當前位置:首頁 » 編程語言 » python多線程爬蟲

python多線程爬蟲

發布時間: 2023-01-07 14:38:52

python爬蟲需要什麼基礎

1. 學習Python基礎知識並實現基本的爬蟲過程

一般獲取數據的過程都是按照 發送請求-獲得頁面反饋-解析並且存儲數據 這三個流程來實現的。這個過程其實就是模擬了一個人工瀏覽網頁的過程。

Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,我們可以按照requests
負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。

2.了解非結構化數據的存儲

爬蟲抓取的數據結構復雜 傳統的結構化資料庫可能並不是特別適合我們使用。我們前期推薦使用MongoDB 就可以。

3. 掌握一些常用的反爬蟲技巧

使用代理IP池、抓包、驗證碼的OCR處理等處理方式即可以解決大部分網站的反爬蟲策略。

4.了解分布式存儲

分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis
這三種工具就可以了。

⑵ 請教一道 Python 多線程爬蟲的面試題

def saveToFile(FileName,srcList):
a=0
srcTuple = (srcList)
FileName = 'os'+FileName.strip()
res = mkdir(FileName)
if res == False:
return False
#os.mkdir(FileName)
os.chdir(FileName)
que = Queue.Queue()
for sl in srcList:
que.put(sl)
for a in range(0,srcList.__len__()):
threadD = threadDownload(que,a)
threadD.start()
#print threading.enumerate()
while threading.active_count() != 0:
if threading.active_count() == 1:
print FileName+" is Done"
return True

⑶ Python中的爬蟲框架有哪些呢

實現爬蟲技術的編程環境有很多種,Java、Python、C++等都可以用來爬蟲。但很多人選擇Python來寫爬蟲,為什麼呢?因為Python確實很適合做爬蟲,豐富的第三方庫十分強大,簡單幾行代碼便可實現你想要的功能。更重要的,Python也是數據挖掘和分析的好能手。那麼,Python爬蟲一般用什麼框架比較好?
一般來講,只有在遇到比較大型的需求時,才會使用Python爬蟲框架。這樣的做的主要目的,是為了方便管理以及擴展。本文我將向大家推薦十個Python爬蟲框架。
1、Scrapy:Scrapy是一個為了爬取網站數據,提取結構性數據而編寫的應用框架。 可以應用在包括數據挖掘,信息處理或存儲歷史數據等一系列的程序中。它是很強大的爬蟲框架,可以滿足簡單的頁面爬取,比如可以明確獲知url pattern的情況。用這個框架可以輕松爬下來如亞馬遜商品信息之類的數據。但是對於稍微復雜一點的頁面,如weibo的頁面信息,這個框架就滿足不了需求了。它的特性有:HTML, XML源數據 選擇及提取 的內置支持;提供了一系列在spider之間共享的可復用的過濾器(即 Item Loaders),對智能處理爬取數據提供了內置支持。
2、Crawley:高速爬取對應網站的內容,支持關系和非關系資料庫,數據可以導出為JSON、XML等。
3、Portia:是一個開源可視化爬蟲工具,可讓使用者在不需要任何編程知識的情況下爬取網站!簡單地注釋自己感興趣的頁面,Portia將創建一個蜘蛛來從類似的頁面提取數據。簡單來講,它是基於scrapy內核;可視化爬取內容,不需要任何開發專業知識;動態匹配相同模板的內容。

4、newspaper:可以用來提取新聞、文章和內容分析。使用多線程,支持10多種語言等。作者從requests庫的簡潔與強大得到靈感,使用Python開發的可用於提取文章內容的程序。支持10多種語言並且所有的都是unicode編碼。
5、Python-goose:Java寫的文章提取工具。Python-goose框架可提取的信息包括:文章主體內容、文章主要圖片、文章中嵌入的任何Youtube/Vimeo視頻、元描述、元標簽。
6、Beautiful Soup:名氣大,整合了一些常用爬蟲需求。它是一個可以從HTML或XML文件中提取數據的Python庫。它能夠通過你喜歡的轉換器實現慣用的文檔導航,查找,修改文檔的方式.Beautiful Soup會幫你節省數小時甚至數天的工作時間。Beautiful Soup的缺點是不能載入JS。
7、mechanize:它的優點是可以載入JS。當然它也有缺點,比如文檔嚴重缺失。不過通過官方的example以及人肉嘗試的方法,還是勉強能用的。
8、selenium:這是一個調用瀏覽器的driver,通過這個庫你可以直接調用瀏覽器完成某些操作,比如輸入驗證碼。Selenium是自動化測試工具,它支持各種瀏覽器,包括 Chrome,Safari,Firefox等主流界面式瀏覽器,如果在這些瀏覽器裡面安裝一個 Selenium 的插件,可以方便地實現Web界面的測試. Selenium支持瀏覽器驅動。Selenium支持多種語言開發,比如 Java,C,Ruby等等,PhantomJS 用來渲染解析JS,Selenium 用來驅動以及與Python的對接,Python進行後期的處理。
9、cola:是一個分布式的爬蟲框架,對於用戶來說,只需編寫幾個特定的函數,而無需關注分布式運行的細節。任務會自動分配到多台機器上,整個過程對用戶是透明的。項目整體設計有點糟,模塊間耦合度較高。
10、PySpider:一個國人編寫的強大的網路爬蟲系統並帶有強大的WebUI。採用Python語言編寫,分布式架構,支持多種資料庫後端,強大的WebUI支持腳本編輯器,任務監視器,項目管理器以及結果查看器。Python腳本控制,可以用任何你喜歡的html解析包。

