python測試用例
單元測試(Unit Testing)
為程序編寫測試——如果做的到位——有助於減少bug的出現,並可以提高我們對程序按預期目標運行的信心。通常,測試並不能保證正確性,因為對大多數程序而言, 可能的輸入范圍以及可能的計算范圍是如此之大,只有其中最小的一部分能被實際地進 行測試。盡管如此,通過仔細地選擇測試的方法和目標,可以提高代碼的質量。
大量不同類型的測試都可以進行,比如可用性測試、功能測試以及整合測試等。這里, 我們只講單元測試一對單獨的函數、類與方法進行測試,確保其符合預期的行為。
TDD的一個關鍵點是,當我們想添加一個功能時——比如為類添加一個方法—— 我們首次為其編寫一個測試用例。當然,測試將失敗,因為我們還沒有實際編寫該方法。現在,我們編寫該方法,一旦方法通過了測試,就可以返回所有測試,確保我們新添加的代碼沒有任何預期外的副作用。一旦所有測試運行完畢(包括我們為新功能編寫的測試),就可以對我們的代碼進行檢查,並有理有據地相信程序行為符合我們的期望——當然,前提是我們的測試是適當的。
比如,我們編寫了一個函數,該函數在特定的索引位置插入一個字元串,可以像下面這樣開始我們的TDD:
def insert_at(string, position, insert):
"""Returns a of string with insert inserted at the position
>>> string = "ABCDE"
>>> result =[]
>>> for i in range(-2, len(string) + 2):
... result.append(insert_at(string, i,「-」))
>>> result[:5]
['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']
>>> result[5:]
['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']
"""
return string
對不返回任何參數的函數或方法(通常返回None),我們通常賦予其由pass構成的一個suite,對那些返回值被試用的,我們或者返回一個常數(比如0),或者某個不變的參數——這也是我們這里所做的。(在更復雜的情況下,返回fake對象可能更有用一一對這樣的類,提供mock對象的第三方模塊是可用的。)
運行doctest時會失敗,並列出每個預期內的字元串('ABCD-EF'、'ABCDE-F' 等),及其實際獲取的字元串(所有的都是'ABCD-EF')。一旦確定doctest是充分的和正確的,就可以編寫該函數的主體部分,在本例中只是簡單的return string[:position] + insert+string[position:]。(如果我們編寫的是 return string[:position] + insert,之後復制 string [:position]並將其粘貼在末尾以便減少一些輸入操作,那麼doctest會立即提示錯誤。)
Python的標准庫提供了兩個單元測試模塊,一個是doctest,這里和前面都簡單地提到過,另一個是unittest。此外,還有一些可用於Python的第三方測試工具。其中最著名的兩個是nose (code.google.com/p/python-nose)與py.test (codespeak.net/py/dist/test/test.html), nose 致力於提供比標準的unittest 模塊更廣泛的功能,同時保持與該模塊的兼容性,py.test則採用了與unittest有些不同的方法,試圖盡可能消除樣板測試代碼。這兩個第三方模塊都支持測試發現,因此沒必要寫一個總體的測試程序——因為模塊將自己搜索測試程序。這使得測試整個代碼樹或某一部分 (比如那些已經起作用的模塊)變得很容易。那些對測試嚴重關切的人,在決定使用哪個測試工具之前,對這兩個(以及任何其他有吸引力的)第三方模塊進行研究都是值 得的。
創建doctest是直截了當的:我們在模塊中編寫測試、函數、類與方法的docstrings。 對於模塊,我們簡單地在末尾添加了 3行:
if __name__ =="__main__":
import doctest
doctest.testmod()
在程序內部使用doctest也是可能的。比如,blocks.py程序(其模塊在後面)有自己函數的doctest,但以如下代碼結尾:
if __name__== "__main__":
main()
這里簡單地調用了程序的main()函數,並且沒有執行程序的doctest。要實驗程序的 doctest,有兩種方法。一種是導入doctest模塊,之後運行程序---比如,在控制台中輸 入 python3 -m doctest blocks.py (在 Wndows 平台上,使用類似於 C:Python3 lpython.exe 這樣的形式替代python3)。如果所有測試運行良好,就沒有輸出,因此,我們可能寧願執行python3-m doctest blocks.py-v,因為這會列出每個執行的doctest,並在最後給出結果摘要。
另一種執行doctest的方法是使用unittest模塊創建單獨的測試程序。在概念上, unittest模塊是根據Java的JUnit單元測試庫進行建模的,並用於創建包含測試用例的測試套件。unittest模塊可以基於doctests創建測試用例,而不需要知道程序或模塊包含的任何事物——只要知道其包含doctest即可。因此,為給blocks.py程序製作一個測試套件,我們可以創建如下的簡單程序(將其稱為test_blocks.py):
import doctest
import unittest
import blocks
suite = unittest.TestSuite()
suite.addTest(doctest.DocTestSuite(blocks))
runner = unittest.TextTestRunner()
print(runner.run(suite))
注意,如果釆用這種方法,程序的名稱上會有一個隱含的約束:程序名必須是有效的模塊名。因此,名為convert-incidents.py的程序的測試不能寫成這樣。因為import convert-incidents不是有效的,在Python標識符中,連接符是無效的(避開這一約束是可能的,但最簡單的解決方案是使用總是有效模塊名的程序文件名,比如,使用下劃線替換連接符)。這里展示的結構(創建一個測試套件,添加一個或多個測試用例或測試套件,運行總體的測試套件,輸出結果)是典型的機遇unittest的測試。運行時,這一特定實例產生如下結果:
...
