當前位置:首頁 » 編程語言 » python網路爬蟲與信息提取

python網路爬蟲與信息提取

發布時間: 2023-02-12 10:21:13

㈠ 精通python網路爬蟲之網路爬蟲學習路線

欲精通Python網路爬蟲,必先了解網路爬蟲學習路線,本篇經驗主要解決這個問題。部分內容參考自書籍《精通Python網路爬蟲》。

作者:韋瑋

轉載請註明出處

隨著大數據時代的到來,人們對數據資源的需求越來越多,而爬蟲是一種很好的自動採集數據的手段。

那麼,如何才能精通Python網路爬蟲呢?學習Python網路爬蟲的路線應該如何進行呢?在此為大傢具體進行介紹。

1、選擇一款合適的編程語言

事實上,Python、PHP、JAVA等常見的語言都可以用於編寫網路爬蟲,你首先需要選擇一款合適的編程語言,這些編程語言各有優勢,可以根據習慣進行選擇。在此筆者推薦使用Python進行爬蟲項目的編寫,其優點是:簡潔、掌握難度低。

2、掌握Python的一些基礎爬蟲模塊

當然,在進行這一步之前,你應當先掌握Python的一些簡單語法基礎,然後才可以使用Python語言進行爬蟲項目的開發。

在掌握了Python的語法基礎之後,你需要重點掌握一個Python的關於爬蟲開發的基礎模塊。這些模塊有很多可以供你選擇,比如urllib、requests等等,只需要精通一個基礎模塊即可,不必要都精通,因為都是大同小異的,在此推薦的是掌握urllib,當然你可以根據你的習慣進行選擇。

3、深入掌握一款合適的表達式

學會了如何爬取網頁內容之後,你還需要學會進行信息的提取。事實上,信息的提取你可以通過表達式進行實現,同樣,有很多表達式可以供你選擇使用,常見的有正則表達式、XPath表達式、BeautifulSoup等,這些表達式你沒有必要都精通,同樣,精通1-2個,其他的掌握即可,在此建議精通掌握正則表達式以及XPath表達式,其他的了解掌握即可。正則表達式可以處理的數據的范圍比較大,簡言之,就是能力比較強,XPath只能處理XML格式的數據,有些形式的數據不能處理,但XPath處理數據會比較快。

4、深入掌握抓包分析技術

事實上,很多網站都會做一些反爬措施,即不想讓你爬到他的數據。最常見的反爬手段就是對數據進行隱藏處理,這個時候,你就無法直接爬取相關的數據了。作為爬蟲方,如果需要在這種情況下獲取數據,那麼你需要對相應的數據進行抓包分析,然後再根據分析結果進行處理。一般推薦掌握的抓包分析工具是Fiddler,當然你也可以用其他的抓包分析工具,沒有特別的要求。

5、精通一款爬蟲框架

事實上,當你學習到這一步的時候,你已經入門了。

這個時候,你可能需要深入掌握一款爬蟲框架,因為採用框架開發爬蟲項目,效率會更加高,並且項目也會更加完善。

同樣,你可以有很多爬蟲框架進行選擇,比如Scrapy、pySpider等等,一樣的,你沒必要每一種框架都精通,只需要精通一種框架即可,其他框架都是大同小異的,當你深入精通一款框架的時候,其他的框架了解一下事實上你便能輕松使用,在此推薦掌握Scrapy框架,當然你可以根據習慣進行選擇。

6、掌握常見的反爬策略與反爬處理策略

反爬,是相對於網站方來說的,對方不想給你爬他站點的數據,所以進行了一些限制,這就是反爬。

反爬處理,是相對於爬蟲方來說的,在對方進行了反爬策略之後,你還想爬相應的數據,就需要有相應的攻克手段,這個時候,就需要進行反爬處理。

事實上,反爬以及反爬處理都有一些基本的套路,萬變不離其宗,這些後面作者會具體提到,感興趣的可以關注。

常見的反爬策略主要有:

IP限制

UA限制

Cookie限制

資源隨機化存儲

動態載入技術

……

對應的反爬處理手段主要有:

