基數排序python
首先謝謝邀請,
python中有的演算法還是比較多的?
python之所以火是因為人工智慧的發展,人工智慧的發展離不開演算法!
感覺有本書比較適合你,不過可惜的是這本書沒有電子版,只有紙質的。
這本書對於演算法從基本的入門到實現,循序漸進的介紹,比如裡面就涵蓋了數學建模的常用演算法。
第 1章從數學建模到人工智慧
1.1數學建模1.1.1數學建模與人工智慧1.1.2數學建模中的常見問題1.2人工智慧下的數學1.2.1統計量1.2.2矩陣概念及運算1.2.3概率論與數理統計1.2.4高等數學——導數、微分、不定積分、定積分
第2章 Python快速入門
2.1安裝Python2.1.1Python安裝步驟2.1.2IDE的選擇2.2Python基本操作2.2.1第 一個小程序2.2.2注釋與格式化輸出2.2.3列表、元組、字典2.2.4條件語句與循環語句2.2.5break、continue、pass2.3Python高級操作2.3.1lambda2.3.2map2.3.3filter
第3章Python科學計算庫NumPy
3.1NumPy簡介與安裝3.1.1NumPy簡介3.1.2NumPy安裝3.2基本操作3.2.1初識NumPy3.2.2NumPy數組類型3.2.3NumPy創建數組3.2.4索引與切片3.2.5矩陣合並與分割3.2.6矩陣運算與線性代數3.2.7NumPy的廣播機制3.2.8NumPy統計函數3.2.9NumPy排序、搜索3.2.10NumPy數據的保存
第4章常用科學計算模塊快速入門
4.1Pandas科學計算庫4.1.1初識Pandas4.1.2Pandas基本操作4.2Matplotlib可視化圖庫4.2.1初識Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib繪圖案例4.3SciPy科學計算庫4.3.1初識SciPy4.3.2SciPy基本操作4.3.3SciPy圖像處理案例第5章Python網路爬蟲5.1爬蟲基礎5.1.1初識爬蟲5.1.2網路爬蟲的演算法5.2爬蟲入門實戰5.2.1調用API5.2.2爬蟲實戰5.3爬蟲進階—高效率爬蟲5.3.1多進程5.3.2多線程5.3.3協程5.3.4小結
第6章Python數據存儲
6.1關系型資料庫MySQL6.1.1初識MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初識NoSQL6.2.2Python操作MongoDB6.3本章小結6.3.1資料庫基本理論6.3.2資料庫結合6.3.3結束語
第7章Python數據分析
7.1數據獲取7.1.1從鍵盤獲取數據7.1.2文件的讀取與寫入7.1.3Pandas讀寫操作7.2數據分析案例7.2.1普查數據統計分析案例7.2.2小結
第8章自然語言處理
8.1Jieba分詞基礎8.1.1Jieba中文分詞8.1.2Jieba分詞的3種模式8.1.3標注詞性與添加定義詞8.2關鍵詞提取8.2.1TF-IDF關鍵詞提取8.2.2TextRank關鍵詞提取8.3word2vec介紹8.3.1word2vec基礎原理簡介8.3.2word2vec訓練模型8.3.3基於gensim的word2vec實戰
第9章從回歸分析到演算法基礎
9.1回歸分析簡介9.1.1「回歸」一詞的來源9.1.2回歸與相關9.1.3回歸模型的劃分與應用9.2線性回歸分析實戰9.2.1線性回歸的建立與求解9.2.2Python求解回歸模型案例9.2.3檢驗、預測與控制
第10章 從K-Means聚類看演算法調參
10.1K-Means基本概述10.1.1K-Means簡介10.1.2目標函數10.1.3演算法流程10.1.4演算法優缺點分析10.2K-Means實戰
第11章 從決策樹看演算法升級
11.1決策樹基本簡介11.2經典演算法介紹11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系數11.2.5小結11.3決策樹實戰11.3.1決策樹回歸11.3.2決策樹的分類
第12章 從樸素貝葉斯看演算法多變193
12.1樸素貝葉斯簡介12.1.1認識樸素貝葉斯12.1.2樸素貝葉斯分類的工作過程12.1.3樸素貝葉斯演算法的優缺點12.23種樸素貝葉斯實戰
第13章 從推薦系統看演算法場景
13.1推薦系統簡介13.1.1推薦系統的發展13.1.2協同過濾13.2基於文本的推薦13.2.1標簽與知識圖譜推薦案例13.2.2小結
第14章 從TensorFlow開啟深度學習之旅
14.1初識TensorFlow14.1.1什麼是TensorFlow14.1.2安裝TensorFlow14.1.3TensorFlow基本概念與原理14.2TensorFlow數據結構14.2.1階14.2.2形狀14.2.3數據類型14.3生成數據十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成隨機數14.4TensorFlow實戰
希望對你有幫助!!!
