當前位置:首頁 » 編程語言 » c語言排序演算法總結

c語言排序演算法總結

發布時間: 2023-02-26 15:53:29

c語言排序

//總共給你整理了7種排序演算法:希爾排序,鏈式基數排序,歸並排序
//起泡排序,簡單選擇排序,樹形選擇排序,堆排序,先自己看看吧,
//看不懂可以再問身邊的人或者查資料,既然可以上網,我相信你所在的地方信息流通方式應該還行,所有的程序全部在VC++6.0下編譯通過
//希爾排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void ShellInsert(SqList &L,int dk)
{ // 對順序表L作一趟希爾插入排序。本演算法是和一趟直接插入排序相比,
// 作了以下修改:
// 1.前後記錄位置的增量是dk,而不是1;
// 2.r[0]只是暫存單元,不是哨兵。當j<=0時,插入位置已找到。演算法10.4
int i,j;
for(i=dk+1;i<=L.length;++i)
if LT(L.r[i].key,L.r[i-dk].key)
{ // 需將L.r[i]插入有序增量子表
L.r[0]=L.r[i]; // 暫存在L.r[0]
for(j=i-dk;j>0&<(L.r[0].key,L.r[j].key);j-=dk)
L.r[j+dk]=L.r[j]; // 記錄後移,查找插入位置
L.r[j+dk]=L.r[0]; // 插入
}
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("%d ",L.r[i].key);
printf("\n");
}

void print1(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

void ShellSort(SqList &L,int dlta[],int t)
{ // 按增量序列dlta[0..t-1]對順序表L作希爾排序。演算法10.5
int k;
for(k=0;k<t;++k)
{
ShellInsert(L,dlta[k]); // 一趟增量為dlta[k]的插入排序
printf("第%d趟排序結果: ",k+1);
print(L);
}
}

#define N 10
#define T 3
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8},{55,9},{4,10}};
SqList l;
int dt[T]={5,3,1}; // 增量序列數組
for(int i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前: ");
print(l);
ShellSort(l,dt,T);
printf("排序後: ");
print1(l);
}

/*****************************************************************/
//鏈式基數排序
typedef int InfoType; // 定義其它數據項的類型
typedef int KeyType; // 定義RedType類型的關鍵字為整型
struct RedType // 記錄類型(同c10-1.h)
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項
};
typedef char KeysType; // 定義關鍵字類型為字元型
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
#define MAX_NUM_OF_KEY 8 // 關鍵字項數的最大值
#define RADIX 10 // 關鍵字基數,此時是十進制整數的基數
#define MAX_SPACE 1000
struct SLCell // 靜態鏈表的結點類型
{
KeysType keys[MAX_NUM_OF_KEY]; // 關鍵字
InfoType otheritems; // 其它數據項
int next;
};

struct SLList // 靜態鏈表類型
{
SLCell r[MAX_SPACE]; // 靜態鏈表的可利用空間,r[0]為頭結點
int keynum; // 記錄的當前關鍵字個數
int recnum; // 靜態鏈表的當前長度
};

typedef int ArrType[RADIX];
void InitList(SLList &L,RedType D[],int n)
{ // 初始化靜態鏈表L(把數組D中的數據存於L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max為關鍵字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 將10進制整型轉化為字元型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的長度<max的位數,在c前補'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}

int ord(char c)
{ // 返回k的映射(個位整數)
return c-'0';
}

void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 演算法10.15
{ // 靜態鍵表L的r域中記錄已按(keys[0],…,keys[i-1])有序。本演算法按
// 第i個關鍵字keys[i]建立RADIX個子表,使同一子表中記錄的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分別指向各子表中第一個和最後一個記錄
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化為空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord將記錄中第i個關鍵字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 將p所指的結點插入第j個子表中
}
}

int succ(int i)
{ // 求後繼函數
return ++i;
}

void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本演算法按keys[i]自小至大地將f[0..RADIX-1]所指各子表依次鏈接成
// 一個鏈表,e[0..RADIX-1]為各子表的尾指針。演算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一個非空子表,succ為求後繼函數
r[0].next=f[j];
t=e[j]; // r[0].next指向第一個非空子表中第一個結點
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一個非空子表
if(f[j])
{ // 鏈接兩個非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最後一個非空子表中的最後一個結點
}

void printl(SLList L)
{ // 按鏈表輸出靜態鏈表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}

