python圖片驗證碼
1. 如何利用python做簡單的驗證碼識別
1摘要
驗證碼是目前互聯網上非常常見也是非常重要的一個事物,充當著很多系統的防火牆功能,但是隨時OCR技術的發展,驗證碼暴露出來的安全問題也越來越嚴峻。本文介紹了一套字元驗證碼識別的完整流程,對於驗證碼安全和OCR識別技術都有一定的借鑒意義。
然後經過了一年的時間,筆者又研究和get到了一種更強大的基於CNN卷積神經網路的直接端到端的驗證識別技術(文章不是我的,然後我把源碼整理了下,介紹和源碼在這裡面):
基於python語言的tensorflow的『端到端』的字元型驗證碼識別源碼整理(github源碼分享)
2關鍵詞
關鍵詞:安全,字元圖片,驗證碼識別,OCR,Python,SVM,PIL
3免責聲明
本文研究所用素材來自於某舊Web框架的網站完全對外公開的公共圖片資源。
本文只做了該網站對外公開的公共圖片資源進行了爬取,並未越權做任何多餘操作。
本文在書寫相關報告的時候已經隱去漏洞網站的身份信息。
本文作者已經通知網站相關人員此系統漏洞,並積極向新系統轉移。
本報告的主要目的也僅是用於OCR交流學習和引起大家對驗證安全的警覺。
4引言
關於驗證碼的非技術部分的介紹,可以參考以前寫的一篇科普類的文章:
互聯網安全防火牆(1)--網路驗證碼的科普
裡面對驗證碼的種類,使用場景,作用,主要的識別技術等等進行了講解,然而並沒有涉及到任何技術內容。本章內容則作為它的技術補充來給出相應的識別的解決方案,讓讀者對驗證碼的功能及安全性問題有更深刻的認識。
5基本工具
要達到本文的目的,只需要簡單的編程知識即可,因為現在的機器學習領域的蓬勃發展,已經有很多封裝好的開源解決方案來進行機器學習。普通程序員已經不需要了解復雜的數學原理,即可以實現對這些工具的應用了。
主要開發環境:
python3.5
python SDK版本
PIL
圖片處理庫
libsvm
開源的svm機器學習庫
准備原始圖片素材
圖片預處理
圖片字元切割
圖片尺寸歸一化
圖片字元標記
字元圖片特徵提取
生成特徵和標記對應的訓練數據集
訓練特徵標記數據生成識別模型
使用識別模型預測新的未知圖片集
達到根據「圖片」就能返回識別正確的字元集的目標
- def get_feature(img): """
- 獲取指定圖片的特徵值,
- 1. 按照每排的像素點,高度為10,則有10個維度,然後為6列,總共16個維度
- :param img_path:
- :return:一個維度為10(高度)的列表 """
- width, height = img.size
- pixel_cnt_list = []
- height = 10 for y in range(height):
- pix_cnt_x = 0 for x in range(width): if img.getpixel((x, y)) == 0: # 黑色點
- pix_cnt_x += 1
- pixel_cnt_list.append(pix_cnt_x) for x in range(width):
- pix_cnt_y = 0 for y in range(height): if img.getpixel((x, y)) == 0: # 黑色點
- pix_cnt_y += 1
- pixel_cnt_list.append(pix_cnt_y) return pixel_cnt_list
關於環境的安裝,不是本文的重點,故略去。
6基本流程
一般情況下,對於字元型驗證碼的識別流程如下:
7素材准備
7.1素材選擇
由於本文是以初級的學習研究目的為主,要求「有代表性,但又不會太難」,所以就直接在網上找個比較有代表性的簡單的字元型驗證碼(感覺像在找漏洞一樣)。
最後在一個比較舊的網站(估計是幾十年前的網站框架)找到了這個驗證碼圖片。
原始圖:
然後就將圖片素材特徵化,按照libSVM指定的格式生成一組帶特徵值和標記值的向量文
2. python怎麼生成隨機圖形驗證碼
1.安裝pillow模塊
pip install pillow
2.pillow模塊的基本使用
1.創建圖片
from PIL import Image
#定義使用Image類實例化一個長為400px,寬為400px,基於RGB的(255,255,255)顏色的圖片
img1=Image.new(mode="RGB",size=(400,400),color=(255,255,255))
#把生成的圖片保存為"pic.png"格式
with open("pic.png","wb") as f:
img1.save(f,format="png")
#顯示圖片
img1.show()
運行程序,程序會在py文件的同級下生成一個名為"pic.png"的小圖片,圖片長為400px,寬為400px,顏色為白色.
