當前位置:首頁 » 編程語言 » 語義分析python

語義分析python

發布時間: 2023-05-30 16:58:34

1. python的推薦書籍有哪些

推薦的幾本Python入門自學到精通必看的書籍吧~

1、《「笨辦法」學Python》

為什麼把它作為推薦給Python入門自學者的第一本書?因為它足夠有趣吸引人。一開始我們都是憑著興趣學習的,如果在剛剛開始學習的時候,就看深奧難讀的書,很容易就從入門到放棄。而且這本書里每一章知識講完後,都會配有相應的練習小題,幫助初學者在學中練,練中學,進一步鞏固相關知識點。總之,這本書以習題的方式引導學習者一步一步學習編程,從簡單的列印一直講授到完整項目的實現,讓初學者從基礎的編程技術入手,最終體驗到軟體開發的基本過程。可以說,這本書是零基礎入門Python的不二之選!

2、《Python快速編程入門》

這本書是一本Python基礎教程,因此全部內容定位於Python的基本知識、語法、函數、面向對象等基礎性內容。在夯實基礎後,該書後一章設置了游戲開發的綜合訓練,幫助初學者更好掌握相關知識。除此之外,本書附有配套視頻、源代碼、習題、教學課件等資源。總之,

本書既可作為高等院校本、專科計算機相關專業的程序設計課程教材,也可作為Python編程基礎的學習教材,是一本適合廣大編程開發初學者的入門級教材。

3、《Python高手之路(第3版) 》

本書不適合零基礎學習者,適合有一定Python基礎的學習者閱讀。因為該書完全從實戰的角度出發,介紹了需要系統掌握的Python知識。更為難得的是,本書結合了Python在OpenStack中的應用進行講解,非常具有實戰指導意義。此外,本書還涉及了很多高級主題,如性能優化、插件化結構的設計與架構、Python
3的支持策略等。因此,本書適合初中級層次的Python程序員閱讀和參考。

4、《Python演算法教程》

本書最大的優點簡單概括起來就是知識點清晰,語言簡潔。書中用Python語言來講解演算法的分析和設計,主要關注經典的演算法,幫助讀者理解基本演算法問題和解決問題打下很好的基礎。本書概念和知識點講解清晰,語言簡潔,因此適合對Python演算法感興趣的初中級用戶閱讀和自學,也適合高等院校的計算機系學生作為參考教材來閱讀。

5、《Python核心編程(第3版)》

本書涵蓋了成為一名技術全面的Python開發人員所需的一切內容,因此是每個想要精通Python的工程師必須要學習和了解的內容。在本書中,Python開發人員兼企業培訓師Wesley
Chun會幫助學習者將Python技能提升到更高的水平。而且書中講解了應用開發相關的多個領域,可以幫助讀者立即應用到項目開發中。

6、《精通Python自然語言處理》

眾做周知,自然語言處理是計算語言學和人工智慧之中與人機交互相關的領域之一。本書是學習自然語言處理的一本綜合學習指南,該書介紹了如何用Python實現各種NLP任務,以幫助讀者創建基於真實生活應用的項目。全書共10章,分別涉及字元串操作、統計語言建模、形態學、詞性標注、語法解析、語義分析、情感分析、信息檢索、語篇分析和NLP系統評估等主題。本書適合熟悉Python語言並對自然語言處理開發有一定了解和興趣的讀者閱讀參考。

以上就是推薦的Python入門到精通的所有書籍,相信總有一本適合你。但想要快速入門Python開發,僅靠看書怎麼夠,畢竟編程最重要的就是練習。

對於Python開發有興趣的小夥伴們,不妨先從看看Python開發書籍開始入門!B站上有很多的Python教學視頻,從基礎到高級的都有,還挺不錯的,知識點講的很細致,還有完整版的學習路線圖。也可以自己去看看,下載學習試試。

2. 如何用最簡單的Python爬蟲採集整個網站

採集網站數據並不難,但是需要爬蟲有足夠的深度。我們創建一個爬蟲,遞歸地遍歷每個網站,只收集那些網站頁面上的數據。一般的比較費時間的網站採集方法從頂級頁面開始(一般是網站主頁),然後搜索頁面上的所有鏈接,形成列表,再去採集到的這些鏈接頁面,繼續採集每個頁面的鏈接形成新的列表,重復執行。