void RadixSort(SLList &L)
{ // L是採用靜態鏈表表示的順序表。對L作基數排序,使得L成為按關鍵字
// 自小到大的有序靜態鏈表,L.r[0]為頭結點。演算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 將L改造為靜態鏈表
for(i=0;i<L.keynum;++i)
{ // 按最低位優先依次對各關鍵字進行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集後:\n",i+1);
printl(L);
printf("\n");
}
}

void print(SLList L)
{ // 按數組序號輸出靜態鏈表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}

void Sort(SLList L,int adr[]) // 改此句(類型)
{ // 求得adr[1..L.length],adr[i]為靜態鏈表L的第i個最小記錄的序號
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}

void Rearrange(SLList &L,int adr[]) // 改此句(類型)
{ // adr給出靜態鏈表L的有序次序,即L.r[adr[i]]是第i小的記錄。
// 本演算法按adr重排L.r,使其有序。演算法10.18(L的類型有變)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(類型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暫存記錄L.r[i]
while(adr[j]!=i)
{ // 調整L.r[adr[j]]的記錄到位直到adr[j]=i為止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 記錄按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}

#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域還沒賦值):\n");
print(l);
RadixSort(l);
printf("排序後(靜態鏈表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序後(重排記錄):\n");
print(l);
}
/*******************************************/
//歸並排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void Merge(RedType SR[],RedType TR[],int i,int m,int n)
{ // 將有序的SR[i..m]和SR[m+1..n]歸並為有序的TR[i..n] 演算法10.12
int j,k,l;
for(j=m+1,k=i;i<=m&&j<=n;++k) // 將SR中記錄由小到大地並入TR
if LQ(SR[i].key,SR[j].key)
TR[k]=SR[i++];
else
TR[k]=SR[j++];
if(i<=m)
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l]; // 將剩餘的SR[i..m]復制到TR
if(j<=n)
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l]; // 將剩餘的SR[j..n]復制到TR
}

void MSort(RedType SR[],RedType TR1[],int s, int t)
{ // 將SR[s..t]歸並排序為TR1[s..t]。演算法10.13
int m;
RedType TR2[MAXSIZE+1];
if(s==t)
TR1[s]=SR[s];
else
{
m=(s+t)/2; // 將SR[s..t]平分為SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m); // 遞歸地將SR[s..m]歸並為有序的TR2[s..m]
MSort(SR,TR2,m+1,t); // 遞歸地將SR[m+1..t]歸並為有序的TR2[m+1..t]
Merge(TR2,TR1,s,m,t); // 將TR2[s..m]和TR2[m+1..t]歸並到TR1[s..t]
}
}

void MergeSort(SqList &L)
{ // 對順序表L作歸並排序。演算法10.14
MSort(L.r,L.r,1,L.length);
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 7
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
MergeSort(l);
printf("排序後:\n");
print(l);
}
/**********************************************/
//起泡排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status;
typedef int Boolean;
#define N 8
void bubble_sort(int a[],int n)
{ // 將a中整數序列重新排列成自小至大有序的整數序列(起泡排序)
int i,j,t;
Status change;
for(i=n-1,change=TRUE;i>1&&change;--i)
{
change=FALSE;
for(j=0;j<i;++j)
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
change=TRUE;
}
}
}

void print(int r[],int n)
{
int i;
for(i=0;i<n;i++)
printf("%d ",r[i]);
printf("\n");
}

void main()
{
int d[N]={49,38,65,97,76,13,27,49};
printf("排序前:\n");
print(d,N);
bubble_sort(d,N);
printf("排序後:\n");
print(d,N);
}
/****************************************************/
//簡單選擇排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
int SelectMinKey(SqList L,int i)
{ // 返回在L.r[i..L.length]中key最小的記錄的序號
KeyType min;
int j,k;
k=i; // 設第i個為最小
min=L.r[i].key;
for(j=i+1;j<=L.length;j++)
if(L.r[j].key<min) // 找到更小的
{
k=j;
min=L.r[j].key;
}
return k;
}