.............................................................................................................
Ran 3 tests in 0.244s
OK
每次執行一個測試用例時,都會輸出一個句點(因此上面的輸出最前面有3個句點),之後是一行連接符,再之後是測試摘要(如果有任何一個測試失敗,就會有更多的輸出信息)。
如果我們嘗試將測試分離開(典型情況下是要測試的每個程序和模塊都有一個測試用例),就不要再使用doctests,而是直接使用unittest模塊的功能——尤其是我們習慣於使用JUnit方法進行測試時ounittest模塊會將測試分離於代碼——對大型項目(測試編寫人員與開發人員可能不一致)而言,這種方法特別有用。此外,unittest單元測試編寫為獨立的Python模塊,因此,不會像在docstring內部編寫測試用例時受到兼容性和明智性的限制。
unittest模塊定義了 4個關鍵概念。測試夾具是一個用於描述創建測試(以及用完之後將其清理)所必需的代碼的術語,典型實例是創建測試所用的一個輸入文件,最後刪除輸入文件與結果輸出文件。測試套件是一組測試用例的組合。測試用例是測試的基本單元—我們很快就會看到實例。測試運行者是執行一個或多個測試套件的對象。
典型情況下,測試套件是通過創建unittest.TestCase的子類實現的,其中每個名稱 以「test」開頭的方法都是一個測試用例。如果我們需要完成任何創建操作,就可以在一個名為setUp()的方法中實現;類似地,對任何清理操作,也可以實現一個名為 tearDown()的方法。在測試內部,有大量可供我們使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(對於測試浮點數很有用)、assertRaises() 以及更多,還包括很多對應的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。
unittest模塊進行了很好的歸檔,並且提供了大量功能,但在這里我們只是通過一 個非常簡單的測試套件來感受一下該模塊的使用。這里將要使用的實例,該練習要求創建一個Atomic模塊,該模塊可以用作一 個上下文管理器,以確保或者所有改變都應用於某個列表、集合或字典,或者所有改變都不應用。作為解決方案提供的Atomic.py模塊使用30行代碼來實現Atomic類, 並提供了 100行左右的模塊doctest。這里,我們將創建test_Atomic.py模塊,並使用 unittest測試替換doctest,以便可以刪除doctest。
在編寫測試模塊之前,我們需要思考都需要哪些測試。我們需要測試3種不同的數據類型:列表、集合與字典。對於列表,需要測試的是插入項、刪除項或修改項的值。對於集合,我們必須測試向其中添加或刪除一個項。對於字典,我們必須測試的是插入一個項、修改一個項的值、刪除一個項。此外,還必須要測試的是在失敗的情況下,不會有任何改變實際生效。
結構上看,測試不同數據類型實質上是一樣的,因此,我們將只為測試列表編寫測試用例,而將其他的留作練習。test_Atomic.py模塊必須導入unittest模塊與要進行測試的Atomic模塊。
創建unittest文件時,我們通常創建的是模塊而非程序。在每個模塊內部,我們定義一個或多個unittest.TestCase子類。比如,test_Atomic.py模塊中僅一個單獨的 unittest-TestCase子類,也就是TestAtomic (稍後將對其進行講解),並以如下兩行結束:
if name == "__main__":
unittest.main()
這兩行使得該模塊可以單獨運行。當然,該模塊也可以被導入並從其他測試程序中運行——如果這只是多個測試套件中的一個,這一點是有意義的。
如果想要從其他測試程序中運行test_Atomic.py模塊,那麼可以編寫一個與此類似的程序。我們習慣於使用unittest模塊執行doctests,比如:
import unittest
import test_Atomic
suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)
runner = unittest.TextTestRunner()
pnnt(runner.run(suite))
這里,我們已經創建了一個單獨的套件,這是通過讓unittest模塊讀取test_Atomic 模塊實現的,並且使用其每一個test*()方法(本實例中是test_list_success()、test_list_fail(),稍後很快就會看到)作為測試用例。
我們現在將查看TestAtomic類的實現。對通常的子類(不包括unittest.TestCase 子類),不怎麼常見的是,沒有必要實現初始化程序。在這一案例中,我們將需要建立 一個方法,但不需要清理方法,並且我們將實現兩個測試用例。
def setUp(self):
self.original_list = list(range(10))
我們已經使用了 unittest.TestCase.setUp()方法來創建單獨的測試數據片段。
def test_list_succeed(self):
items = self.original_list[:]
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4]= -782
atomic.insert(0, -9)
self.assertEqual(items,
[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])