IP代理池技術

用戶代理池技術

Cookie保存與處理

自動觸發技術

抓包分析技術+自動觸發技術

……

這些大家在此先有一個基本的思路印象即可,後面都會具體通過實戰案例去介紹。

7、掌握PhantomJS、Selenium等工具的使用

有一些站點,通過常規的爬蟲很難去進行爬取,這個時候,你需要藉助一些工具模塊進行,比如PhantomJS、Selenium等,所以,你還需要掌握PhantomJS、Selenium等工具的常規使用方法。

8、掌握分布式爬蟲技術與數據去重技術

如果你已經學習或者研究到到了這里,那麼恭喜你,相信現在你爬任何網站都已經不是問題了,反爬對你來說也只是一道形同虛設的牆而已了。

但是,如果要爬取的資源非常非常多,靠一個單機爬蟲去跑,仍然無法達到你的目的,因為太慢了。

所以,這個時候,你還應當掌握一種技術,就是分布式爬蟲技術,分布式爬蟲的架構手段有很多,你可以依據真實的伺服器集群進行,也可以依據虛擬化的多台伺服器進行,你可以採用urllib+redis分布式架構手段,也可以採用Scrapy+redis架構手段,都沒關系,關鍵是,你可以將爬蟲任務部署到多台伺服器中就OK。

至於數據去重技術,簡單來說,目的就是要去除重復數據,如果數據量小,直接採用資料庫的數據約束進行實現,如果數據量很大,建議採用布隆過濾器實現數據去重即可,布隆過濾器的實現在Python中也是不難的。

以上是如果你想精通Python網路爬蟲的學習研究路線,按照這些步驟學習下去,可以讓你的爬蟲技術得到非常大的提升。

至於有些朋友問到,使用Windows系統還是Linux系統,其實,沒關系的,一般建議學習的時候使用Windows系統進行就行,比較考慮到大部分朋友對該系統比較數據,但是在實際運行爬蟲任務的時候,把爬蟲部署到Linux系統中運行,這樣效率比較高。由於Python的可移植性非常好,所以你在不同的平台中運行一個爬蟲,代碼基本上不用進行什麼修改,只需要學會部署到Linux中即可。所以,這也是為什麼說使用Windows系統還是Linux系統進行學習都沒多大影響的原因之一。

本篇文章主要是為那些想學習Python網路爬蟲,但是又不知道從何學起,怎麼學下去的朋友而寫的。希望通過本篇文章,可以讓你對Python網路爬蟲的研究路線有一個清晰的了解,這樣,本篇文章的目的就達到了,加油!

本文章由作者韋瑋原創,轉載請註明出處。

㈡ Python爬蟲可以爬取什麼

Python爬蟲可以爬取的東西有很多,Python爬蟲怎麼學?簡單的分析下:

如果你仔細觀察,就不難發現,懂爬蟲、學習爬蟲的人越來越多,一方面,互聯網可以獲取的數據越來越多,另一方面,像 Python這樣的編程語言提供越來越多的優秀工具,讓爬蟲變得簡單、容易上手。

利用爬蟲我們可以獲取大量的價值數據,從而獲得感性認識中不能得到的信息,比如:

知乎:爬取優質答案,為你篩選出各話題下最優質的內容。

淘寶、京東:抓取商品、評論及銷量數據,對各種商品及用戶的消費場景進行分析。

安居客、鏈家:抓取房產買賣及租售信息,分析房價變化趨勢、做不同區域的房價分析。

拉勾網、智聯:爬取各類職位信息,分析各行業人才需求情況及薪資水平。

雪球網:抓取雪球高回報用戶的行為,對股票市場進行分析和預測。

爬蟲是入門Python最好的方式,沒有之一。Python有很多應用的方向,比如後台開發、web開發、科學計算等等,但爬蟲對於初學者而言更友好,原理簡單,幾行代碼就能實現基本的爬蟲,學習的過程更加平滑,你能體會更大的成就感。

掌握基本的爬蟲後,你再去學習Python數據分析、web開發甚至機器學習,都會更得心應手。因為這個過程中,Python基本語法、庫的使用,以及如何查找文檔你都非常熟悉了。

對於小白來說,爬蟲可能是一件非常復雜、技術門檻很高的事情。比如有人認為學爬蟲必須精通 Python,然後哼哧哼哧系統學習 Python 的每個知識點,很久之後發現仍然爬不了數據;有的人則認為先要掌握網頁的知識,遂開始 HTMLCSS,結果入了前端的坑,瘁……