void SelectSort(SqList &L)
{ // 對順序表L作簡單選擇排序。演算法10.9
int i,j;
RedType t;
for(i=1;i<L.length;++i)
{ // 選擇第i小的記錄,並交換到位
j=SelectMinKey(L,i); // 在L.r[i..L.length]中選擇key最小的記錄
if(i!=j)
{ // 與第i個記錄交換
t=L.r[i];
L.r[i]=L.r[j];
L.r[j]=t;
}
}
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
SelectSort(l);
printf("排序後:\n");
print(l);
}
/************************************************/
//樹形選擇排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函數結果狀態代碼
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函數的類型,其值是函數結果狀態代碼,如OK等
typedef int Boolean; // Boolean是布爾類型,其值是TRUE或FALSE
typedef int InfoType; // 定義其它數據項的類型
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};
void TreeSort(SqList &L)
{ // 樹形選擇排序
int i,j,j1,k,k1,l,n=L.length;
RedType *t;
l=(int)ceil(log(n)/log(2))+1; // 完全二叉樹的層數
k=(int)pow(2,l)-1; // l層完全二叉樹的結點總數
k1=(int)pow(2,l-1)-1; // l-1層完全二叉樹的結點總數
t=(RedType*)malloc(k*sizeof(RedType)); // 二叉樹採用順序存儲結構
for(i=1;i<=n;i++) // 將L.r賦給葉子結點
t[k1+i-1]=L.r[i];
for(i=k1+n;i<k;i++) // 給多餘的葉子的關鍵字賦無窮大
t[i].key=INT_MAX;
j1=k1;
j=k;
while(j1)
{ // 給非葉子結點賦值
for(i=j1;i<j;i+=2)
t[i].key<t[i+1].key?(t[(i+1)/2-1]=t[i]):(t[(i+1)/2-1]=t[i+1]);
j=j1;
j1=(j1-1)/2;
}
for(i=0;i<n;i++)
{
L.r[i+1]=t[0]; // 將當前最小值賦給L.r[i]
j1=0;
for(j=1;j<l;j++) // 沿樹根找結點t[0]在葉子中的序號j1
t[2*j1+1].key==t[j1].key?(j1=2*j1+1):(j1=2*j1+2);
t[j1].key=INT_MAX;
while(j1)
{
j1=(j1+1)/2-1; // 序號為j1的結點的雙親結點序號
t[2*j1+1].key<=t[2*j1+2].key?(t[j1]=t[2*j1+1]):(t[j1]=t[2*j1+2]);
}
}
free(t);
}

void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
TreeSort(l);
printf("排序後:\n");
print(l);
}
/****************************/
//堆排序
#include<stdio.h>
typedef int InfoType; // 定義其它數據項的類型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一個用作示例的小順序表的最大長度
typedef int KeyType; // 定義關鍵字類型為整型
struct RedType // 記錄類型
{
KeyType key; // 關鍵字項
InfoType otherinfo; // 其它數據項,具體類型在主程中定義
};

struct SqList // 順序表類型
{
RedType r[MAXSIZE+1]; // r[0]閑置或用作哨兵單元
int length; // 順序表長度
};

typedef SqList HeapType; // 堆採用順序表存儲表示
void HeapAdjust(HeapType &H,int s,int m) // 演算法10.10
{ // 已知H.r[s..m]中記錄的關鍵字除H.r[s].key之外均滿足堆的定義,本函數
// 調整H.r[s]的關鍵字,使H.r[s..m]成為一個大頂堆(對其中記錄的關鍵字而言)
RedType rc;
int j;
rc=H.r[s];
for(j=2*s;j<=m;j*=2)
{ // 沿key較大的孩子結點向下篩選
if(j<m&<(H.r[j].key,H.r[j+1].key))
++j; // j為key較大的記錄的下標
if(!LT(rc.key,H.r[j].key))
break; // rc應插入在位置s上
H.r[s]=H.r[j];
s=j;
}
H.r[s]=rc; // 插入
}

void HeapSort(HeapType &H)
{ // 對順序表H進行堆排序。演算法10.11
RedType t;
int i;
for(i=H.length/2;i>0;--i) // 把H.r[1..H.length]建成大頂堆
HeapAdjust(H,i,H.length);
for(i=H.length;i>1;--i)
{ // 將堆頂記錄和當前未經排序子序列H.r[1..i]中最後一個記錄相互交換
t=H.r[1];
H.r[1]=H.r[i];
H.r[i]=t;
HeapAdjust(H,1,i-1); // 將H.r[1..i-1]重新調整為大頂堆
}
}

void print(HeapType H)
{
int i;
for(i=1;i<=H.length;i++)
printf("(%d,%d)",H.r[i].key,H.r[i].otherinfo);
printf("\n");
}

#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
HeapType h;
int i;
for(i=0;i<N;i++)
h.r[i+1]=d[i];
h.length=N;
printf("排序前:\n");
print(h);
HeapSort(h);
printf("排序後:\n");
print(h);
}