def test_list_fail(self):
items = self.original_list[:]
with self.assertRaises(AttributeError):
with Atomic.Atomic(items) as atomic:
atomic.append(1999)
atomic.insert(2, -915)
del atomic[5]
atomic[4] = -782
atomic.poop() # Typo
self.assertListEqual(items, self.original_list)
這里,我們直接在測試方法中編寫了測試代碼,而不需要一個內部函數,也不再使用unittest.TestCase.assertRaised()作為上下文管理器(期望代碼產生AttributeError)。 最後我們也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。
正如我們已經看到的,Python的測試模塊易於使用,並且極為有用,在我們使用 TDD的情況下更是如此。它們還有比這里展示的要多得多的大量功能與特徵——比如,跳過測試的能力,這有助於理解平台差別——並且這些都有很好的文檔支持。缺失的一個功能——但nose與py.test提供了——是測試發現,盡管這一特徵被期望在後續的Python版本(或許與Python 3.2—起)中出現。
性能剖析(Profiling)
如果程序運行很慢,或者消耗了比預期內要多得多的內存,那麼問題通常是選擇的演算法或數據結構不合適,或者是以低效的方式進行實現。不管問題的原因是什麼, 最好的方法都是准確地找到問題發生的地方,而不只是檢査代碼並試圖對其進行優化。 隨機優化會導致引入bug,或者對程序中本來對程序整體性能並沒有實際影響的部分進行提速,而這並非解釋器耗費大部分時間的地方。
在深入討論profiling之前,注意一些易於學習和使用的Python程序設計習慣是有意義的,並且對提高程序性能不無裨益。這些技術都不是特定於某個Python版本的, 而是合理的Python程序設計風格。第一,在需要只讀序列時,最好使用元組而非列表; 第二,使用生成器,而不是創建大的元組和列表並在其上進行迭代處理;第三,盡量使用Python內置的數據結構 dicts、lists、tuples 而不實現自己的自定義結構,因為內置的數據結構都是經過了高度優化的;第四,從小字元串中產生大字元串時, 不要對小字元串進行連接,而是在列表中累積,最後將字元串列表結合成為一個單獨的字元串;第五,也是最後一點,如果某個對象(包括函數或方法)需要多次使用屬性進行訪問(比如訪問模塊中的某個函數),或從某個數據結構中進行訪問,那麼較好的做法是創建並使用一個局部變數來訪問該對象,以便提供更快的訪問速度。
Python標准庫提供了兩個特別有用的模塊,可以輔助調査代碼的性能問題。一個是timeit模塊——該模塊可用於對一小段Python代碼進行計時,並可用於諸如對兩個或多個特定函數或方法的性能進行比較等場合。另一個是cProfile模塊,可用於profile 程序的性能——該模塊對調用計數與次數進行了詳細分解,以便發現性能瓶頸所在。
為了解timeit模塊,我們將查看一些小實例。假定有3個函數function_a()、 function_b()、function_c(), 3個函數執行同樣的計算,但分別使用不同的演算法。如果將這些函數放於同一個模塊中(或分別導入),就可以使用timeit模塊對其進行運行和比較。下面給出的是模塊最後使用的代碼:
if __name__ == "__main__":
repeats = 1000
for function in ("function_a", "function_b", "function_c"):
t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))
sec = t.timeit(repeats) / repeats
print("{function}() {sec:.6f} sec".format(**locals()))
賦予timeit.Timer()構造子的第一個參數是我們想要執行並計時的代碼,其形式是字元串。這里,該字元串是「function_a(X,Y)」;第二個參數是可選的,還是一個待執行的字元串,這一次是在待計時的代碼之前,以便提供一些建立工作。這里,我們從 __main__ (即this)模塊導入了待測試的函數,還有兩個作為輸入數據傳入的變數(X 與Y),這兩個變數在該模塊中是作為全局變數提供的。我們也可以很輕易地像從其他模塊中導入數據一樣來進行導入操作。
調用timeit.Timer對象的timeit()方法時,首先將執行構造子的第二個參數(如果有), 之後執行構造子的第一個參數並對其執行時間進行計時。timeit.Timer.timeit()方法的返回值是以秒計數的時間,類型是float。默認情況下,timeit()方法重復100萬次,並返回所 有這些執行的總秒數,但在這一特定案例中,只需要1000次反復就可以給出有用的結果, 因此對重復計數次數進行了顯式指定。在對每個函數進行計時後,使用重復次數對總數進行除法操作,就得到了平均執行時間,並在控制台中列印出函數名與執行時間。
function_a() 0.001618 sec
function_b() 0.012786 sec
function_c() 0.003248 sec
在這一實例中,function_a()顯然是最快的——至少對於這里使用的輸入數據而言。 在有些情況下一一比如輸入數據不同會對性能產生巨大影響——可能需要使用多組輸入數據對每個函數進行測試,以便覆蓋有代表性的測試用例,並對總執行時間或平均執行時間進行比較。