3. 最受歡迎的 15 大 Python 庫有哪些

1、Pandas:是一個Python包,旨在通過「標記」和「關系」數據進行工作,簡單直觀。它設計用於快速簡單的數據操作、聚合和可視化,是數據整理的完美工具。
2、Numpy:是專門為Python中科學計算而設計的軟體集合,它為Python中的n維數組和矩陣的操作提供了大量有用的功能。該庫提供了NumPy數組類型的數學運算向量化,可以改善性能,從而加快執行速度。
3、SciPy:是一個工程和科學軟體庫,包含線性代數,優化,集成和統計的模塊。SciPy庫的主要功能是建立在NumPy上,通過其特定子模塊提供有效的數值常式,並作為數字積分、優化和其他常式。
4、Matplotlib:為輕松生成簡單而強大的可視化而量身定製,它使Python成為像MatLab或Mathematica這樣的科學工具的競爭對手。
5、Seaborn:主要關注統計模型的可視化(包括熱圖),Seaborn高度依賴於Matplotlib。
6、Bokeh:獨立於Matplotlib,主要焦點是交互性,它通過現代瀏覽器以數據驅動文檔的風格呈現。
7、Plotly:是一個基於Web用於構建可視化的工具箱,提供API給一些編程語言(Python在內)。
8、Scikits:是Scikits
Stack額外的軟體包,專為像圖像處理和機器學習輔助等特定功能而設計。它建立在SciPy之上,中集成了有質量的代碼和良好的文檔、簡單易用並且十分高效,是使用Python進行機器學習的實際行業標准。
9、Theano:是一個Python軟體包,它定義了與NumPy類似的多維數組,以及數學運算和表達式。此庫是被編譯的,可實現在所有架構上的高效運行。
10、TensorFlow:是數據流圖計算的開源庫,旨在滿足谷歌對訓練神經網路的高需求,並且是基於神經網路的機器學習系統DistBelief的繼任者,可以在大型數據集上快速訓練神經網路。
11、Keras:是一個用Python編寫的開源的庫,用於在高層的介面上構建神經網路。它簡單易懂,具有高級可擴展性。
12、NLTK:主要用於符號學和統計學自然語言處理(NLP) 的常見任務,旨在促進NLP及相關領域(語言學,認知科學人工智慧等)的教學和研究。
13、Gensim:是一個用於Python的開源庫,為有向量空間模型和主題模型的工作提供了使用工具。這個庫是為了高效處理大量文本而設計,不僅可以進行內存處理,還可以通過廣泛使用NumPy數據結構和SciPy操作來獲得更高的效率。

4. 2017年10大流行Python庫有哪些

1、NumPy
NumPy是構建科學計算 stack 的最基礎的包。它為 Python 中的 n 維數組和矩陣的操作提供了大量有用的功能。該庫還提供了 NumPy 數組類型的數學運算向量化,可以提升性能,從而加快執行速度。