❷ C語言中的選擇排序法是什麼

選擇排序(Selection sort)是一種簡單直觀的排序演算法。工作原理是每一次從待排序的數據元素中選出最小(或最大)的一個元素,存放在序列的起始位置,直到全部待排序的數據元素排完。

以下是一個實現選擇排序的例子:

#defineSWAP(x,y,t)((t)=(x),(x)=(y),(y)=(t))
//將list中的n個數據,通過選擇排序演算法排序。
voidselete_sort(intlist[],intn)
{
inti,j,min,temp;
for(i=0;i<n-1;i++){
min=i;
for(j=i+1;j<n;j++)//找出最小元素的下標。
if(list[j]<list[min])
min=j;
SWAP(list[i],list[min],temp);//交換最小元素到當前起始位置。
}
}

❸ C語言選擇排序法

這是選擇排序。先用a[0]與a[1]比較,當a[0]<a[1]時並不交換,而用k記下來現在a[0]最小……這樣一趟比較完後a[k]就是整個數組中最小的元素,把它與a[0]交換;第二趟,從a[1]開始重復前面的操作,那麼最後a[1]就是剩下的n-1個元素中最小的……看a[0]、a[1]已經由小到大排好了,當做完n-1趟時不就把整個數組都排好了嗎?注意:t=array[k];array[k]=array[i];array[i]=t;不是for(j=i+1;j<n;j++)的循環體,要等它循環完了後才執行一次。

❹ C語言冒泡排序法是什麼

冒泡排序法,是C語言常用的排序演算法之一,意思是對一組數字進行從大到小或者從小到大排序的一種演算法。

具體方法是:

相鄰數值兩兩交換。從第一個數值開始,如果相鄰兩個數的排列順序與我們的期望不同,則將兩個數的位置進行交換(對調);如果其與我們的期望一致,則不用交換。重復這樣的過程,一直到最後沒有數值需要交換,則排序完成。

C語言常見的排序演算法:

1、冒泡排序

基本思想:比較相鄰的兩個數,如果前者比後者大,則進行交換。每一輪排序結束,選出一個未排序中最大的數放到數組後面。

2、快速排序

基本思想:選取一個基準元素,通常為數組最後一個元素(或者第一個元素)。從前向後遍歷數組,當遇到小於基準元素的元素時,把它和左邊第一個大於基準元素的元素進行交換。在利用分治策略從已經分好的兩組中分別進行以上步驟,直到排序完成。

3、直接插入排序

基本思想:和交換排序不同的是它不用進行交換操作,而是用一個臨時變數存儲當前值。當前面的元素比後面大時,先把後面的元素存入臨時變數,前面元素的值放到後面元素位置,再到最後把其值插入到合適的數組位置。

4、直接選擇排序

基本思想:依次選出數組最小的數放到數組的前面。首先從數組的第二個元素開始往後遍歷,找出最小的數放到第一個位置。再從剩下數組中找出最小的數放到第二個位置。以此類推,直到數組有序。

以上內容參考 網路-排序演算法、網路-c語言冒泡排序


❺ C語言選擇法排序

#include<stdio.h>

#defineM 5

void main()

{

int b[M],i,j,t,k;

for(i=0;i<M;i++)

scanf("%d",&b[i]);

for(i=0;i<M-1;i++)

{

for(k=i,j=i+1;j<M;j++)

if(b[k]<b[j])

k=j;

if(i!=k)

{

t=b[i];

b[i]=b[k];

b[k]=t;

}

}

for(i=0;i<M;i++)

printf("%d ",b[i]);

}

錯在大括弧位置加錯了。

代碼:

#include<stdio.h>

void SelectionSort(int *num,int n)

{

int i = 0;

int min = 0;

int j = 0;

int tmp = 0;

for(i = 0;i < n-1;i++)

{

min = i;//每次講min置成無序組起始位置元素下標

for(j = i;j < n;j++)//遍歷無序組,找到最小元素。

{

if(num[min]>num[j])

{

min = j;

}

}

if(min != i)//如果最小元素不是無序組起始位置元素,則與起始元素交換位置

{

tmp = num[min];

num[min] = num[i];

num[i] = tmp;

}

}

}

(此處空一行)

int main()

{

int num[6] = {5,4,3,2,9,1};

int i = 0;

SelectionSort(num,6);//這里需要將數列元素個數傳入。有心者可用sizeof在函數內求得元素個數。

for(i = 0;i < 6;i++)

