博用戶有100頁微博,程序開10個線程,那麼每個線程只負責10個頁面的爬取,其他基本思想跟單線程類似,只需仔細處理邊界值即可,在此不再贅述,感興趣的同學可以直接看代碼。另外,由於多線程的效率比較高,並發量特別大,所以伺服器很容易就返回無效頁面,此時trycount的設置就顯得更重要了。博主在寫這篇微博的時候,用一個新的cookies,多線程爬取現場測試了一下爬取北京郵電大學的微博,3976條微博全部爬取成功並提取博文,用時僅15s,實際可能跟cookies的新舊程度和網路環境有關,命令行設置如下,命令行意義在項目網址里有說明python main.py _T_WM=xxx; SUHB=xxx; SUB=xxx; gsid_CTandWM=xxx u bupt m 20 20爬取的工作以上基本介紹結束,接下來就是爬蟲的第二部分,解析了。由於項目中提供了多線程爬取方法,而多線程一般是無序的,但微博博文是依靠時間排序的,所以項目採用了一種折衷的辦法,將下載完成的頁面保存在本地文件系統,每個頁面以其頁號為文件名,待爬取的工作結束後,再遍歷文件夾內所有文件並解析。
通過前面的觀察,我們已經了解到微博博文存在的標簽有什麼特點了,利用XPath技術,將這個頁面里所有有這個特點的標簽全部提取出來已經不是難事了。
在這再次提醒,微博分為轉發微博和原創微博、時間表示方式。另外,由於我們的研究課題僅對微博文本感興趣,所以配圖不考慮。
def startparsing(self, parsingtime=datetime.datetime.now()):
basepath = sys.path[0] + '/Weibo_raw/' + self.uidfor filename in os.listdir(basepath):
if filename.startswith('.'):
continue
path = basepath + '/' + filename
f = open(path, 'r')
html = f.read()
selector = etree.HTML(html)
weiboitems = selector.xpath('//div[@class="c"][@id]')for item in weiboitems:
weibo = Weibo()
weibo.id = item.xpath('./@id')[0]
cmt = item.xpath('./div/span[@class="cmt"]')if len(cmt) != 0:
weibo.isrepost = True
weibo.content = cmt[0].text
else:
weibo.isrepost = False
ctt = item.xpath('./div/span[@class="ctt"]')[0]
if ctt.text is not None:
weibo.content += ctt.text
for a in ctt.xpath('./a'):
if a.text is not None:
weibo.content += a.text
if a.tail is not None:
weibo.content += a.tail
if len(cmt) != 0:
reason = cmt[1].text.split(u'\xa0')
if len(reason) != 1:
weibo.repostreason = reason[0]
ct = item.xpath('./div/span[@class="ct"]')[0]
time = ct.text.split(u'\xa0')[0]
weibo.time = self.gettime(self, time, parsingtime)self.weibos.append(weibo.__dict__)
f.close()
方法傳遞的參數parsingtime的設置初衷是,開發前期爬取和解析可能不是同時進行的(並不是嚴格的「同時」),微博時間顯示是基於訪問時間的,比如爬取時間是10:00,這時爬取到一條微博顯示是5分鍾前發布的,但如果解析時間是10:30,那麼解析時間將錯誤,所以應該講解析時間設置為10:00。到後期爬蟲基本開發完畢,爬取工作和解析工作開始時間差距降低,時間差將是爬取過程時長,基本可以忽略。
解析結果保存在一個列表裡,最後將這個列表以json格式保存到文件系統里,刪除過渡文件夾,完成。
def save(self):
f = open(sys.path[0] + '/Weibo_parsed/' + self.uid + '.txt', 'w')jsonstr = json.mps(self.weibos, indent=4, ensure_ascii=False)f.write(jsonstr)
f.close()
2.爬取關鍵詞
同樣的,收集必要的信息。在微博手機版搜索頁面敲入」python」,觀察url,研究其規律。雖然第一頁並無規律,但是第二頁我們發現了規律,而且這個規律可以返回應用於第一頁第一頁
第二頁
應用後第一頁