2、SciPy
SciPy 是一個工程和科學軟體庫, 包含線性代數、優化、集成和統計的模塊。SciPy 庫的主
要功能建立在 NumPy 的基礎之上,它通過其特定的子模塊提供高效的數值常式操作。SciPy 的所有子模塊中的函數都有詳細的文檔,這也是一個優勢。
3、Pandas
Pandas是一個 Python 包,旨在通過「標記(labeled)」和「關系(relational)」數據進行工作,簡單直觀。Pandas 是 data wrangling 的完美工具。它設計用於快速簡單的數據操作、聚合和可視化。
4、Seaborn
Seaborn 主要關注統計模型的可視化;這種可視化包括熱度圖(heat map),可以總結數據但也描繪總體分布。Seaborn 基於 Matplotlib,並高度依賴於它。
5、Bokeh
Bokeh是一個很好的可視化庫,其目的是互動式可視化,不過這個庫獨立於 Matplotlib,它通過現代瀏覽器以數據驅動文檔(D3.js)的風格呈現。
6、Scikits
Scikits 是 SciPy Stack 的附加軟體包,專為特定功能(如圖像處理和輔助機器學習)而設計。其中最突出的一個是 scikit-learn。該軟體包構建於 SciPy 之上,並大量使用其數學操作,是使用 Python 進行機器學習的實際上的行業標准。
7、Theano
Theano 是一個 Python 包,它定義了與 NumPy 類似的多維數組,以及數學運算和表達式。該庫是經過編譯的,使其在所有架構上能夠高效運行。這個庫最初由蒙特利爾大學機器學習組開發,主要是為了滿足機器學習的需求。
8、Keras
Keras是一個使用高層介面構建神經網路的開源庫,它是用 Python 編寫的。它簡單易懂,具有高級可擴展性。Keras 極其容易上手,而且可以進行快速的原型設計,足以用於嚴肅的建模。
9、Gensim
Gensim是一個用於 Python 的開源庫,實現了用於向量空間建模和主題建模的工具。Gensim 實現了諸如分層 Dirichlet 進程(HDP)、潛在語義分析(LSA)和潛在 Dirichlet 分配(LDA)等演算法,還有 tf-idf、隨機投影、word2vec 和 document2vec,以便於檢查一組文檔(通常稱為語料庫)中文本的重復模式。
10、Scrapy
Scrapy 是用於從網路檢索結構化數據的爬蟲程序的庫。它現在已經發展成了一個完整的框架,可以從 API 收集數據,也可以用作通用的爬蟲。該庫在介面設計上遵循著名的 Don』t Repeat Yourself 原則——提醒用戶編寫通用的可復用的代碼,因此可以用來開發和擴展大型爬蟲。

5. 0基礎自學python,有入門書籍推薦下么

AlphaGo都在使用的Python語言,是最接近AI的編程語言。

教育部考試中心近日發布了「關於全國計算機等級(NCRE)體系調整」的通知,決定自2018年3月起,在全國計算機二級考試中加入了「Python語言程序設計」科目。

9個月前,浙江省信息技術課程改革方案已經出台,Python確定進入浙江省信息技術教材,從2018年起浙江省信息技術教材編程語言將會從vb更換為Python。

小學生都開始學Python了,天吶擼,學習Python看完這些准沒錯。

安利一波書單

Python入門

《Python編程快速上手——讓繁瑣工作自動化》

作者:【美】AlSweigart(斯維加特)

Python3編程從入門到實踐

亞馬遜暢銷Python編程圖書

本書是一本面向實踐的Python編程實用指南。本書不僅介紹了Python語言的基礎知識,而且還通過項目實踐教會讀者如何應用這些知識和技能。本書的第一部分介紹了基本Python編程概念,第二部分介紹了一些不同的任務,通過編寫Python程序,可以讓計算機自動完成它們。第二部分的每一章都有一些項目程序,供讀者學習。每章的末尾還提供了一些習題和深入的實踐項目,幫助讀者鞏固所學的知識,附錄部分提供了所有習題的解答。

《「笨辦法」學Python(第3版)》

作者:【美】ZedA.Shaw

《「笨辦法」學Python(第3版)》是一本Python入門書籍,適合對計算機了解不多,沒有學過編程,但對編程感興趣的讀者學習使用。這本書以習題的方式引導讀者一步一步學習編程,從簡單的列印一直講到完整項目的實現,讓初學者從基礎的編程技術入手,最終體驗到軟體開發的基本過程。

《「笨辦法」學Python(第3版)》結構非常簡單,共包括52個習題,其中26個覆蓋了輸入/輸出、變數辯姿者和函數三個主題,另外26個覆蓋了一些比較高級的話題,如條件判斷、循環、類和對象、代碼測試及項目的實現等。每一章的格式基本相同,以代碼習題開始,按照說明編寫代碼,運行並檢查結果,然後再做附加練習。

《Python編程初學者指南》

作者:【美】MichaelDawson

《Python編程初學者指南》嘗試以輕松有趣的方式來幫助初學者掌握Python語言和編程技能。全書共12章,每一章都會用一個完整的游戲來演示其中的關鍵知識點,並通過編寫好玩的小軟體這種方式來學習編程,引發讀者的興趣,降低學習的難度。每章最後都會對該章的知識點進行小結,還會給出一些小練習讓讀者試試身手。作者很巧妙的將所有編程知識嵌入到了這些例子中,真正做到了寓教於樂。

《數據結構(Python語言描述)》

作者:【美】KennethA.Lambert(蘭伯特)