但掌握正確的方法,在短時間內做到能夠爬取主流網站的數據,其實非常容易實現,但建議你從一開始就要有一個具體的目標。

在目標的驅動下,你的學習才會更加精準和高效。那些所有你認為必須的前置知識,都是可以在完成目標的過程中學到的。這里給你一條平滑的、零基礎快速入門的學習路徑。

1.學習 Python 包並實現基本的爬蟲過程

2.了解非結構化數據的存儲

3.學習scrapy,搭建工程化爬蟲

4.學習資料庫知識,應對大規模數據存儲與提取

5.掌握各種技巧,應對特殊網站的反爬措施

6.分布式爬蟲,實現大規模並發採集,提升效率

學習 Python 包並實現基本的爬蟲過程

大部分爬蟲都是按「發送請求——獲得頁面——解析頁面——抽取並儲存內容」這樣的流程來進行,這其實也是模擬了我們使用瀏覽器獲取網頁信息的過程。

Python中爬蟲相關的包很多:urllib、requests、bs4、scrapy、pyspider 等,建議從requests+Xpath 開始,requests 負責連接網站,返回網頁,Xpath 用於解析網頁,便於抽取數據。

如果你用過 BeautifulSoup,會發現 Xpath 要省事不少,一層一層檢查元素代碼的工作,全都省略了。這樣下來基本套路都差不多,一般的靜態網站根本不在話下,豆瓣、糗事網路、騰訊新聞等基本上都可以上手了。

當然如果你需要爬取非同步載入的網站,可以學習瀏覽器抓包分析真實請求或者學習Selenium來實現自動化,這樣,知乎、時光網、貓途鷹這些動態的網站也可以迎刃而解。

了解非結構化數據的存儲

爬回來的數據可以直接用文檔形式存在本地,也可以存入資料庫中。

開始數據量不大的時候,你可以直接通過 Python 的語法或 pandas 的方法將數據存為csv這樣的文件。

當然你可能發現爬回來的數據並不是干凈的,可能會有缺失、錯誤等等,你還需要對數據進行清洗,可以學習 pandas 包的基本用法來做數據的預處理,得到更干凈的數據。

學習 scrapy,搭建工程化的爬蟲

掌握前面的技術一般量級的數據和代碼基本沒有問題了,但是在遇到非常復雜的情況,可能仍然會力不從心,這個時候,強大的 scrapy 框架就非常有用了。

scrapy 是一個功能非常強大的爬蟲框架,它不僅能便捷地構建request,還有強大的 selector 能夠方便地解析 response,然而它最讓人驚喜的還是它超高的性能,讓你可以將爬蟲工程化、模塊化。

學會 scrapy,你可以自己去搭建一些爬蟲框架,你就基本具備爬蟲工程師的思維了。

學習資料庫基礎,應對大規模數據存儲

爬回來的數據量小的時候,你可以用文檔的形式來存儲,一旦數據量大了,這就有點行不通了。所以掌握一種資料庫是必須的,學習目前比較主流的 MongoDB 就OK。

MongoDB 可以方便你去存儲一些非結構化的數據,比如各種評論的文本,圖片的鏈接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。

因為這里要用到的資料庫知識其實非常簡單,主要是數據如何入庫、如何進行提取,在需要的時候再學習就行。

掌握各種技巧,應對特殊網站的反爬措施

當然,爬蟲過程中也會經歷一些絕望啊,比如被網站封IP、比如各種奇怪的驗證碼、userAgent訪問限制、各種動態載入等等。

遇到這些反爬蟲的手段,當然還需要一些高級的技巧來應對,常規的比如訪問頻率控制、使用代理IP池、抓包、驗證碼的OCR處理等等。

往往網站在高效開發和反爬蟲之間會偏向前者,這也為爬蟲提供了空間,掌握這些應對反爬蟲的技巧,絕大部分的網站已經難不到你了.