貴在堅持,自己掌握一些,在工作中不斷打磨,高薪不是夢!!
② 面試必會八大排序演算法(Python)
一、插入排序
介紹
插入排序的基本操作就是將一個數據插入到已經排好序的有序數據中,從而得到一個新的、個數加一的有序數據。
演算法適用於少量數據的排序,時間復雜度為O(n^2)。
插入排演算法是穩定的排序方法。
步驟
①從第一個元素開始,該元素可以認為已經被排序
②取出下一個元素,在已經排序的元素序列中從後向前掃描
③如果該元素(已排序)大於新元素,將該元素移到下一位置
④重復步驟3,直到找到已排序的元素小於或者等於新元素的位置
⑤將新元素插入到該位置中
⑥重復步驟2
排序演示
演算法實現
二、冒泡排序
介紹
冒泡排序(Bubble Sort)是一種簡單的排序演算法,時間復雜度為O(n^2)。
它重復地走訪過要排序的數列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該數列已經排序完成。
這個演算法的名字由來是因為越小的元素會經由交換慢慢「浮」到數列的頂端。
原理
循環遍歷列表,每次循環找出循環最大的元素排在後面;
需要使用嵌套循環實現:外層循環控制總循環次數,內層循環負責每輪的循環比較。
步驟
①比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。
②對每一對相鄰元素作同樣的工作,從開始第一對到結尾的最後一對。在這一點,最後的元素應該會是最大的數。
③針對所有的元素重復以上的步驟,除了最後一個。
④持續每次對越來越少的元素重復上面的步驟,直到沒有任何一對數字需要比較。
演算法實現:
三、快速排序
介紹
快速排序(Quicksort)是對冒泡排序的一種改進,借用了分治的思想,由C. A. R. Hoare在1962年提出。
基本思想
快速排序的基本思想是:挖坑填數 + 分治法。
首先選出一個軸值(pivot,也有叫基準的),通過一趟排序將待排記錄分隔成獨立的兩部分,其中一部分記錄的關鍵字均比另一部分的關鍵字小,則可分別對這兩部分記錄繼續進行排序,以達到整個序列有序。
實現步驟
①從數列中挑出一個元素,稱為 「基準」(pivot);
②重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊);
③對所有兩個小數列重復第二步,直至各區間只有一個數。
排序演示
演算法實現
四、希爾排序
介紹
希爾排序(Shell Sort)是插入排序的一種,也是縮小增量排序,是直接插入排序演算法的一種更高效的改進版本。希爾排序是非穩定排序演算法,時間復雜度為:O(1.3n)。
希爾排序是基於插入排序的以下兩點性質而提出改進方法的:
·插入排序在對幾乎已經排好序的數據操作時, 效率高, 即可以達到線性排序的效率;
·但插入排序一般來說是低效的, 因為插入排序每次只能將數據移動一位。
基本思想
①希爾排序是把記錄按下標的一定量分組,對每組使用直接插入演算法排序;
②隨著增量逐漸減少,每組包1含的關鍵詞越來越多,當增量減至1時,整個文件恰被分成一組,演算法被終止。
排序演示
演算法實現
五、選擇排序
介紹
選擇排序(Selection sort)是一種簡單直觀的排序演算法,時間復雜度為Ο(n2)。
基本思想
選擇排序的基本思想:比較 + 交換。
第一趟,在待排序記錄r1 ~ r[n]中選出最小的記錄,將它與r1交換;
第二趟,在待排序記錄r2 ~ r[n]中選出最小的記錄,將它與r2交換;
以此類推,第 i 趟,在待排序記錄ri ~ r[n]中選出最小的記錄,將它與r[i]交換,使有序序列不斷增長直到全部排序完畢。
排序演示
選擇排序的示例動畫。紅色表示當前最小值,黃色表示已排序序列,藍色表示當前位置。
演算法實現
六、堆排序
介紹
堆排序(Heapsort)是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法,它是選擇排序的一種。
利用數組的特點快速指定索引的元素。
基本思想
堆分為大根堆和小根堆,是完全二叉樹。
大根堆的要求是每個節點的值不大於其父節點的值,即A[PARENT[i]] >=A[i]。
在數組的非降序排序中,需要使用的就是大根堆,因為根據大根堆的要求可知,最大的值一定在堆頂。
排序演示
演算法實現
七、歸並排序
介紹
歸並排序(Merge sort)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
基本思想
歸並排序演算法是將兩個(或兩個以上)有序表合並成一個新的有序表,即把待排序序列分為若干個子序列,每個子序列是有序的。然後再把有序子序列合並為整體有序序列。
演算法思想
自上而下遞歸法(假如序列共有n個元素)