在計算機科學中,數據結構是一門進階性課程,概念抽象,難度較大。Python語言的語法冊殲簡單,交互性強攜薯。用Python來講解數據結構等主題,比C語言等實現起來更為容易,更為清晰。

本書第1章簡單介紹了Python語言的基礎知識和特性。第2章到第4章對抽象數據類型、數據結構、復雜度分析、數組和線性鏈表結構進行了詳細介紹,第5章和第6章重點介紹了面向對象設計的相關知識、第5章包括介面和實現之間的重點差異、多態以及信息隱藏等內容,第6章主要講解繼承的相關知識,第7章到第9章以棧、隊列和列表為代表,介紹了線性集合的相關知識。第10章介紹了各種樹結構,第11章講解了集和字典的相關內容,第12章介紹了圖和圖處理演算法。每章最後,還給出了復習題和案例學習,幫助讀者鞏固和思考。

像計算機科學家一樣思考Python》

作者:【美】AllenB.Downey

本書按照培養讀者像計算機科學家一樣的思維方式的思路來教授Python語言編程。全書貫穿的主體是如何思考、設計、開發的方法,而具體的編程語言,只是提供一個具體場景方便介紹的媒介。並不是一本介紹語言的書,而是一本介紹編程思想的書。和其他編程設計語言書籍不同,它不拘泥於語言細節,而是嘗試從初學者的角度出發,用生動的示例和豐富的練習來引導讀者漸入佳境。

Python進階

Python高級編程(第2版)》

作者:【波蘭】Micha?Jaworski(賈沃斯基),【法】TarekZiadé(萊德)

本書基於Python3.5版本進行講解,通過13章的內容,深度揭示了Python編程的高級技巧。本書從Python語言及其社區的現狀開始介紹,對Python語法、命名規則、Python包的編寫、部署代碼、擴展程序開發、管理代碼、文檔編寫、測試開發、代碼優化、並發編程、設計模式等重要話題進行了全面系統化的講解。

本書適合想要進一步提高自身Python編程技能的讀者閱讀,也適合對Python編程感興趣的讀者參考學習。全書結合典型且實用的開發案例,可以幫助讀者創建高性能的、可靠且可維護的Python應用。

《Python高性能編程》

作者:【美】戈雷利克(MichaGorelick),歐日沃爾德(IanOzsvald)

本書共有12章,圍繞如何進行代碼優化和加快實際應用的運行速度進行詳細講解。本書主要包含以下主題:計算機內部結構的背景知識、列表和元組、字典和集合、迭代器和生成器、矩陣和矢量計算、並發、集群和工作隊列等。最後,通過一系列真實案例展現了在應用場景中需要注意的問題。

本書適合初級和中級Python程序員、有一定Python語言基礎想要得到進階和提高的讀者閱讀

《Python極客項目編程》

作者:【美】MaheshVenkitachalam

Python是一種解釋型、面向對象、動態數據類型的高級程序設計語言。通過Python編程,我們能夠解決現實生活中的很多任務。

本書通過14個有趣的項目,幫助和鼓勵讀者探索Python編程的世界。全書共14章,分別介紹了通過Python編程實現的一些有趣項目,包括解析iTunes播放列表、模擬人工生命、創建ASCII碼藝術圖、照片拼接、生成三維立體圖、創建粒子模擬的煙花噴泉效果、實現立體光線投射演算法,以及用Python結合Arino和樹莓派等硬體的電子項目。本書並不介紹Python語言的基礎知識,而是通過一系列不簡單的項目,展示如何用Python來解決各種實際問題,以及如何使用一些流行的Python庫。

《Python核心編程(第3版)》

作者:【美】WesleyChun(衛斯理春)

本書是經典暢銷圖書《Python核心編程(第二版)》的全新升級版本,總共分為3部分。第1部分講解了Python的一些通用應用,包括正則表達式、網路編程、Internet客戶端編程、多線程編程、GUI編程、資料庫編程、MicrosoftOffice編程、擴展Python等內容。第2部分講解了與Web開發相關的主題,包括Web客戶端和伺服器、CGI和WSGI相關的Web編程、DiangoWeb框架、雲計算、高級Web服務。第3部分則為一個補充/實驗章節,包括文本處理以及一些其他內容。

本書適合具有一定經驗的Python開發人員閱讀。

Python機器學習——預測分析核心演算法》

作者:【美】MichaelBowles(鮑爾斯)