⑷ Python爬蟲實戰,Python多線程抓取5千多部最新電影下載鏈接


利用Python多線程爬了5000多部最新電影下載鏈接,廢話不多說~

讓我們愉快地開始吧~

Python版本: 3.6.4

相關模塊:

requests模塊;

re模塊;

csv模塊;

以及一些Python自帶的模塊。

安裝Python並添加到環境變數,pip安裝需要的相關模塊即可。

拿到鏈接之後,接下來就是繼續訪問這些鏈接,然後拿到電影的下載鏈接

但是這里還是有很多的小細節,例如我們需要拿到電影的總頁數,其次這么多的頁面,一個線程不知道要跑到什麼時候,所以我們首先先拿到總頁碼,然後用多線程來進行任務的分配

我們首先先拿到總頁碼,然後用多線程來進行任務的分配

總頁數其實我們用re正則來獲取

爬取的內容存取到csv,也可以寫個函數來存取

開啟4個進程來下載鏈接

您學廢了嗎?最後祝大家天天進步!!學習Python最重要的就是心態。我們在學習過程中必然會遇到很多難題,可能自己想破腦袋都無法解決。這都是正常的,千萬別急著否定自己,懷疑自己。如果大家在剛開始學習中遇到困難,想找一個python學習交流環境,可以加入我們,領取學習資料,一起討論,會節約很多時間,減少很多遇到的難題。

⑸ python可以多線程爬蟲嗎

當然可以,比如python的爬蟲框架scrapy就提供了多線程的功能,當然你也可以自己寫多線程

⑹ 爬蟲python入門難學嗎

爬蟲是大家公認的入門Python最好方式,沒有之一。雖然Python有很多應用的方向,但爬蟲對於新手小白而言更友好,原理也更簡單,幾行代碼就能實現基本的爬蟲,零基礎也能快速入門,讓新手小白體會更大的成就感。因此小編整理了新手小白必看的Python爬蟲學習路線全面指導,希望可以幫到大家。
1.學習 Python 包並實現基本的爬蟲過程
大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下。當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化。
2.了解非結構化數據的存儲
爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。
3.學習scrapy,搭建工程化爬蟲
掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備Python爬蟲工程師的思維了。
4.學習資料庫知識,應對大規模數據存儲與提取
Python客棧送紅包、紙質書
爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。
5.掌握各種技巧,應對特殊網站的反爬措施
當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了。
6.分布式爬蟲,實現大規模並發採集,提升效率
爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握Scrapy+ MongoDB + Redis 這三種工具。Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。
只要按照以上的Python爬蟲學習路線,一步步完成,即使是新手小白也能成為老司機,而且學下來會非常輕松順暢。所以新手在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目,直接開始操作。
其實學Python編程和練武功其實很相似,入門大致這樣幾步:找本靠譜的書,找個靠譜的師傅,找一個地方開始練習。
學語言也是這樣的:選一本通俗易懂的書,找一個好的視頻資料,然後自己裝一個IDE工具開始邊學邊寫。
7.給初學Python編程者的建議:
①信心。可能你看了視頻也沒在屏幕上做出點啥,都沒能把程序運行起來。但是要有自信,所有人都是這樣過來的。
②選擇適合自己的教程。有很早的書籍很經典,但是不是很適合你,很多書籍是我們學過一遍Python之後才會發揮很大作用。
③寫代碼,就是不斷地寫,練。這不用多說,學習什麼語言都是這樣。總看視頻,編不出東西。可以從書上的小案例開始寫,之後再寫完整的項目。
④除了學Python,計算機的基礎也要懂得很多,補一些英語知識也行。
⑤不但會寫,而且會看,看源碼是一個本領,調試代碼更是一個本領,就是解決問題的能力,挑錯。理解你自己的報錯信息,自己去解決。
⑥當你到達了一個水平,就多去看官方的文檔,在CSDN上面找下有關Python的博文或者群多去交流。
希望想學習Python的利用好現在的時間,管理好自己的學習時間,有效率地學習Python,Python這門語言可以做很多事情。