有時監控自己的代碼進行計時並不是很方便,因此timeit模塊提供了一種在命令行中對代碼執行時間進行計時的途徑。比如,要對MyMole.py模塊中的函數function_a()進行計時,可以在控制台中輸入如下命令:python3 -m timeit -n 1000 -s "from MyMole import function_a, X, Y" "function_a(X, Y)"(與通常所做的一樣,對 Windows 環境,我們必須使用類似於C:Python3lpython.exe這樣的內容來替換python3)。-m選項用於Python 解釋器,使其可以載入指定的模塊(這里是timeit),其他選項則由timeit模塊進行處理。 -n選項指定了循環計數次數,-s選項指定了要建立,最後一個參數是要執行和計時的代碼。命令完成後,會向控制台中列印運行結果,比如:
1000 loops, best of 3: 1.41 msec per loop
之後我們可以輕易地對其他兩個函數進行計時,以便對其進行整體的比較。
cProfile模塊(或者profile模塊,這里統稱為cProfile模塊)也可以用於比較函數 與方法的性能。與只是提供原始計時的timeit模塊不同的是,cProfile模塊精確地展示 了有什麼被調用以及每個調用耗費了多少時間。下面是用於比較與前面一樣的3個函數的代碼:
if __name__ == "__main__":
for function in ("function_a", "function_b", "function_c"):
cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))
我們必須將重復的次數放置在要傳遞給cProfile.run()函數的代碼內部,但不需要做任何創建,因為模塊函數會使用內省來尋找需要使用的函數與變數。這里沒有使用顯式的print()語句,因為默認情況下,cProfile.run()函數會在控制台中列印其輸出。下面給出的是所有函數的相關結果(有些無關行被省略,格式也進行了稍許調整,以便與頁面適應):
1003 function calls in 1.661 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.003 0.003 1.661 1.661 :1 ( )
1000 1.658 0.002 1.658 0.002 MyMole.py:21 (function_a)
1 0.000 0.000 1.661 1.661 {built-in method exec}
5132003 function calls in 22.700 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.487 0.487 22.700 22.700 : 1 ( )
1000 0.011 0.000 22.213 0.022 MyMole.py:28(function_b)
5128000 7.048 0.000 7.048 0.000 MyMole.py:29( )
1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}
1 0.000 0.000 22.700 22.700 {built-in method exec}
1000 0.001 0.000 0.001 0.000 {built-in method len}
1000 15.149 0.015 22.196 0.022 {built-in method sorted}
5129003 function calls in 12.987 CPU seconds
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.205 0.205 12.987 12.987 :l ( )
1000 6.472 0.006 12.782 0.013 MyMole.py:36(function_c)
5128000 6.311 0.000 6.311 0.000 MyMole.py:37( )
1 0.000 0.000 12.987 12.987 {built-in method exec}
ncalls ("調用的次數")列列出了對指定函數(在filename:lineno(function)中列出) 的調用次數。回想一下我們重復了 1000次調用,因此必須將這個次數記住。tottime (「總的時間」)列列出了某個函數中耗費的總時間,但是排除了函數調用的其他函數內部花費的時間。第一個percall列列出了對函數的每次調用的平均時間(tottime // ncalls)。 cumtime ("累積時間")列出了在函數中耗費的時間,並且包含了函數調用的其他函數內部花費的時間。第二個percall列列出了對函數的每次調用的平均時間,包括其調用的函數耗費的時間。
這種輸出信息要比timeit模塊的原始計時信息富有啟發意義的多。我們立即可以發現,function_b()與function_c()使用了被調用5000次以上的生成器,使得它們的速度至少要比function_a()慢10倍以上。並且,function_b()調用了更多通常意義上的函數,包括調用內置的sorted()函數,這使得其幾乎比function_c()還要慢兩倍。當然,timeit() 模塊提供了足夠的信息來查看計時上存在的這些差別,但cProfile模塊允許我們了解為什麼會存在這些差別。正如timeit模塊允許對代碼進行計時而又不需要對其監控一樣,cProfile模塊也可以做到這一點。然而,從命令行使用cProfile模塊時,我們不能精確地指定要執行的 是什麼——而只是執行給定的程序或模塊,並報告所有這些的計時結果。需要使用的 命令行是python3 -m cProfile programOrMole.py,產生的輸出信息與前面看到的一 樣,下面給出的是輸出信息樣例,格式上進行了一些調整,並忽略了大多數行:
10272458 function calls (10272457 primitive calls) in 37.718 CPU secs
ncalls tottime percall cumtime percall filename:lineno(function)
10.000 0.000 37.718 37.718 :1 ( )
10.719 0.719 37.717 37.717 :12( )
1000 1.569 0.002 1.569 0.002 :20(function_a)
1000 0.011 0.000 22.560 0.023 :27(function_b)
5128000 7.078 0.000 7.078 0.000 :28( )
1000 6.510 0.007 12.825 0.013 :35(function_c)
5128000 6.316 0.000 6.316 0.000 :36( )
在cProfile術語學中,原始調用指的就是非遞歸的函數調用。
以這種方式使用cProfile模塊對於識別值得進一步研究的區域是有用的。比如,這里 我們可以清晰地看到function_b()需要耗費更長的時間,但是我們怎樣獲取進一步的詳細資料?我們可以使用cProfile.run("function_b()")來替換對function_b()的調用。或者可以保存完全的profile數據並使用pstats模塊對其進行分析。要保存profile,就必須對命令行進行稍許修改:python3 -m cProfile -o profileDataFile programOrMole.py。 之後可以對 profile 數據進行分析,比如啟動IDLE,導入pstats模塊,賦予其已保存的profileDataFile,或者也可以在控制台中互動式地使用pstats。
下面給出的是一個非常短的控制台會話實例,為使其適合頁面展示,進行了適當調整,我們自己的輸入則以粗體展示:
$ python3 -m cProfile -o profile.dat MyMole.py
$ python3 -m pstats
Welcome to the profile statistics browser.
% read profile.dat
profile.dat% callers function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function was called by...
ncalls tottime cumtime
:27(function_b) <- 1000 0.011 22.251 :12( )
profile.dat% callees function_b
Random listing order was used
List reced from 44 to 1 e to restriction
Function called...
ncalls tottime cumtime
:27(function_b)->
1000 0.005 0.005 built-in method bisectJeft
1000 0.001 0.001 built-in method len
1000 1 5.297 22.234 built-in method sorted
profile.dat% quit
輸入help可以獲取命令列表,help後面跟隨命令名可以獲取該命令的更多信息。比如, help stats將列出可以賦予stats命令的參數。還有其他一些可用的工具,可以提供profile數據的圖形化展示形式,比如 RunSnakeRun (www.vrplumber.com/prograinming/runsnakerun), 該工具需要依賴於wxPython GUI庫。
使用timeit與cProfile模塊,我們可以識別出我們自己代碼中哪些區域會耗費超過預期的時間;使用cProfile模塊,還可以准確算岀時間消耗在哪裡。
以上內容部分摘自視頻課程 05後端編程Python-19調試、測試和性能調優(下) ,更多實操示例請參照視頻講解。跟著張員外講編程,學習更輕松,不花錢還能學習真本領。
2. python單元測試--mock
使用mock,可以將某個函數所依賴的對象或者變數mock掉,從而降低測試條件的負責度。如下所示:
上述是mock對象的簡單使用方法,通過實例化一個Mock對象從而模擬掉原始函數的返回值,高級一些的用法就是通過mock.patch裝飾器,裝飾在類或者函數上進行模擬測試,如下在test.py文件中有兩個類:
測試用例設計如下:
以上測試用例說明,通過patch裝飾器模擬了 test.ProctionClass1 這個類,在 test_01 中使用 mock_class 模擬 test.ProctionClass1 。首先通過 mock_class.return_value 獲取類實例(如果模擬的是函數,則不需要這一步),然後通過 obj1.pro1_method.return_value 設置方法的返回值,並進行測試。測試結果說明無論是通過 mock_class 還是 test.ProctionClass1 還是 obj1 執行方法,獲取到的結果都是設置的值,並且在另一個類中調用模擬類的方法,也能成功獲取到設置的 return_value 。