在學習和研究機器學習的時候,面臨令人眼花繚亂的演算法,機器學習新手往往會不知所措。本書從演算法和Python語言實現的角度,幫助讀者認識機器學習。

本書專注於兩類核心的「演算法族」,即懲罰線性回歸和集成方法,並通過代碼實例來展示所討論的演算法的使用原則。全書共分為7章,詳細討論了預測模型的兩類核心演算法、預測模型的構建、懲罰線性回歸和集成方法的具體應用和實現。

《Python機器學習實踐指南》

作者:【美】AlexanderT.Combs

機器學習是近年來漸趨熱門的一個領域,同時Python語言經過一段時間的發展也已逐漸成為主流的編程語言之一。本書結合了機器學習和Python語言兩個熱門的領域,通過利用兩種核心的機器學習演算法來將Python語言在數據分析方面的優勢發揮到極致。

全書共有10章。第1章講解了Python機器學習的生態系統,剩餘9章介紹了眾多與機器學習相關的演算法,包括各類分類演算法、數據可視化技術、推薦引擎等,主要包括機器學習在公寓、機票、IPO市場、新聞源、內容推廣、股票市場、圖像、聊天機器人和推薦引擎等方面的應用。

《精通Python自然語言處理》

作者:【印度】DeeptiChopra,NisheethJoshi,ItiMathur

自然語言處理是計算語言學和人工智慧之中與人機交互相關的領域之一。

本書是學習自然語言處理的一本綜合學習指南,介紹了如何用Python實現各種NLP任務,以幫助讀者創建基於真實生活應用的項目。全書共10章,分別涉及字元串操作、統計語言建模、形態學、詞性標注、語法解析、語義分析、情感分析、信息檢索、語篇分析和NLP系統評估等主題。

本書適合熟悉Python語言並對自然語言處理開發有一定了解和興趣的讀者閱讀參考。

Python數據科學指南》

作者:【印度】GopiSubramanian(薩伯拉曼尼安)

60多個實用的開發技巧,幫你探索Python及其強大的數據科學能力

Python作為一種高級程序設計語言,憑借其簡潔、易讀及可擴展性日漸成為程序設計領域備受推崇的語言,並成為數據科學家的首選之一。

本書詳細介紹了Python在數據科學中的應用,包括數據探索、數據分析與挖掘、機器學習、大規模機器學習等主題。每一章都為讀者提供了足夠的數學知識和代碼示例來理解不同深度的演算法功能,幫助讀者更好地掌握各個知識點。

本書內容結構清晰,示例完整,無論是數據科學領域的新手,還是經驗豐富的數據科學家都將從中獲益。

《用Python寫網路爬蟲》

作者:【澳】RichardLawson(理查德勞森)

本書講解了如何使用Python來編寫網路爬蟲程序,內容包括網路爬蟲簡介,從頁面中抓取數據的三種方法,提取緩存中的數據,使用多個線程和進程來進行並發抓取,如何抓取動態頁面中的內容,與表單進行交互,處理頁面中的驗證碼問題,以及使用Scarpy和Portia來進行數據抓取,並在最後使用本書介紹的數據抓取技術對幾個真實的網站進行了抓取,旨在幫助讀者活學活用書中介紹的技術。

本書適合有一定Python編程經驗,而且對爬蟲技術感興趣的讀者閱讀。

《貝葉斯思維:統計建模的Python學習法》

作者:【美】AllenB.Downey

這本書幫助那些希望用數學工具解決實際問題的人們,僅有的要求可能就是懂一點概率知識和程序設計。而貝葉斯方法是一種常見的利用概率學知識去解決不確定性問題的數學方法,對於一個計算機專業的人士,應當熟悉其應用在諸如機器翻譯,語音識別,垃圾郵件檢測等常見的計算機問題領域。

Python自然語言處理》

作者:【美】StevenBird,EwanKlein,EdwardLoper

自然語言處理(NaturalLanguageProcessing,NLP)是計算機科學領域與人工智慧領域中的一個重要方向。它研究能夠實現人與計算機之間用自然語言進行有效通信的各種理論和方法,涉及所有用計算機對自然語言進行的操作。