⑺ python網路爬蟲怎麼學習

現行環境下,大數據與人工智慧的重要依託還是龐大的數據和分析採集,類似於淘寶 京東 網路 騰訊級別的企業 能夠通過數據可觀的用戶群體獲取需要的數據,而一般企業可能就沒有這種通過產品獲取數據的能力和條件,想從事這方面的工作,需掌握以下知識:
1. 學習Python基礎知識並實現基本的爬蟲過程
一般獲取數據的過程都是按照 發送請求-獲得頁面反饋-解析並且存儲數據 這三個流程來實現的。這個過程其實就是模擬了一個人工瀏覽網頁的過程。
Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,我們可以按照requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。
2.了解非結構化數據的存儲
爬蟲抓取的數據結構復雜 傳統的結構化資料庫可能並不是特別適合我們使用。我們前期推薦使用MongoDB 就可以。
3. 掌握一些常用的反爬蟲技巧
使用代理IP池、抓包、驗證碼的OCR處理等處理方式即可以解決大部分網站的反爬蟲策略。
4.了解分布式存儲
分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具就可以了。

⑻ python爬蟲多線程假死怎麼解決

你可以根據日誌查一下,看看程序再抓哪些頁面的時候死了,再分析一下為什麼死。有些網站為了防止爬蟲會採取一些措施,比如給你設計一個鏈接,你打開這個鏈接後跳到另一個頁面,這個頁面上還有一個鏈接,又鏈接到原來的頁面,如果處理不好爬蟲就...

⑼ python多線程爬蟲爬取頂點小說內容(BeautifulSoup+urllib)

之前寫過python爬取起點中文網小說,多線程則是先把爬取的章節鏈接存到一個列表裡,然後寫一個函數get_text每次調用這個函數就傳一個章節鏈接,那麼就需要調用n次該函數來獲取n章的內容,所以可以用for循環創建n個線程,線程的target就是get_text,參數就是章節的url。

隨便點開的,辣眼睛哈哈哈

個人感覺用了多線程之後速度並沒有很大的提升,速度大致是20個txt文件/分鍾,是否有單個機器上繼續提升爬取速度的方法?

下一步打算搞點能被封ip的爬取行為,然後學學分布式爬蟲。加油~

⑽ python多線程能提高效率嗎

很多爬蟲工作者都遇到過抓取速度非常慢,現在的大多數網站都具備了反爬蟲技術,對IP的訪問頻率限制很嚴格。如果想提升爬蟲的速度,大家可以嘗試以下方法。

一、盡量減少訪問次數。
單次爬蟲任務的大多耗時在網路請求等待響應,所以能減少網路請求就盡量減少請求,這樣既能減少目標網站的壓力,也能減少代理伺服器的壓力,提高工作效率。

二、精簡流程,減少重復。
大部分網站並不是嚴格意義上的樹狀結構,而是多重交叉的網狀結構,所以從多個入口深入的網頁會有很多重復,一般根據URL或者ID進行唯一性判別,爬過的就不需要再爬。一些數據如果可以在一個頁面內獲取到,也可以在多個頁面下獲取到,那就選擇只在一個頁面內獲取。

三、多線程任務。
大量爬蟲是一個IO阻塞的任務,所以採用多線程的並發方式可以有效地提高整體速度。多線程可以更好地提高資源利用率,程序設計也更加堅定,程序響應也更快。

四、分布式任務。
上面三點都做到極致了,但是單機單位時間內能爬取到的網頁數量還不足以達到目標,在指定時間內還不能及時的完成任務,那麼就只能多機器來同時進行爬蟲任務了,這就是分布式爬蟲。

做好以上幾點,基本可以將爬蟲的效率提升大半,另外爬蟲代理ip也是不可缺少的尤其是對於量大的任務,IPIDEA提供全球ip的同時更注重保護數據的安全,也可以減少反爬蟲策略的觸發,一舉多得。

熱點內容
sql創建鏈接 發布:2025-07-08 00:08:38 瀏覽:398
ftp上傳中斷 發布:2025-07-08 00:08:37 瀏覽:641
linux雲計算課程 發布:2025-07-08 00:07:23 瀏覽:23
安卓網易雲怎麼發布歌曲 發布:2025-07-07 23:42:29 瀏覽:626
安卓內存讀取腳本 發布:2025-07-07 23:42:19 瀏覽:871
python27漢化 發布:2025-07-07 23:42:18 瀏覽:721
源碼鎖屏 發布:2025-07-07 23:26:52 瀏覽:944
手機版編程軟體 發布:2025-07-07 22:57:22 瀏覽:122
linux下執行sh腳本 發布:2025-07-07 22:49:00 瀏覽:127
雲盤怎麼存儲資料 發布:2025-07-07 22:49:00 瀏覽:915