觀察url可以發現,對於關鍵詞的搜索,url中的變數只有keyword和page(事實上,hideSearchFrame對我們的搜索結果和爬蟲都沒有影響),所以在代碼中我們就可以對這兩個變數進行控制。
另外,如果關鍵詞是中文,那麼url就需要對中文字元進行轉換,如我們在搜索框敲入」開心」並搜索,發現url如下顯示搜索開心
但復制出來卻為
http://weibo.cn/search/mblog?hideSearchFrame=&keyword=%E5%BC%80%E5%BF%83&page=1幸好,python的urllib庫有qoute方法處理中文轉換的功能(如果是英文則不做轉換),所以在拼接url前使用這個方法處理一下參數。
另外,考慮到關鍵詞搜索屬於數據收集階段使用的方法,所以在此只提供單線程下載網頁,如有多線程需要,大家可以按照多線程爬取用戶微博的方法自己改寫。最後,對下載下來的網頁進行提取並保存(我知道這樣的模塊設計有點奇怪,打算重(xin)構(qing)時(hao)時再改,就先這樣吧)。
def keywordcrawling(self, keyword):
realkeyword = urllib.quote(keyword) # Handle the keyword in Chinese.
try:
os.mkdir(sys.path[0] + '/keywords')
except Exception, e:
print str(e)
weibos = []
try:
highpoints = re.compile(u'[\U00010000-\U0010ffff]') # Handle emoji, but it seems doesn't work.
except re.error:
highpoints = re.compile(u'[\uD800-\uDBFF][\uDC00-\uDFFF]')pagenum = 0
isneeded = False
while not isneeded:
html = self.getpage('http://weibo.cn/search/mblog?keyword=%s&page=1' % realkeyword)isneeded = self.ispageneeded(html)
if isneeded:
selector = etree.HTML(html)
try:
pagenum = int(selector.xpath('//input[@name="mp"]/@value')[0])except:
pagenum = 1
for i in range(1, pagenum + 1):
try:
isneeded = False
while not isneeded:
html = self.getpage('http://weibo.cn/search/mblog?keyword=%s&page=%s' % (realkeyword, str(i)))isneeded = self.ispageneeded(html)
selector = etree.HTML(html)
weiboitems = selector.xpath('//div[@class="c"][@id]')for item in weiboitems:
cmt = item.xpath('./div/span[@class="cmt"]')if (len(cmt)) == 0:
ctt = item.xpath('./div/span[@class="ctt"]')[0]
if ctt.text is not None:
text = etree.tostring(ctt, method='text', encoding="unicode")tail = ctt.tail
if text.endswith(tail):
index = -len(tail)
text = text[1:index]
text = highpoints.sub(u'\u25FD', text) # Emoji handling, seems doesn't work.
weibotext = text
weibos.append(weibotext)
print str(i) + '/' + str(pagenum)
except Exception, e:
print str(e)
f = open(sys.path[0] + '/keywords/' + keyword + '.txt', 'w')try:
f.write(json.mps(weibos,indent=4,ensure_ascii=False))except Exception,ex:
print str(ex)
finally:
f.close()
博主之前從未寫過任何爬蟲程序,為了獲取新浪微博博文,博主先後寫了3個不同的爬蟲程序,有Python,有Java,爬蟲不能用了是很正常的,不要氣餒,爬蟲程序和反爬機制一直都在不斷博弈中,道高一尺魔高一丈。
另. 轉載請告知博主,如果覺得博主帥的話就可以不用告知了