① 將序列每相鄰兩個數字進行歸並操作,形成 floor(n/2)個序列,排序後每個序列包含兩個元素;
② 將上述序列再次歸並,形成 floor(n/4)個序列,每個序列包含四個元素;
③ 重復步驟②,直到所有元素排序完畢。
自下而上迭代法
① 申請空間,使其大小為兩個已經排序序列之和,該空間用來存放合並後的序列;
② 設定兩個指針,最初位置分別為兩個已經排序序列的起始位置;
③ 比較兩個指針所指向的元素,選擇相對小的元素放入到合並空間,並移動指針到下一位置;
④ 重復步驟③直到某一指針達到序列尾;
⑤ 將另一序列剩下的所有元素直接復制到合並序列尾。
排序演示
演算法實現
八、基數排序
介紹
基數排序(Radix Sort)屬於「分配式排序」,又稱為「桶子法」。
基數排序法是屬於穩定性的排序,其時間復雜度為O (nlog(r)m) ,其中 r 為採取的基數,而m為堆數。
在某些時候,基數排序法的效率高於其他的穩定性排序法。
基本思想
將所有待比較數值(正整數)統一為同樣的數位長度,數位較短的數前面補零。然後,從最低位開始,依次進行一次排序。這樣從最低位排序一直到最高位排序完成以後,數列就變成一個有序序列。
基數排序按照優先從高位或低位來排序有兩種實現方案:
MSD(Most significant digital) 從最左側高位開始進行排序。先按k1排序分組, 同一組中記錄, 關鍵碼k1相等,再對各組按k2排序分成子組, 之後, 對後面的關鍵碼繼續這樣的排序分組, 直到按最次位關鍵碼kd對各子組排序後. 再將各組連接起來,便得到一個有序序列。MSD方式適用於位數多的序列。
LSD (Least significant digital)從最右側低位開始進行排序。先從kd開始排序,再對kd-1進行排序,依次重復,直到對k1排序後便得到一個有序序列。LSD方式適用於位數少的序列。
排序效果
演算法實現
九、總結
各種排序的穩定性、時間復雜度、空間復雜度的總結:
平方階O(n²)排序:各類簡單排序:直接插入、直接選擇和冒泡排序;
從時間復雜度來說:
線性對數階O(nlog₂n)排序:快速排序、堆排序和歸並排序;
O(n1+§))排序,§是介於0和1之間的常數:希爾排序 ;
線性階O(n)排序:基數排序,此外還有桶、箱排序。
③ 十大經典演算法之動圖演示
前面好奇心已經帶大家從 冒泡排序 開始,一直到 基數排序 ,從頭過了一遍,那麼這里歸納一下,將 十個經典演算法 的 演示圖 都放出來,供大家對比參考學習。
每張圖都會附帶詳細 解說鏈接 ,有需要的同學可以 點擊詳細了解學習 。
Python 實現經典演算法之冒泡排序
Python 實現經典演算法之選擇排序
Python 實現經典演算法之插入排序
Python 實現經典演算法之希爾排序
Python 實現經典演算法之歸並排序
Python 實現經典演算法之堆排序
Python 實現經典演算法之快速排序
Python 實現經典演算法之計數排序
Python 實現經典演算法之桶排序
Python 實現經典演算法之基數排序
好了,上面就是 經典十大排序演算法 的圖片演示了,我 盡可能 的都是放了動圖。
部分文章裡面可能不止一張圖片,我這里礙於篇幅和排版,就沒放。有需要的同學也可以 點擊 附帶的 鏈接 詳細 學習
④ python包含什麼演算法
Python基礎演算法有哪些?
1.
冒泡排序:是一種簡單直觀的排序演算法。重復地走訪過要排序的數列,一次比較兩個元素,如果順序錯誤就交換過來。走訪數列的工作是重復地進行直到沒有再需要交換,也就是說該排序已經完成。
2.
插入排序:沒有冒泡排序和選擇排序那麼粗暴,其原理最容易理解,插入排序是一種最簡單直觀的排序演算法啊,它的工作原理是通過構建有序序列,對於未排序數據在已排序序列中從後向前排序,找到對應位置。
3.
希爾排序:也被叫做遞減增量排序方法,是插入排序的改進版本。希爾排序是基於插入排序提出改進方法的排序演算法,先將整個待排序的記錄排序分割成為若干個子序列分別進行直接插入排序,待整個序列中的記錄基本有序時,再對全記錄進行依次直接插入排序。
4. 歸並排序:是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法Divide and的一個非常典型的應用。
5. 快速排序:由東尼·霍爾所發展的一種排序演算法。又是一種分而治之思想在排序演算法上的典型應用,本質上快速排序應該算是冒泡排序基礎上的遞歸分治法。
6.
堆排序:是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質,即子結點的鍵值或索引總是小於它的父結點。
7.
計算排序:其核心在於將輸入的數據值轉化為鍵存儲在額外開辟的數組空間中,作為一種線性時間復雜度的排序,計算排序要求輸入的數據必須是具有確定范圍的整數。