分布式爬蟲,實現大規模並發採集

爬取基本數據已經不是問題了,你的瓶頸會集中到爬取海量數據的效率。這個時候,相信你會很自然地接觸到一個很厲害的名字:分布式爬蟲。

分布式這個東西,聽起來很恐怖,但其實就是利用多線程的原理讓多個爬蟲同時工作,需要你掌握 Scrapy + MongoDB + Redis 這三種工具。

Scrapy 前面我們說過了,用於做基本的頁面爬取,MongoDB 用於存儲爬取的數據,Redis 則用來存儲要爬取的網頁隊列,也就是任務隊列。

所以有些東西看起來很嚇人,但其實分解開來,也不過如此。當你能夠寫分布式的爬蟲的時候,那麼你可以去嘗試打造一些基本的爬蟲架構了,實現一些更加自動化的數據獲取。

你看,這一條學習路徑下來,你已然可以成為老司機了,非常的順暢。所以在一開始的時候,盡量不要系統地去啃一些東西,找一個實際的項目(開始可以從豆瓣、小豬這種簡單的入手),直接開始就好。

因為爬蟲這種技術,既不需要你系統地精通一門語言,也不需要多麼高深的資料庫技術,高效的姿勢就是從實際的項目中去學習這些零散的知識點,你能保證每次學到的都是最需要的那部分。

當然唯一麻煩的是,在具體的問題中,如何找到具體需要的那部分學習資源、如何篩選和甄別,是很多初學者面臨的一個大問題。

以上就是我的回答,希望對你有所幫助,望採納。

㈢ python網路爬蟲可以幹啥

Python爬蟲開發工程師,從網站某一個頁面(通常是首頁)開始,讀取網頁的內容,找到在網頁中的其它鏈接地址,然後通過這些鏈接地址尋找下一個網頁,這樣一直循環下去,直到把這個網站所有的網頁都抓取完為止。如果把整個互聯網當成一個網站,那麼網路蜘蛛就可以用這個原理把互聯網上所有的網頁都抓取下來。

網路爬蟲(又被稱為網頁蜘蛛,網路機器人,在FOAF社區中間,更經常的稱為網頁追逐者),是一種按照一定的規則,自動的抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻,自動索引,模擬程序或者蠕蟲。爬蟲就是自動遍歷一個網站的網頁,並把內容都下載下來

㈣ python的爬蟲是什麼意思

Python爬蟲即使用Python程序開發的網路爬蟲(網頁蜘蛛,網路機器人),是一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本。另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲。其實通俗的講就是通過程序去獲取 web 頁面上自己想要的數據,也就是自動抓取數據。網路爬蟲(英語:web crawler),也叫網路蜘蛛(spider),是一種用來自動瀏覽萬維網的網路機器人。其目的一般為編纂網路索引。
網路搜索引擎等站點通過爬蟲軟體更新自身的網站內容或其對其他網站的索引。網路爬蟲可以將自己所訪問的頁面保存下來,以便搜索引擎事後生成索引供用戶搜索。
爬蟲訪問網站的過程會消耗目標系統資源。不少網路系統並不默許爬蟲工作。因此在訪問大量頁面時,爬蟲需要考慮到規劃、負載,還需要講「禮貌」。 不願意被爬蟲訪問、被爬蟲主人知曉的公開站點可以使用robots.txt文件之類的方法避免訪問。這個文件可以要求機器人只對網站的一部分進行索引,或完全不作處理。
互聯網上的頁面極多,即使是最大的爬蟲系統也無法做出完整的索引。因此在公元2000年之前的萬維網出現初期,搜索引擎經常找不到多少相關結果。現在的搜索引擎在這方面已經進步很多,能夠即刻給出高質量結果。
爬蟲還可以驗證超鏈接和HTML代碼,用於網路抓取。
Python 爬蟲
Python 爬蟲架構
Python 爬蟲架構主要由五個部分組成,分別是調度器、URL 管理器、網頁下載器、網頁解析器、應用程序(爬取的有價值數據)。
調度器:相當於一台電腦的 CPU,主要負責調度 URL 管理器、下載器、解析器之間的協調工作。
URL 管理器:包括待爬取的 URL 地址和已爬取的 URL 地址,防止重復抓取 URL 和循環抓取 URL,實現 URL 管理器主要用三種方式,通過內存、資料庫、緩存資料庫來實現。
網頁下載器:通過傳入一個 URL 地址來下載網頁,將網頁轉換成一個字元串,網頁下載器有 urlpb2(Python 官方基礎模塊)包括需要登錄、代理、和 cookie,requests(第三方包)
網頁解析器:將一個網頁字元串進行解析,可以按照我們的要求來提取出我們有用的信息,也可以根據 DOM 樹的解析方式來解析。網頁解析器有正則表達式(直觀,將網頁轉成字元串通過模糊匹配的方式來提取有價值的信息,當文檔比較復雜的時候,該方法提取數據的時候就會非常的困難)、html.parser(Python 自帶的)、beautifulsoup(第三方插件,可以使用 Python 自帶的 html.parser 進行解析,也可以使用 lxml 進行解析,相對於其他幾種來說要強大一些)、lxml(第三方插件,可以解析 xml 和 HTML),html.parser 和 beautifulsoup 以及 lxml 都是以 DOM 樹的方式進行解析的。
應用程序:就是從網頁中提取的有用數據組成的一個應用。
爬蟲可以做什麼?
你可以用爬蟲爬圖片,爬取視頻等等你想要爬取的數據,只要你能通過瀏覽器訪問的數據都可以通過爬蟲獲取。
爬蟲的本質是什麼?
模擬瀏覽器打開網頁,獲取網頁中我們想要的那部分數據
瀏覽器打開網頁的過程:
當你在瀏覽器中輸入地址後,經過 DNS 伺服器找到伺服器主機,向伺服器發送一個請求,伺服器經過解析後發送給用戶瀏覽器結果,包括 html,js,css 等文件內容,瀏覽器解析出來最後呈現給用戶在瀏覽器上看到的結果
所以用戶看到的瀏覽器的結果就是由 HTML 代碼構成的,我們爬蟲就是為了獲取這些內容,通過分析和過濾 html 代碼,從中獲取我們想要資源。
相關推薦:《Python教程》以上就是小編分享的關於python的爬蟲是什麼意思的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