《Python自然語言處理》是自然語言處理領域的一本實用入門指南,旨在幫助讀者學習如何編寫程序來分析書面語言。《Python自然語言處理》基於Python編程語言以及一個名為NLTK的自然語言工具包的開源庫,但並不要求讀者有Python編程的經驗。全書共11章,按照難易程度順序編排。第1章到第3章介紹了語言處理的基礎,講述如何使用小的Python程序分析感興趣的文本信息。第4章討論結構化程序設計,以鞏固前面幾章中介紹的編程要點。第5章到第7章介紹語言處理的基本原理,包括標注、分類和信息提取等。第8章到第10章介紹了句子解析、句法結構識別和句意表達方法。第11章介紹了如何有效管理語言數據。後記部分簡要討論了NLP領域的過去和未來。

本書的實踐性很強,包括上百個實際可用的例子和分級練習。可供讀者用於自學,也可以作為自然語言處理或計算語言學課程的教科書,還可以作為人工智慧、文本挖掘、語料庫語言學等課程的補充讀物。

Python數據分析》

作者:【印尼】IvanIdris

Python是一種多范型編程語言,既適用於面向對象的應用開發,又適合函數式設計模式。Python已經成為數據科學家進行數據分析、可視化以及機器學習的一種理想編程語言,它能幫助你快速提升工作效率。

本書將會帶領新手熟悉Python數據分析相關領域的方方面面,從數據檢索、清洗、操作、可視化、存儲到高級分析和建模。同時,本書著重講解一系列開源的Python模塊,諸如NumPy、SciPy、matplotlib、pandas、IPython、Cython、scikit-learn和NLTK等。此外,本書還介紹了數據可視化、信號處理、時間序列分析、資料庫、預測性分析和機器學習等主題。通過閱讀本書,你將華麗變身數據分析高手。

6. Python中,已經得到一個包含所有單詞的詞典,如何統計詞典中的單詞在每一句話中出現的次數

眾所周知,英文是以詞為單位的,詞和詞之間是靠空格隔開,而中文是以字為單位,句子中所有的字連起來才能描述一個意思。例如,英文句子I am a student,用中文則為:「我是一個學生」。計算機可以很簡單通過空格知道student是一個單詞,但是不能很容易明白「學」、「生」兩個字合起來才表示一個詞。把中文的漢字序列切分成有意義的詞,就是中文分詞,有些人也稱為切詞。我是一個學生,分詞的結果是:我 是 一個 學生。
中文分詞技術屬於自然語言處理技術范疇,對於一句話,人可以通過自己的知識來明白哪些是詞,哪些不是詞,但如何讓計算機也能理解?其處理過程就是分詞演算法。

現有的分詞演算法可分為三大類:基於字元串匹配的分詞方法、基於理解的分詞方法和基於統計的分詞方法。

1、基於字元串匹配的分詞方法

這種方法又叫做機械分詞方法,它是按照一定的策略將待分析的漢字串與一個「充分大的」機器詞典中的詞條進行配,若在詞典中找到某個字元串,則匹配成功(識別出一個詞)。按照掃描方向的不同,串匹配分詞方法可以分為正向匹配和逆向匹配;按照不同長度優先匹配的情況,可以分為最大(最長)匹配和最小(最短)匹配;按照是否與詞性標注過程相結合,又可以分為單純分詞方法和分詞與標注相結合的一體化方法。常用的幾種機械分詞方法如下:

1)正向最大匹配法(由左到右的方向);

2)逆向最大匹配法(由右到左的方向);

3)最少切分(使每一句中切出的詞數最小)。

還可以將上述各種方法相互組合,例如,可以將正向最大匹配方法和逆向最大匹配方法結合起來構成雙向匹配法。由於漢語單字成詞的特點,正向最小匹配和逆向最小匹配一般很少使用。一般說來,逆向匹配的切分精度略高於正向匹配,遇到的歧義現象也較少。統計結果表明,單純使用正向最大匹配的錯誤率為1/169,單純使用逆向最大匹配的錯誤率為1/245。但這種精度還遠遠不能滿足實際的需要。實際使用的分詞系統,都是把機械分詞作為一種初分手段,還需通過利用各種其它的語言信息來進一步提高切分的准確率。