3. 測試新人如何使用Python代碼封裝自動化測試的用例
使用Python代碼封裝自動化測試的用例, 意味著將代碼封裝到一個整體中, 在python中面向對象的編程思維方式是最適合封裝了:
①把測試的數據和測試的過程封裝到類的內部成為一個整體, 便於測試數據和測試流程的管理維護;
②Python中面向對象封裝的特性有利於隱藏內部實現的復雜度, 對於調用者來說直接調用即可 ;
③Python面向對象中的類,是實現封裝最佳體現, 把數據和對數據的操作封裝在類的內部,, 對數據起到保護作用, 提高了代碼的安全性和健壯性;
④Python中面向對象的編程模式體現了模塊化的思想, 模塊可以重用, 模塊容易擴展, 簡化測試的流程, 提高測試的效率。
更高效的編寫實現自動化測試用例,Python中面向對象編程思維方式是必須掌握的,親戚在傳智播客學的軟體測試,現在月薪13K。
4. Python - pytest
目錄
pytest是Python的單元測試框架,同自帶的unittest框架類似,但pytest框架使用起來更簡潔,效率更高。
pytest特點
安裝
測試
在測試之前要做的准備
我的演示腳本處於這樣一個的目錄中:
踩坑:你創建的pytest腳本名稱中不允許含有 . ,比如 1.簡單上手.py ,這樣會報錯。當然,可以這么寫 1-簡單上手.py
demo1.py :
上例中,當我們在執行(就像Python解釋器執行普通的Python腳本一樣)測試用例的時候, pytest.main(["-s", "demo1.py"]) 中的傳參需要是一個元組或者列表(我的pytest是5.2.2版本),之前的版本可能需要這么調用 pytest.main("-s demo1.py") ,傳的參數是str的形式,至於你使用哪種,取決於報不報錯:
遇到上述報錯,就是參數需要一個列表或者元組的形式,而我們使用的是str形式。
上述代碼正確的執行結果是這樣的:
大致的信息就是告訴我們:
pytest.main(["-s", "demo1.py"])參數說明
除了上述的函數這種寫法,也可以有用例類的寫法:
用法跟unittest差不多,類名要以 Test 開頭,並且其中的用例方法也要以 test 開頭,然後執行也一樣。
執行結果:
那麼,你這個時候可能會問,我記得unittest中有setup和teardown的方法,難道pytest中沒有嘛?你怎麼提都不提?穩住,答案是有的。
接下來,我們來研究一下pytest中的setup和teardown的用法。
我們知道,在unittest中,setup和teardown可以在每個用例前後執行,也可以在所有的用例集執行前後執行。那麼在pytest中,有以下幾種情況:
來一一看看各自的用法。
模塊級別setup_mole/teardown_mole
執行結果:
類級別的setup_class/teardown_class
執行結果:
類中方法級別的setup_method/teardown_method
執行結果:
函數級別的setup_function/teardown_function
執行結果:
小結
該腳本有多種運行方式,如果處於PyCharm環境,可以使用右鍵或者點擊運行按鈕運行,也就是在pytest中的主函數中運行:
也可以在命令行中運行:
這種方式,跟使用Python解釋器執行Python腳本沒有什麼兩樣。也可以如下面這么執行:
當然,還有一種是使用配置文件運行,來看看怎麼用。
在項目的根目錄下,我們可以建立一個 pytest.ini 文件,在這個文件中,我們可以實現相關的配置:
那這個配置文件中的各項都是什麼意思呢?
首先, pytest.ini 文件必須位於項目的根目錄,而且也必須叫做 pytest.ini 。
其他的參數:
OK,來個示例。
首先,(詳細目錄參考開頭的目錄結構)在 scripts/test_case_01.py 中:
在 scripts/test_case_dir1/test_case02.py 中:
那麼,在不同的目錄或者文件中,共有5個用例將被執行,而結果則是兩個失敗三個成功。來執行驗證一下,因為有了配置文件,我們在終端中(前提是在項目的根目錄),直接輸入 pytest 即可。
由執行結果可以發現, 2 failed, 3 passed ,跟我們的預期一致。
後續執行相關配置都來自配置文件,如果更改,會有相應說明,終端都是直接使用 pytest 執行。
我們知道在unittest中,跳過用例可以用 skip ,那麼這同樣是適用於pytest。
來看怎麼使用:
跳過用例,我們使用 @pytest.mark.skipif(condition, reason) :
然後將它裝飾在需要被跳過用例的的函數上面。
效果如下:
上例執行結果相對詳細,因為我們在配置文件中為 addopts 增加了 -v ,之前的示例結果中,沒有加!
另外,此時,在輸出的控制台中, 還無法列印出 reason 信息,如果需要列印,則可以在配置文件中的 addopts 參數的 -s 變為 -rs :
如果我們事先知道測試函數會執行失敗,但又不想直接跳過,而是希望顯示的提示。
Pytest 使用 pytest.mark.xfail 實現預見錯誤功能::
需要掌握的必傳參數的是:
那麼關於預期失敗的幾種情況需要了解一下:
結果如下:
pytest 使用 x 表示預見的失敗(XFAIL)。
如果預見的是失敗,但實際運行測試卻成功通過,pytest 使用 X 進行標記(XPASS)。
而在預期失敗的兩種情況中,我們不希望出現預期失敗,結果卻執行成功了的情況出現,因為跟我們想的不一樣嘛,我預期這條用例失敗,那這條用例就應該執行失敗才對,你雖然執行成功了,但跟我想的不一樣,你照樣是失敗的!