㈤ 如何用python 爬蟲抓取金融數據

獲取數據是數據分析中必不可少的一部分,而網路爬蟲是是獲取數據的一個重要渠道之一。鑒於此,我拾起了Python這把利器,開啟了網路爬蟲之路。

本篇使用的版本為python3.5,意在抓取證券之星上當天所有A股數據。程序主要分為三個部分:網頁源碼的獲取、所需內容的提取、所得結果的整理。

一、網頁源碼的獲取

很多人喜歡用python爬蟲的原因之一就是它容易上手。只需以下幾行代碼既可抓取大部分網頁的源碼。

為了減少干擾,我先用正則表達式從整個頁面源碼中匹配出以上的主體部分,然後從主體部分中匹配出每隻股票的信息。代碼如下。

pattern=re.compile('<tbody[sS]*</tbody>')
body=re.findall(pattern,str(content)) #匹配<tbody和</tbody>之間的所有代碼pattern=re.compile('>(.*?)<')
stock_page=re.findall(pattern,body[0]) #匹配>和<之間的所有信息

其中compile方法為編譯匹配模式,findall方法用此匹配模式去匹配出所需信息,並以列表的方式返回。正則表達式的語法還挺多的,下面我只羅列所用到符號的含義。

語法 說明

. 匹配任意除換行符「 」外的字元

* 匹配前一個字元0次或無限次

? 匹配前一個字元0次或一次

s 空白字元:[<空格> fv]

S 非空白字元:[^s]

[...] 字元集,對應的位置可以是字元集中任意字元

(...) 被括起來的表達式將作為分組,裡面一般為我們所需提取的內容

正則表達式的語法挺多的,也許有大牛隻要一句正則表達式就可提取我想提取的內容。在提取股票主體部分代碼時發現有人用xpath表達式提取顯得更簡潔一些,看來頁面解析也有很長的一段路要走。

三、所得結果的整理

通過非貪婪模式(.*?)匹配>和<之間的所有數據,會匹配出一些空白字元出來,所以我們採用如下代碼把空白字元移除。

stock_last=stock_total[:] #stock_total:匹配出的股票數據for data in stock_total: #stock_last:整理後的股票數據
if data=='':
stock_last.remove('')

最後,我們可以列印幾列數據看下效果,代碼如下

print('代碼',' ','簡稱',' ',' ','最新價',' ','漲跌幅',' ','漲跌額',' ','5分鍾漲幅')for i in range(0,len(stock_last),13): #網頁總共有13列數據
print(stock_last[i],' ',stock_last[i+1],' ',' ',stock_last[i+2],' ',' ',stock_last[i+3],' ',' ',stock_last[i+4],' ',' ',stock_last[i+5])