一種方法是改進掃描方式,稱為特徵掃描或標志切分,優先在待分析字元串中識別和切分出一些帶有明顯特徵的詞,以這些詞作為斷點,可將原字元串分為較小的串再來進機械分詞,從而減少匹配的錯誤率。另一種方法是將分詞和詞類標注結合起來,利用豐富的詞類信息對分詞決策提供幫助,並且在標注過程中又反過來對分詞結果進行檢驗、調整,從而極大地提高切分的准確率。

對於機械分詞方法,可以建立一個一般的模型,在這方面有專業的學術論文,這里不做詳細論述。

2、基於理解的分詞方法

這種分詞方法是通過讓計算機模擬人對句子的理解,達到識別詞的效果。其基本思想就是在分詞的同時進行句法、語義分析,利用句法信息和語義信息來處理歧義現象。它通常包括三個部分:分詞子系統、句法語義子系統、總控部分。在總控部分的協調下,分詞子系統可以獲得有關詞、句子等的句法和語義信息來對分詞歧義進行判斷,即它模擬了人對句子的理解過程。這種分詞方法需要使用大量的語言知識和信息。由於漢語語言知識的籠統、復雜性,難以將各種語言信息組織成機器可直接讀取的形式,因此目前基於理解的分詞系統還處在試驗階段。

3、基於統計的分詞方法

從形式上看,詞是穩定的字的組合,因此在上下文中,相鄰的字同時出現的次數越多,就越有可能構成一個詞。因此字與字相鄰共現的頻率或概率能夠較好的反映成詞的可信度。可以對語料中相鄰共現的各個字的組合的頻度進行統計,計算它們的互現信息。定義兩個字的互現信息,計算兩個漢字X、Y的相鄰共現概率。互現信息體現了漢字之間結合關系的緊密程度。當緊密程度高於某一個閾值時,便可認為此字組可能構成了一個詞。這種方法只需對語料中的字組頻度進行統計,不需要切分詞典,因而又叫做無詞典分詞法或統計取詞方法。但這種方法也有一定的局限性,會經常抽出一些共現頻度高、但並不是詞的常用字組,例如「這一」、「之一」、「有的」、「我的」、「許多的」等,並且對常用詞的識別精度差,時空開銷大。實際應用的統計分詞系統都要使用一部基本的分詞詞典(常用詞詞典)進行串匹配分詞,同時使用統計方法識別一些新的詞,即將串頻統計和串匹配結合起來,既發揮匹配分詞切分速度快、效率高的特點,又利用了無詞典分詞結合上下文識別生詞、自動消除歧義的優點。

到底哪種分詞演算法的准確度更高,目前並無定論。對於任何一個成熟的分詞系統來說,不可能單獨依靠某一種演算法來實現,都需要綜合不同的演算法。筆者了解,海量科技的分詞演算法就採用「復方分詞法」,所謂復方,相當於用中葯中的復方概念,即用不同的葯才綜合起來去醫治疾病,同樣,對於中文詞的識別,需要多種演算法來處理不同的問題。

7. 【Python基礎】python數據分析需要哪些庫

1.Numpy庫
是Python開源的數值計算擴展工具,提供了Python對多維數組的支持,能夠支持高級的維度數組與矩陣運算。此外,針對數組運算也提供了大量的數學函數庫,Numpy是大部分Python科學計算的基礎,具有很多功能。
2.Pandas庫
是一個基於Numpy的數據分析包,為了解決數據分析任務而創建的。Pandas中納入了大量庫和標準的數據模型,提供了高效地操作大型數據集所需要的函數和方法,使用戶能快速便捷地處理數據。
3.Matplotlib庫
是一個用在Python中繪制數組的2D圖形庫,雖然它起源於模仿MATLAB圖形命令,但它獨立於MATLAB,可以通過Pythonic和面向對象的方式使用,是Python中最出色的繪圖庫。主要用純Python語言編寫的,它大量使用Numpy和其他擴展代碼,即使對大型數組也能提供良好的性能。
4.Seaborn庫
是Python中基於Matplotlib的數據可空模薯視化工具,提供了很多高層封裝的函數,幫助數據分析人員快速繪制美觀的數據圖形,從而避免了許多額外的參數配置問題。
5.NLTK庫
被稱為使用Python進行教學和計算語言學工作的最佳工具,以及用自斗者然語言進行游戲的神奇圖書館。NLTK是一個領先的平台,用於構建使用人類語言數據的Python程序,它為超過50個語料庫和詞彙資源提供了易於使用的介面,還提供了一套文本處理庫,用於分類、標記化、詞干碼鏈化、解析和語義推理、NLP庫的包裝器和一個活躍的討論社區。

8. 如何自學 python

python語法優美,容易入門,是一個不錯的工具!