{

printf("%d ",num[i]);

}

return 0;

}

❻ c語言三種排序

常用的c語言排序演算法主要有三種即冒泡法排序、選擇法排序、插入法排序

一、冒泡排序冒泡排序:

是從第一個數開始,依次往後比較,在滿足判斷條件下進行交換。代碼實現(以降序排序為例)

#include<stdio.h>

int main()

{

int array[10] = { 6,9,7,8,5,3,4,0,1,2 };

int temp;

for (int i = 0; i < 10; i++)

{//循環次數

for (int j = 0; j <10 - i-1; j++)

{

if (array[j] < array[j+1])

{//前面一個數比後面的數大時發生交換 temp = array[j];

array[j] = array[j+1];

array[j + 1] = temp;

}

}

} //列印數組 for (int i = 0; i < 10; i++) printf("%2d", array[i]); return 0;}}

二、選擇排序以升序排序為例:

就是在指定下標的數組元素往後(指定下標的元素往往是從第一個元素開始,然後依次往後),找出除指定下標元素外的值與指定元素進行對比,滿足條件就進行交換。與冒泡排序的區別可以理解為冒泡排序是相鄰的兩個值對比,而選擇排序是遍歷數組,找出數組元素與指定的數組元素進行對比。(以升序為例)

#include<stdio.h>

int main()

{

int array[10] = { 6,9,7,8,5,3,4,0,1,2 };

int temp, index;

for (int i = 0; i < 9; i++) {

index = i;

for (int j = i; j < 10; j++)

{

if (array[j] < array[index])

index = j;

}

if(i != index)

{

temp = array[i];

array[i] = array[index];

array[index] = temp;

}

for(int i=0;i<10:i++)

printf("%2d"array[i])

return 0;

}

三、快速排序

是通過一趟排序將要排序的數據分割成獨立的兩部分,其中一部分的所有數據都比另外一部分的所有數據都要小,然後再按此方法對這兩部分數據分別進行快速排序,整個排序過程可以遞歸進行,以此達到整個數據變成有序序列。

void QuickSort(int* arr, int size)

{

int temp, i, j;

for(i = 1; i <size; i++)

for(j=i; j>0; j--)

{

if(arr[j] <arr[j-1])

{

temp = arr[j];

arr[j]=arr[j-1];

arr[j-1]=temp;

}

}

}

❼ c語言插入法排序的演算法步驟

演算法描述
一般來說,插入排序都採用in-place在數組上實現。具體演算法描述如下:
從第一個元素開始,該元素可以認為已經被排序
取出下一個元素,在已經排序的元素序列中從後向前掃描
如果該元素(已排序)大於新元素,將該元素移到下一位置
重復步驟3,直到找到已排序的元素小於或者等於新元素的位置
將新元素插入到該位置後
重復步驟2~5
如果比較操作的代價比交換操作大的話,可以採用二分查找法來減少比較操作的數目。該演算法可以認為是插入排序的一個變種,稱為二分查找排序。
范常式式碼
void insertion_sort(int array[], int first, int last)
{
int i,j;
int temp;
for (i = first+1; i<=last;i++)
{
temp = array[i];
j=i-1;

while((j>=first) && (array[j] > temp))
{
array[j+1] = array[j];
j--;
}
array[j+1] = temp;
}
}

❽ c語言的兩種排序

1、選擇排序法

要求輸入10個整數,從大到小排序輸出

輸入:2 0 3 -4 8 9 5 1 7 6

輸出:9 8 7 6 5 3 2 1 0 -4

代碼:

#include&lt;stdio.h&gt;

int main(int argc,const char*argv[]){

int num[10],i,j,k,l,temp;

//用一個數組保存輸入的數據

for(i=0;i&lt;=9;i++)

{

scanf("%d",&num&lt;i&gt;);

}

//用兩個for嵌套循環來進行數據大小比較進行排序

for(j=0;j&lt;9;j++)

{

for(k=j+1;k&lt;=9;k++)

{

if(num[j]&lt;num[k])//num[j]&lt;num[k]

{

temp=num[j];

num[j]=num[k];

num[k]=temp;

}

}

}

//用一個for循環來輸出數組中排序好的數據

for(l=0;l&lt;=9;l++)

{

printf("%d",num[l]);

}

return 0;

}

2、冒泡排序法

要求輸入10個整數,從大到小排序輸出

輸入:2 0 3-4 8 9 5 1 7 6

輸出:9 8 7 6 5 3 2 1 0-4

代碼:

#include&lt;stdio.h&gt;

int main(int argc,const char*argv[]){

//用一個數組來存數據

int num[10],i,j,k,l,temp;

//用for來把數據一個一個讀取進來

for(i=0;i&lt;=9;i++)

{

scanf("%d",&num&lt;i&gt;);

}

//用兩次層for循環來比較數據,進行冒泡

for(j=0;j&lt;9;j++)

{

for(k=0;k&lt;9-j;k++)

{

if(num[k]&lt;num[k+1])//num[k]&lt;num[k+1]

{

temp=num[k];

num[k]=num[k+1];

num[k+1]=temp;

}

}

}

//用一個for循環來輸出數組中排序好的數據

for(l=0;l&lt;=9;l++)

{

printf("%d",num[l]);

}

return 0;

}

(8)c語言排序演算法總結擴展閱讀:

return 0代表程序正常退出。return是C++預定義的語句,它提供了終止函數執行的一種方式。當return語句提供了一個值時,這個值就成為函數的返回值。

return語句用來結束循環,或返回一個函數的值。

1、return 0,說明程序正常退出,返回到主程序繼續往下執行。

2、return 1,說明程序異常退出,返回主調函數來處理,繼續往下執行。return 0或return 1對程序執行的順序沒有影響,只是大家習慣於使用return(0)退出子程序而已。

❾ c語言中排序方法

1、冒泡排序(最常用)
冒泡排序是最簡單的排序方法:原理是:從左到右,相鄰元素進行比較。每次比較一輪,就會找到序列中最大的一個或最小的一個。這個數就會從序列的最右邊冒出來。(注意每一輪都是從a[0]開始比較的)

以從小到大排序為例,第一輪比較後,所有數中最大的那個數就會浮到最右邊;第二輪比較後,所有數中第二大的那個數就會浮到倒數第二個位置……就這樣一輪一輪地比較,最後實現從小到大排序。

2、雞尾酒排序
雞尾酒排序又稱雙向冒泡排序、雞尾酒攪拌排序、攪拌排序、漣漪排序、來回排序或快樂小時排序, 是冒泡排序的一種變形。該演算法與冒泡排序的不同處在於排序時是以雙向在序列中進行排序。
原理:數組中的數字本是無規律的排放,先找到最小的數字,把他放到第一位,然後找到最大的數字放到最後一位。然後再找到第二小的數字放到第二位,再找到第二大的數字放到倒數第二位。以此類推,直到完成排序。

3、選擇排序
思路是設有10個元素a[1]-a[10],將a[1]與a[2]-a[10]比較,若a[1]比a[2]-a[10]都小,則不進行交換。若a[2]-a[10]中有一個以上比a[1]小,則將其中最大的一個與a[1]交換,此時a[1]就存放了10個數中最小的一個。同理,第二輪拿a[2]與a[3]-a[10]比較,a[2]存放a[2]-a[10]中最小的數,以此類推。

4、插入排序
插入排序是在一個已經有序的小序列的基礎上,一次插入一個元素*
一般來說,插入排序都採用in-place在數組上實現。
具體演算法描述如下:
⒈ 從第一個元素開始,該元素可以認為已經被排序
⒉ 取出下一個元素,在已經排序的元素序列中從後向前掃描
⒊ 如果該元素(已排序)大於新元素,將該元素移到下一位置
⒋ 重復步驟3,直到找到已排序的元素小於或者等於新元素的位置
⒌ 將新元素插入到下一位置中
⒍ 重復步驟2~5

熱點內容
車機安卓未知來源在設置哪裡 發布:2024-05-16 22:31:48 瀏覽:794
紅包邀請驗證碼在哪裡填安卓手機 發布:2024-05-16 22:30:01 瀏覽:642
上傳日上限 發布:2024-05-16 22:26:08 瀏覽:859
c語言基本概念 發布:2024-05-16 21:44:16 瀏覽:190
sqlserver跨庫查詢 發布:2024-05-16 21:36:56 瀏覽:164
sql多表連接語句 發布:2024-05-16 21:21:53 瀏覽:301
sqlscope 發布:2024-05-16 21:17:37 瀏覽:966
存儲器通常有 發布:2024-05-16 21:17:35 瀏覽:379
雲資料庫概念 發布:2024-05-16 21:17:32 瀏覽:819
鋪地板編程 發布:2024-05-16 21:07:36 瀏覽:459