㈥ Python爬蟲是什麼

為自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁。

網路爬蟲為一個自動提取網頁的程序,它為搜索引擎從萬維網上下載網頁,是搜索引擎的重要組成。傳統爬蟲從一個或若干初始網頁的URL開始,獲得初始網頁上的URL,在抓取網頁的過程中,不斷從當前頁面上抽取新的URL放入隊列,直到滿足系統的一定停止條件。

將根據一定的搜索策略從隊列中選擇下一步要抓取的網頁URL,並重復上述過程,直到達到系統的某一條件時停止。另外,所有被爬蟲抓取的網頁將會被系統存貯,進行一定的分析、過濾,並建立索引,以便之後的查詢和檢索。

(6)python網路爬蟲與信息提取擴展閱讀:

網路爬蟲的相關要求規定:

1、由Python標准庫提供了系統管理、網路通信、文本處理、資料庫介面、圖形系統、XML處理等額外的功能。

2、按照網頁內容目錄層次深淺來爬行頁面,處於較淺目錄層次的頁面首先被爬行。 當同一層次中的頁面爬行完畢後,爬蟲再深入下一層繼續爬行。

3、文本處理,包含文本格式化、正則表達式匹配、文本差異計算與合並、Unicode支持,二進制數據處理等功能。

㈦ Python為什麼叫爬蟲

因為python的腳本特性和易於配置,對字元的處理也非常靈活,加上python有豐富的網路抓取模塊,所以叫爬蟲。

1、網路爬蟲是指一種按照一定的規則,自動地抓取萬維網信息的程序或者腳本,另外一些不常使用的名字還有螞蟻、自動索引、模擬程序或者蠕蟲,用python寫一個搜索引擎,而搜索引擎就是一個復雜的爬蟲,所以兩者經常聯系在一起。

2、Python主要有四大主要應用,分別是網路爬蟲、網站開發、人工智慧、自動化運維,它是一種全棧的開發語言,如果你能學好Python,前端,後端,測試,大數據分析,爬蟲等這些工作你都能勝任。

3、隨著網路的迅速發展,傳統的通用搜索引擎AltaVista,Yahoo!和Google等輔助人們檢索信息的工具成為用戶訪問萬維網的入口和指南,但是這些通用性搜索引擎也存在著一定的局限性,為了解決這些問題,定向抓取相關網頁資源的聚焦爬蟲應運而生。

㈧ Python爬蟲是什麼

爬蟲一般指網路資源的抓取,通過編程語言撰寫爬蟲工具,抓取自己想要的數據以及內容。而在眾多編程語言之中,Python有豐富的網路抓取模塊,因此成為撰寫爬蟲的首選語言,並引起了學習熱潮。
Python作為一門編程語言而純粹的自由軟體,以簡潔清晰的語法和強制使用空白符號進行語句縮進的特點受到程序員的喜愛。用不同編程語言完成一個任務,C語言一共要寫1000行代碼,Java要寫100行代碼,而Python只需要20行,用Python來完成編程任務代碼量更少,代碼簡潔簡短而且可讀性強。
Python非常適合開發網路爬蟲,因為對比其他靜態編程語言,Python抓取網頁文檔的介面更簡潔;對比其他腳本語言,Python的urllib2包提供了較為完整的訪問網頁文檔的API。
Python爬蟲的工作流程是什麼?
Python爬蟲通過URL管理器,判斷是否有待爬URL,如果有待爬URL,通過調度器進行傳遞給下載器,下載URL內容,通過調度器傳送給解釋器,解析URL內容,將有價值數據和新的URL列表通過調度器傳遞給應用程序,輸出價值信息的過程。
Python是一門非常適合開發網路爬蟲的語言,提供了urllib、re、json、pyquery等模塊,同時還有很多成型框架,比如說Scrapy框架、PySpider爬蟲系統等,代碼十分簡潔方便,是新手學習網路爬蟲的首選語言。