所以,我們需要將預期失敗,結果卻執行成功了的用例標記為執行失敗,可以在 pytest.ini 文件中,加入:
這樣就就把上述的情況標記為執行失敗了。
pytest身為強大的單元測試框架,那麼同樣支持DDT數據驅動測試的概念。也就是當對一個測試函數進行測試時,通常會給函數傳遞多組參數。比如測試賬號登陸,我們需要模擬各種千奇百怪的賬號密碼。
當然,我們可以把這些參數寫在測試函數內部進行遍歷。不過雖然參數眾多,但仍然是一個測試,當某組參數導致斷言失敗,測試也就終止了。
通過異常捕獲,我們可以保證程所有參數完整執行,但要分析測試結果就需要做不少額外的工作。
在 pytest 中,我們有更好的解決方法,就是參數化測試,即每組參數都獨立執行一次測試。使用的工具就是 pytest.mark.parametrize(argnames, argvalues) 。
使用就是以裝飾器的形式使用。
只有一個參數的測試用例
來看(重要部分)結果::
可以看到,列表內的每個手機號,都是一條測試用例。
多個參數的測試用例
(重要部分)結果:
可以看到,每一個手機號與每一個驗證碼都組合一起執行了,這樣就執行了4次。那麼如果有很多個組合的話,用例數將會更多。我們希望手機號與驗證碼一一對應組合,也就是只執行兩次,怎麼搞呢?
在多參數情況下,多個參數名是以 , 分割的字元串。參數值是列表嵌套的形式組成的。
固件(Fixture)是一些函數,pytest 會在執行測試函數之前(或之後)載入運行它們,也稱測試夾具。
我們可以利用固件做任何事情,其中最常見的可能就是資料庫的初始連接和最後關閉操作。
Pytest 使用 pytest.fixture() 定義固件,下面是最簡單的固件,訪問主頁前必須先登錄:
結果:
在之前的示例中,你可能會覺得,這跟之前的setup和teardown的功能也類似呀,但是,fixture相對於setup和teardown來說更靈活。pytest通過 scope 參數來控制固件的使用范圍,也就是作用域。
比如之前的login固件,可以指定它的作用域:
很多時候需要在測試前進行預處理(如新建資料庫連接),並在測試完成進行清理(關閉資料庫連接)。
當有大量重復的這類操作,最佳實踐是使用固件來自動化所有預處理和後處理。
Pytest 使用 yield 關鍵詞將固件分為兩部分, yield 之前的代碼屬於預處理,會在測試前執行; yield 之後的代碼屬於後處理,將在測試完成後執行。
以下測試模擬資料庫查詢,使用固件來模擬資料庫的連接關閉:
結果:
可以看到在兩個測試用例執行前後都有預處理和後處理。
pytest中還有非常多的插件供我們使用,我們來介紹幾個常用的。
先來看一個重要的,那就是生成測試用例報告。
想要生成測試報告,首先要有下載,才能使用。
下載
如果下載失敗,可以使用PyCharm下載,怎麼用PyCharm下載這里無需多言了吧。
使用
在配置文件中,添加參數:
效果很不錯吧!