主要課程內容有:

①Python軟體開發基礎

②Python軟體開發進階

③Python全棧式WEB開發

④Python多領域開發

想要系統學習,你可以考察對比一下開設有相關專業的熱門學校,好的學校擁有根據當下企業需求自主研發課程的能力,能夠在校期間取得大專或本科學歷,中博軟體學院、南京課工場、南京北大青鳥等開設相關專業的學校都是不錯的,建議實地考察對比一下。

祝你學有所成,望採納。

9. 《精通Python自然語言處理》pdf下載在線閱讀全文,求百度網盤雲資源

《精通Python自然語言處理》電子書網盤下載免費在線閱讀

鏈接: https://pan..com/s/1fTsYQO2bMlM1wQrbvqvAWQ

提取碼: ad4c

書名:精通Python自然語言處理

豆瓣評分:5.4

出版社:人民郵電出版社

出版年份:2017-8

內容簡介:

自然語言處理是計算語言學和人工智慧之中與人機交互相關的領域之一。

本書是學習自然語言處理的一本綜合學習指南,介紹了如何用Python實現各種NLP任務,以幫助讀者創建基於真實生活應用的項目。全書共10章,分別涉及字元串操作、統計語言建模、形態學、詞性標注、語法解析、語義分析、情感分析、信息檢索、語篇分析和NLP系統評估等主題。

本書適合熟悉Python語言並對自然語言處理開發有一定了解和興趣的讀者閱讀參考。

10. 好用的python入門書籍

關於python的好書很多,這里從入門到進階以此給你推薦一些:
1.Python編程:入門到實踐
理論和實踐恰到好處,行文邏輯流暢,不跳躍,手把手教的感覺,卻絕不啰嗦,非常適合入門。小編強烈推薦這本書,書中涵蓋的內容是比較精簡的,沒有艱深晦澀的概念,最重要的是每個小結都附帶有」動手試一試」環節,學編程最佳的方式就是多動動手、多動動腦。
2.Python基礎教程第2版
學習一門編程語言的最好方法就是真正使用它
這本書內容涉及的范圍較廣,既能為初學者夯實基礎,又能幫助程序員提升技能,適合各個層次的Python開發人員閱讀參考。
3.笨辦法學Python
編程入門的必備書,從一個個的小例子入手,不僅是教你寫Python代碼,還有編程的技巧。
這是一本Python入門書籍,適合對計算機了解不多,沒有學過編程,但對編程感興趣的讀者學習使用。這本書以習題的方式引導讀者一步一步學習編程,從簡單的列印一直講到完整項目的實現,讓初學者從基礎的編程技術入手,最終體驗到軟體開發的基本過程。
4.Python for data analysis
還在苦苦尋覓用Python控制、處理、整理、分析結構化數據的完整課程?本書含有大量的實踐案例,你將學會如何利用各種Python庫高效地解決各式各樣的數據分析問題。這本書介紹了ipython 、notebook、Numpy、Scipy和Pandas包的使用等,只要掌握了python的基本語法就可以學習。

熱點內容
內置存儲卡可以拆嗎 發布:2025-05-18 04:16:35 瀏覽:335
編譯原理課時設置 發布:2025-05-18 04:13:28 瀏覽:378
linux中進入ip地址伺服器 發布:2025-05-18 04:11:21 瀏覽:612
java用什麼軟體寫 發布:2025-05-18 03:56:19 瀏覽:32
linux配置vim編譯c 發布:2025-05-18 03:55:07 瀏覽:107
砸百鬼腳本 發布:2025-05-18 03:53:34 瀏覽:943
安卓手機如何拍視頻和蘋果一樣 發布:2025-05-18 03:40:47 瀏覽:739
為什麼安卓手機連不上蘋果7熱點 發布:2025-05-18 03:40:13 瀏覽:803
網卡訪問 發布:2025-05-18 03:35:04 瀏覽:511
接收和發送伺服器地址 發布:2025-05-18 03:33:48 瀏覽:371