Ⅱ 如何用Python做爬蟲

1)首先你要明白爬蟲怎樣工作。

想像你是一隻蜘蛛,現在你被放到了互聯「網」上。那麼,你需要把所有的網頁都看一遍。怎麼辦呢?沒問題呀,你就隨便從某個地方開始,比如說人民日報的首頁,這個叫initial pages,用$表示吧。

在人民日報的首頁,你看到那個頁面引向的各種鏈接。於是你很開心地從爬到了「國內新聞」那個頁面。太好了,這樣你就已經爬完了倆頁面(首頁和國內新聞)!暫且不用管爬下來的頁面怎麼處理的,你就想像你把這個頁面完完整整抄成了個html放到了你身上。

突然你發現, 在國內新聞這個頁面上,有一個鏈接鏈回「首頁」。作為一隻聰明的蜘蛛,你肯定知道你不用爬回去的吧,因為你已經看過了啊。所以,你需要用你的腦子,存下你已經看過的頁面地址。這樣,每次看到一個可能需要爬的新鏈接,你就先查查你腦子里是不是已經去過這個頁面地址。如果去過,那就別去了。

好的,理論上如果所有的頁面可以從initial page達到的話,那麼可以證明你一定可以爬完所有的網頁。

那麼在python里怎麼實現呢?
很簡單

import Queue

initial_page = "初始化頁"

url_queue = Queue.Queue()
seen = set()

seen.insert(initial_page)
url_queue.put(initial_page)

while(True): #一直進行直到海枯石爛
if url_queue.size()>0:
current_url = url_queue.get() #拿出隊例中第一個的url
store(current_url) #把這個url代表的網頁存儲
for next_url in extract_urls(current_url): #提取把這個url里鏈向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break

寫得已經很偽代碼了。

所有的爬蟲的backbone都在這里,下面分析一下為什麼爬蟲事實上是個非常復雜的東西——搜索引擎公司通常有一整個團隊來維護和開發。

2)效率
如果你直接加工一下上面的代碼直接運行的話,你需要一整年才能爬下整個豆瓣的內容。更別說Google這樣的搜索引擎需要爬下全網的內容了。

問題出在哪呢?需要爬的網頁實在太多太多了,而上面的代碼太慢太慢了。設想全網有N個網站,那麼分析一下判重的復雜度就是N*log(N),因為所有網頁要遍歷一次,而每次判重用set的話需要log(N)的復雜度。OK,OK,我知道python的set實現是hash——不過這樣還是太慢了,至少內存使用效率不高。

通常的判重做法是怎樣呢?Bloom Filter. 簡單講它仍然是一種hash的方法,但是它的特點是,它可以使用固定的內存(不隨url的數量而增長)以O(1)的效率判定url是否已經在set中。可惜天下沒有白吃的午餐,它的唯一問題在於,如果這個url不在set中,BF可以100%確定這個url沒有看過。但是如果這個url在set中,它會告訴你:這個url應該已經出現過,不過我有2%的不確定性。注意這里的不確定性在你分配的內存足夠大的時候,可以變得很小很少。一個簡單的教程:Bloom Filters by Example

注意到這個特點,url如果被看過,那麼可能以小概率重復看一看(沒關系,多看看不會累死)。但是如果沒被看過,一定會被看一下(這個很重要,不然我們就要漏掉一些網頁了!)。 [IMPORTANT: 此段有問題,請暫時略過]

好,現在已經接近處理判重最快的方法了。另外一個瓶頸——你只有一台機器。不管你的帶寬有多大,只要你的機器下載網頁的速度是瓶頸的話,那麼你只有加快這個速度。用一台機子不夠的話——用很多台吧!當然,我們假設每台機子都已經進了最大的效率——使用多線程(python的話,多進程吧)。

3)集群化抓取
爬取豆瓣的時候,我總共用了100多台機器晝夜不停地運行了一個月。想像如果只用一台機子你就得運行100個月了...

那麼,假設你現在有100台機器可以用,怎麼用python實現一個分布式的爬取演算法呢?

我們把這100台中的99台運算能力較小的機器叫作slave,另外一台較大的機器叫作master,那麼回顧上面代碼中的url_queue,如果我們能把這個queue放到這台master機器上,所有的slave都可以通過網路跟master聯通,每當一個slave完成下載一個網頁,就向master請求一個新的網頁來抓取。而每次slave新抓到一個網頁,就把這個網頁上所有的鏈接送到master的queue里去。同樣,bloom filter也放到master上,但是現在master只發送確定沒有被訪問過的url給slave。Bloom Filter放到master的內存里,而被訪問過的url放到運行在master上的Redis里,這樣保證所有操作都是O(1)。(至少平攤是O(1),Redis的訪問效率見:LINSERT – Redis)

考慮如何用python實現:
在各台slave上裝好scrapy,那麼各台機子就變成了一台有抓取能力的slave,在master上裝好Redis和rq用作分布式隊列。

代碼於是寫成

#slave.py

current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)

store(current_url);
send_to_master(to_send)

#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()

initial_pages = "www.renmingribao.com"

while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)

好的,其實你能想到,有人已經給你寫好了你需要的:darkrho/scrapy-redis · GitHub

4)展望及後處理
雖然上面用很多「簡單」,但是真正要實現一個商業規模可用的爬蟲並不是一件容易的事。上面的代碼用來爬一個整體的網站幾乎沒有太大的問題。

但是如果附加上你需要這些後續處理,比如

有效地存儲(資料庫應該怎樣安排)

有效地判重(這里指網頁判重,咱可不想把人民日報和抄襲它的大民日報都爬一遍)

有效地信息抽取(比如怎麼樣抽取出網頁上所有的地址抽取出來,「朝陽區奮進路中華道」),搜索引擎通常不需要存儲所有的信息,比如圖片我存來幹嘛...