㈨ python爬蟲一般都爬什麼信息

python爬蟲一般都爬什麼信息?
一般說爬蟲的時候,大部分程序員潛意識里都會聯想為Python爬蟲,為什麼會這樣,我覺得有兩個原因:
1.Python生態極其豐富,諸如Request、Beautiful Soup、Scrapy、PySpider等第三方庫實在強大
2.Python語法簡潔易上手,分分鍾就能寫出一個爬蟲(有人吐槽Python慢,但是爬蟲的瓶頸和語言關系不大)
爬蟲是一個程序,這個程序的目的就是為了抓取萬維網信息資源,比如你日常使用的谷歌等搜索引擎,搜索結果就全都依賴爬蟲來定時獲取
看上述搜索結果,除了wiki相關介紹外,爬蟲有關的搜索結果全都帶上了Python,前人說Python爬蟲,現在看來果然誠不欺我~
爬蟲的目標對象也很豐富,不論是文字、圖片、視頻,任何結構化非結構化的數據爬蟲都可以爬取,爬蟲經過發展,也衍生出了各種爬蟲類型:
● 通用網路爬蟲:爬取對象從一些種子 URL 擴充到整個 Web,搜索引擎乾的就是這些事
● 垂直網路爬蟲:針對特定領域主題進行爬取,比如專門爬取小說目錄以及章節的垂直爬蟲
● 增量網路爬蟲:對已經抓取的網頁進行實時更新
● 深層網路爬蟲:爬取一些需要用戶提交關鍵詞才能獲得的 Web 頁面
不想說這些大方向的概念,讓我們以一個獲取網頁內容為例,從爬蟲技術本身出發,來說說網頁爬蟲,步驟如下:
模擬請求網頁資源
從HTML提取目標元素
數據持久化
相關推薦:《Python教程》以上就是小編分享的關於python爬蟲一般都爬什麼信息的詳細內容希望對大家有所幫助,更多有關python教程請關注環球青藤其它相關文章!

㈩ python爬蟲是幹嘛的

爬蟲技術是一種自動化程序。

爬蟲就是一種可以從網頁上抓取數據信息並保存的自動化程序,它的原理就是模擬瀏覽器發送網路請求,接受請求響應,然後按照一定的規則自動抓取互聯網數據。

搜索引擎通過這些爬蟲從一個網站爬到另一個網站,跟蹤網頁中的鏈接,訪問更多的網頁,這個過程稱為爬行,這些新的網址會被存入資料庫等待搜索。簡而言之,爬蟲就是通過不間斷地訪問互聯網,然後從中獲取你指定的信息並返回給你。而我們的互聯網上,隨時都有無數的爬蟲在爬取數據,並返回給使用者。

爬蟲技術的功能

1、獲取網頁

獲取網頁可以簡單理解為向網頁的伺服器發送網路請求,然後伺服器返回給我們網頁的源代碼,其中通信的底層原理較為復雜,而Python給我們封裝好了urllib庫和requests庫等,這些庫可以讓我們非常簡單的發送各種形式的請求。

2、提取信息

獲取到的網頁源碼內包含了很多信息,想要進提取到我們需要的信息,則需要對源碼還要做進一步篩選。可以選用python中的re庫即通過正則匹配的形式去提取信息,也可以採用BeautifulSoup庫(bs4)等解析源代碼,除了有自動編碼的優勢之外,bs4庫還可以結構化輸出源代碼信息,更易於理解與使用。

3、保存數據

提取到我們需要的有用信息後,需要在Python中把它們保存下來。可以使用通過內置函數open保存為文本數據,也可以用第三方庫保存為其它形式的數據,例如可以通過pandas庫保存為常見的xlsx數據,如果有圖片等非結構化數據還可以通過pymongo庫保存至非結構化資料庫中。

熱點內容
java返回this 發布:2025-10-20 08:28:16 瀏覽:585
製作腳本網站 發布:2025-10-20 08:17:34 瀏覽:881
python中的init方法 發布:2025-10-20 08:17:33 瀏覽:574
圖案密碼什麼意思 發布:2025-10-20 08:16:56 瀏覽:761
怎麼清理微信視頻緩存 發布:2025-10-20 08:12:37 瀏覽:676
c語言編譯器怎麼看執行過程 發布:2025-10-20 08:00:32 瀏覽:1004
郵箱如何填寫發信伺服器 發布:2025-10-20 07:45:27 瀏覽:249
shell腳本入門案例 發布:2025-10-20 07:44:45 瀏覽:108
怎麼上傳照片瀏覽上傳 發布:2025-10-20 07:44:03 瀏覽:798
python股票數據獲取 發布:2025-10-20 07:39:44 瀏覽:705