沒完,看我大招
Allure框架是一個靈活的輕量級多語言測試報告工具,它不僅以web的方式展示了簡潔的測試結果,而且允許參與開發過程的每個人從日常執行的測試中最大限度的提取有用信息。
從開發人員(dev,developer)和質量保證人員(QA,Quality Assurance)的角度來看,Allure報告簡化了常見缺陷的統計:失敗的測試可以分為bug和被中斷的測試,還可以配置日誌、步驟、fixture、附件、計時、執行 歷史 以及與TMS和BUG管理系統集成,所以,通過以上配置,所有負責的開發人員和測試人員可以盡可能的掌握測試信息。
從管理者的角度來看,Allure提供了一個清晰的「大圖」,其中包括已覆蓋的特性、缺陷聚集的位置、執行時間軸的外觀以及許多其他方便的事情。allure的模塊化和可擴展性保證了我們總是能夠對某些東西進行微調。
少扯點,來看看怎麼使用。
Python的pytest中allure下載
但由於這個 allure-pytest 插件生成的測試報告不是 html 類型的,我們還需要使用allure工具再「加工」一下。所以說,我們還需要下載這個allure工具。
allure工具下載
在現在allure工具之前,它依賴Java環境,我們還需要先配置Java環境。
注意,如果你的電腦已經有了Java環境,就無需重新配置了。
配置完了Java環境,我們再來下載allure工具,我這里直接給出了網路雲盤鏈接,你也可以去其他鏈接中自行下載:
下載並解壓好了allure工具包之後,還需要將allure包內的 bin 目錄添加到系統的環境變數中。
完事後打開你的終端測試:
返回了版本號說明安裝成功。
使用
一般使用allure要經歷幾個步驟:
來看配置 pytest.ini :
就是 --alluredir ./report/result 參數。
在終端中輸入 pytest 正常執行測試用例即可:
執行完畢後,在項目的根目下,會自動生成一個 report 目錄,這個目錄下有:
接下來需要使用allure工具來生成HTML報告。
此時我們在終端(如果是windows平台,就是cmd),路徑是項目的根目錄,執行下面的命令。
PS:我在pycharm中的terminal輸入allure提示'allure' 不是內部或外部命令,也不是可運行的程序或批處理文件。但windows的終端沒有問題。
命令的意思是,根據 reportresult 目錄中的數據(這些數據是運行pytest後產生的)。在 report 目錄下新建一個 allure_html 目錄,而這個目錄內有 index.html 才是最終的allure版本的HTML報告;如果你是重復執行的話,使用 --clean 清除之前的報告。
結果很漂亮:
allure open
默認的,allure報告需要HTTP伺服器來打開,一般我們可以通過pycharm來完成,另外一種情況就是通過allure自帶的open命令來完成。
allure的其他用法
當然,故事還是沒有完!在使用allure生成報告的時候,在編寫用例階段,還可以有一些參數可以使用:
allure.title與allure.description
feature和story
由上圖可以看到,不同的用例被分為不同的功能中。
allure.severity
allure.severity 用來標識測試用例或者測試類的級別,分為blocker,critical,normal,minor,trivial5個級別。
severity的默認級別是normal,所以上面的用例5可以不添加裝飾器了。
allure.dynamic
在之前,用例的執行順序是從上到下依次執行:
正如上例的執行順序是 3 1 2 。
現在,來看看我們如何手動控制多個用例的執行順序,這里也依賴一個插件。
下載
使用
手動控制用例執行順序的方法是在給各用例添加一個裝飾器:
那麼, 現在的執行順序是 2 1 3 ,按照order指定的排序執行的。
如果有人較勁傳個0或者負數啥的,那麼它們的排序關系應該是這樣的:
失敗重試意思是指定某個用例執行失敗可以重新運行。
下載
使用
需要在 pytest.ini 文件中, 配置:
給 addopts 欄位新增(其他原有保持不變) --reruns=3 欄位,這樣如果有用例執行失敗,則再次執行,嘗試3次。
來看示例:
結果:
我們也可以從用例報告中看出重試的結果:
上面演示了用例失敗了,然後重新執行多少次都沒有成功,這是一種情況。
接下來,來看另一種情況,那就是用例執行失敗,重新執行次數內通過了,那麼剩餘的重新執行的次數將不再執行。
通過 random 模塊幫助我們演示出在某次執行中出現失敗的情況,而在重新執行的時候,會出現成功的情況,看結果:
可以看到,用例 02 重新執行了一次就成功了,剩餘的兩次執行就終止了。
一條一條用例的執行,肯定會很慢,來看如何並發的執行測試用例,當然這需要相應的插件。
下載
使用
在配置文件中添加:
就是這個 -n=auto :
並發的配置可以寫在配置文件中,然後其他正常的執行用例腳本即可。另外一種就是在終端中指定,先來看示例:
結果:
pytest-sugar 改變了 pytest 的默認外觀,添加了一個進度條,並立即顯示失敗的測試。它不需要配置,只需 下載插件即可,用 pytest 運行測試,來享受更漂亮、更有用的輸出。
下載
其他照舊執行用例即可。
pytest-cov 在 pytest 中增加了覆蓋率支持,來顯示哪些代碼行已經測試過,哪些還沒有。它還將包括項目的測試覆蓋率。
下載
使用
在配置文件中:
也就是配置 --cov=./scripts ,這樣,它就會統計所有 scripts 目錄下所有符合規則的腳本的測試覆蓋率。
執行的話,就照常執行就行。
結果:
更多插件參考:https://zhuanlan.hu.com/p/50317866
有的時候,在 pytest.ini 中配置了 pytest-html 和 allure 插件之後,執行後報錯:
出現了這個報錯,檢查你配置的解釋器中是否存在 pytest-html 和 allure-pytest 這兩個模塊。如果是使用的pycharm ide,那麼你除了檢查settings中的解釋器配置之外,還需要保證運行腳本的編輯器配置是否跟settings中配置一致。