及時更新(預測這個網頁多久會更新一次)

如你所想,這里每一個點都可以供很多研究者十數年的研究。雖然如此,
「路漫漫其修遠兮,吾將上下而求索」。

所以,不要問怎麼入門,直接上路就好了:)

Ⅲ python爬蟲爬網頁的時候遇到顏文字表情出錯

這個問題是你抓取回來的數據是gbk編碼的,在抓取回來的數據後面加一句.decode('gbk')
把內容按照gbk進行解析

Ⅳ python爬蟲下來的數據怎麼存

如果是存到mysql中,可以設置為欄位類型為text。
mysql中text 最大長度為65,535(2的16次方–1)字元的TEXT列。
如果你覺得text長度不夠,可以選擇
MEDIUMTEXT最大長度為16,777,215。
LONGTEXT最大長度為4,294,967,295
Text主要是用來存放非二進制的文本,如論壇帖子,題目,或者網路知道的問題和回答之類。
需要弄清楚的是text 和 char varchar blob這幾種類型的區別

如果真的特別大,就用python在某一路徑下建一個文件,把內容write到文件中就可以了

Ⅳ Python爬蟲模擬登錄遇到的問題——CSRF防禦

去年在公司寫過一個爬蟲工具,用於抓取自動化報告通過率、自動發送報告。由於當時是第一次接觸爬蟲,難免會遇到各種問題,解決方案全都是按照網上的一些爬蟲文章示例,照貓畫虎寫的。雖然能正常使用,但其實很多地方都沒弄明白。最近學習了一些前端和後台的原理,了解了cookie與session的機制,總算弄明白了爬蟲登錄過程中的一個疑問。

編寫爬蟲第一步,在登錄公司的自動化平台時就遇到了一個難題,登錄請求中必須包含一個authenticity_token欄位。令人頭大的是,完全不知道這個欄位從何而來,而且該欄位還每次都不一樣,參考的爬蟲登錄示例也沒教啊!真是急壞苯寶寶了😭

後來翻了好多CSDN的爬蟲貼,了解到 知乎 的登錄請求中也包含這樣一個欄位,而作者的處理方式就是先訪問一次登錄頁,然後從登錄頁中查找一個隱藏的authenticity_token欄位。
藉助F12發現,公司的自動化平台登錄頁中也包含了這樣一個隱藏欄位,試之,果然成功了......

"多年後的一個平靜的下午,當我無意間瀏覽了一片CSRF攻擊的帖子,突然眼前一亮......老衲終於明白了這個authenticity_token的含義了!!!終於徹底理解了當年困擾我兩小時的難題了!!!"
其實,該token的作用就是防禦CSRF攻擊,關於什麼是CSRF,還得先了解下Session id。

HTTP請求的一大特點就是無狀態,這也就導致服務端無法區分請求來自哪個客戶端。為了記錄每個用戶的狀態,跟蹤用戶的整個會話,web程序普遍採用了cookie與session技術。(由於cookie與session的內容過多,在此不表,詳細原理可以參考一片文章: Cookie與Session機制 )
關於cookie與session,最需要了解的幾點是:

根據session機制以上特點,就引申出了一個問題:CSRF攻擊。

用戶每次點擊一個鏈接、提交一個表單,其本質就是對服務端發起一次請求。而CSRF攻擊的原理就是:攻擊者誘導用戶點擊一個鏈接,用戶在不知情的情況下提交了一次表單請求。而表單的內容則是攻擊者事先准備好的。
簡單舉個栗子🌰:

備注: 以上攻擊成功實施的關鍵在於,小明已經登錄論壇A,並且點擊跳轉後的瀏覽器子窗體是可以訪問父窗體的session id的。
假如小明復制該鏈接,然後手動打開一個新的瀏覽器粘貼訪問該鏈接,則會提示用戶處於非登錄狀態,該發帖請求會被拒絕。原因是新打開的瀏覽器無法獲取前一個瀏覽器中的session id,服務端會將該請求當成一個新的會話,需要重新登錄後才能成功執行發帖請求。

既然大家都了解CRSF攻擊,自然有相應的防禦措施,其中比較常用的就是採用token驗證。
工作機制就是: 用戶在發送表單時還需要攜帶一個token值 。該token一般是填寫表單頁中的一個隱藏欄位,每次訪問都不同。通過該token的驗證,服務端就能知道用戶的表單請求是否從表單填寫頁面跳轉而來了。
簡單舉例:

簡單來說,服務端每次通過請求數據中的token來驗證表單請求是否由用戶主動發送的,從而有效防禦了CRSF攻擊。

至此,也就明白了為什麼登錄頁面時需要攜帶一個authenticity_token參數了,同時也理解了為什麼需要訪問登錄頁面獲取該token。😄

Ⅵ python可以爬取什麼數據

一、爬取我們所需要的一線鏈接
channel_extract.py
這里的一線鏈接也就是我們所說的大類鏈接:
from bs4 import BeautifulSoupimport requests

start_url = 'http://lz.ganji.com/wu/'host_url = 'http://lz.ganji.com/'def get_channel_urls(url):
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml')
links = soup.select('.fenlei > dt > a') #print(links)
for link in links:
page_url = host_url + link.get('href')
print(page_url)#get_channel_urls(start_url)channel_urls = '''
http://lz.ganji.com/jiaju/
http://lz.ganji.com/rironghuo/
http://lz.ganji.com/shouji/
http://lz.ganji.com/bangong/
http://lz.ganji.com/nongyongpin/
http://lz.ganji.com/jiadian/
http://lz.ganji.com/ershoubijibendiannao/
http://lz.ganji.com/ruanjiantushu/
http://lz.ganji.com/yingyouyunfu/
http://lz.ganji.com/diannao/
http://lz.ganji.com/xianlipin/
http://lz.ganji.com/fushixiaobaxuemao/
http://lz.ganji.com/meironghuazhuang/
http://lz.ganji.com/shuma/
http://lz.ganji.com/laonianyongpin/
http://lz.ganji.com/xuniwupin/
'''

那麼拿我爬取的58同城為例就是爬取了二手市場所有品類的鏈接,也就是我說的大類鏈接;
找到這些鏈接的共同特徵,用函數將其輸出,並作為多行文本儲存起來。
二、獲取我們所需要的詳情頁面的鏈接和詳情信息
page_parsing.py
1、說說我們的資料庫:
先看代碼:
#引入庫文件from bs4 import BeautifulSoupimport requestsimport pymongo #python操作MongoDB的庫import reimport time#鏈接和建立資料庫client = pymongo.MongoClient('localhost', 27017)
ceshi = client['ceshi'] #建ceshi資料庫ganji_url_list = ceshi['ganji_url_list'] #建立表文件ganji_url_info = ceshi['ganji_url_info']123456789101112

2、判斷頁面結構是否和我們想要的頁面結構相匹配,比如有時候會有404頁面;
3、從頁面中提取我們想要的鏈接,也就是每個詳情頁面的鏈接;
這里我們要說的是一個方法就是:
item_link = link.get('href').split('?')[0]12

這里的這個link什麼類型的,這個get方法又是什麼鬼?
後來我發現了這個類型是
<class 'bs4.element.Tab>1

如果我們想要單獨獲取某個屬性,可以這樣,例如我們獲取它的 class 叫什麼
print soup.p['class']
#['title']12

還可以這樣,利用get方法,傳入屬性的名稱,二者是等價的
print soup.p.get('class')#['title']12

下面我來貼上代碼:
#爬取所有商品的詳情頁面鏈接:def get_type_links(channel, num):
list_view = '{0}o{1}/'.format(channel, str(num)) #print(list_view)
wb_data = requests.get(list_view)
soup = BeautifulSoup(wb_data.text, 'lxml')
linkOn = soup.select('.pageBox') #判斷是否為我們所需頁面的標志;
#如果爬下來的select鏈接為這樣:div.pageBox > ul > li:nth-child(1) > a > span 這里的:nth-child(1)要刪掉
#print(linkOn)
if linkOn:
link = soup.select('.zz > .zz-til > a')
link_2 = soup.select('.js-item > a')
link = link + link_2 #print(len(link))
for linkc in link:
linkc = linkc.get('href')
ganji_url_list.insert_one({'url': linkc})
print(linkc) else:

4、爬取詳情頁中我們所需要的信息
我來貼一段代碼:
#爬取趕集網詳情頁鏈接:def get_url_info_ganji(url):
time.sleep(1)
wb_data = requests.get(url)
soup = BeautifulSoup(wb_data.text, 'lxml') try:
title = soup.select('head > title')[0].text
timec = soup.select('.pr-5')[0].text.strip()
type = soup.select('.det-infor > li > span > a')[0].text
price = soup.select('.det-infor > li > i')[0].text
place = soup.select('.det-infor > li > a')[1:]
placeb = [] for placec in place:
placeb.append(placec.text)
tag = soup.select('.second-dt-bewrite > ul > li')[0].text
tag = ''.join(tag.split()) #print(time.split())
data = { 'url' : url, 'title' : title, 'time' : timec.split(), 'type' : type, 'price' : price, 'place' : placeb, 'new' : tag
}
ganji_url_info.insert_one(data) #向資料庫中插入一條數據;
print(data) except IndexError: 21222324252627282930

四、我們的主函數怎麼寫?
main.py
看代碼:
#先從別的文件中引入函數和數據:from multiprocessing import Poolfrom page_parsing import get_type_links,get_url_info_ganji,ganji_url_listfrom channel_extract import channel_urls#爬取所有鏈接的函數:def get_all_links_from(channel):
for i in range(1,100):
get_type_links(channel,i)#後執行這個函數用來爬取所有詳情頁的文件:if __name__ == '__main__':# pool = Pool()# # pool = Pool()# pool.map(get_url_info_ganji, [url['url'] for url in ganji_url_list.find()])# pool.close()# pool.join()#先執行下面的這個函數,用來爬取所有的鏈接:if __name__ == '__main__':
pool = Pool()
pool = Pool()
pool.map(get_all_links_from,channel_urls.split())
pool.close()
pool.join()

五、計數程序
count.py
用來顯示爬取數據的數目;
import timefrom page_parsing import ganji_url_list,ganji_url_infowhile True: # print(ganji_url_list.find().count())
# time.sleep(5)
print(ganji_url_info.find().count())
time.sleep(5)

Ⅶ Python爬蟲好學嗎

對於有一定編程經驗的人來說,python相對好學些。

而其他人,則要看一點毅力和天賦了,因為學以致用,最終用python達到你的學習目的,才算有價值。若只是單純的學學,開始也不算太難,但深入還是有一定難度的,特別是一些大項目。相比之下,python的一大好處,就是各類現成的實用庫,幾行代碼就可以實現一個小目標。
python,將來還是蠻有用的,就連地產大佬潘石屹,都開始學python了(雖然不明白他的意圖)。
人生苦短,我用python!

Ⅷ python爬蟲如何分析一個將要爬取的網站

首先,你去爬取一個網站,

你會清楚這個網站是屬於什麼類型的網站(新聞,論壇,貼吧等等)。

你會清楚你需要哪部分的數據

你需要去想需要的數據你將如何編寫表達式去解析。

你會碰到各種反爬措施,無非就是各種網路各種解決。當爬取成本高於數據成本,你會選擇放棄。

你會利用你所學各種語言去解決你將要碰到的問題,利用各種語言的client組件去請求你想要爬取的URL,獲取到HTML,利用正則,XPATH去解析你想要的數據,然後利用sql存儲各類資料庫。

熱點內容
資料庫系統的例子 發布:2025-05-18 03:02:42 瀏覽:191
數字化儲存與編譯是什麼 發布:2025-05-18 02:56:55 瀏覽:217
個人網站模板源碼 發布:2025-05-18 02:51:17 瀏覽:490
主伺服器ip地址 發布:2025-05-18 02:46:29 瀏覽:856
電腦配置太低玩不了絕地求生怎麼辦 發布:2025-05-18 02:38:39 瀏覽:797
存儲過程怎麼出錯了 發布:2025-05-18 02:37:16 瀏覽:368
32寸演算法 發布:2025-05-18 02:22:14 瀏覽:744
寶塔資料庫備份 發布:2025-05-18 02:14:18 瀏覽:193
安卓商店下載的光遇是什麼服 發布:2025-05-18 02:13:38 瀏覽:31
網頁挖礦源碼 發布:2025-05-18 02:13:34 瀏覽:308