2.創建畫筆
#創建畫筆,用於在圖片上生成內容
draw1=ImageDraw.Draw(img1,mode="RGB")
3.在圖片上生成點
#在(100,100)坐標上生成一個紅點,指定的坐標不能超過圖片的尺寸
draw1.point([100,100],pill="red")
#在(80,80)坐標上生成一個黑點,指定的坐標不能超過圖片的尺寸
draw1.point([80,80],fill=(0,0,0))
4.在圖片上畫線
#第一個括弧裡面的參數是坐標,前兩個數為開始坐標,後兩個數為結束坐標
#括弧里的第二個參數指定顏色,可以直接指定,也可以用RGB來表示顏色
draw1.line((100,100,100,300),fill="red")
draw1.line((100,200,200,100),fill="blue")
運行程序,畫筆會在(100,100)到(100,300)坐標之間畫一條紅色的豎線,在(100,200)到(200,100)坐標之間畫一根藍色的斜線
5.在圖片在畫圓
#括弧里的第一個參數是坐標,前兩個數為起始坐標,後兩個為結束坐標
#用這兩個坐標之間的正方形區域生成一個圓,大括弧里的第二個參數為圓的開始角度
#第三個參數為圓的結束角度,0到360表示所畫的是一個完整的圓形,
#也可以指定的數字來生成一段為圓弧,最後一個參數表示顏色,也可以用RGB來表示想要的顏色
draw1.arc((100,100,300,300),0,360,fill="red")
draw1.arc((0,0,300,300),0,90,fill="blue")
6.在圖片在寫文本
#使用畫筆的text方法在圖片上生成文本
#第一個參數為坐標,第二個參數為所有生成的文本的內容
#第三個參數為文本的顏色
draw1.text([0,0],"python","blue")
7.在圖片在生成指定字體的文本
#先實例化一個字體對象,第一個參數表示字體的路徑,第二個參數表示字體大小
font1=ImageFont.truetype("One Chance.ttf",28)
#在圖片上生成字體
#第一個括弧里的參數表示坐標,第二個參數表示寫入的內容
#第三個參數表示顏色,第四個參數表示使用的字體對象
draw1.text([200,200],"linux","red",font=font1)
圖片驗證碼的實例
#導入random模塊
import random
#導入Image,ImageDraw,ImageFont模塊
from PIL import Image,ImageDraw,ImageFont
#定義使用Image類實例化一個長為120px,寬為30px,基於RGB的(255,255,255)顏色的圖片
img1=Image.new(mode="RGB",size=(120,30),color=(255,255,255))
#實例化一支畫筆
draw1=ImageDraw.Draw(img1,mode="RGB")
#定義要使用的字體
font1=ImageFont.truetype("One Chance.ttf",28)
for i in range(5):
#每循環一次,從a到z中隨機生成一個字母或數字
#65到90為字母的ASCII碼,使用chr把生成的ASCII碼轉換成字元
#str把生成的數字轉換成字元串
char1=random.choice([chr(random.randint(65,90)),str(random.randint(0,9))])
#每循環一次重新生成隨機顏色
color1=(random.randint(0,255),random.randint(0,255),random.randint(0,255))
#把生成的字母或數字添加到圖片上
#圖片長度為120px,要生成5個數字或字母則每添加一個,其位置就要向後移動24px
draw1.text([i*24,0],char1,color1,font=font1)
#把生成的圖片保存為"pic.png"格式
with open("pic.png","wb") as f:
img1.save(f,format="png")
3. 怎麼通過python獲取驗證碼圖片
因為驗證碼圖片是禁止緩存的 ,當然無法用緩存函數獲取了。 解決方法有很多。可以用同樣的會話再次請求得到圖片。
4. python爬取驗證碼圖片,遇到驗證碼src屬性為完整的網址應該怎麼做
爬蟲中手動輸入驗證碼方法無法獲取圖片src地址
驗證碼在html中圖片標簽內容:
<class=「verCodeImg」 src="/kaptcha.jpg?v=0.234724039578059" οnclick=「verCode(this)」>
< class=「verCodeImg」 src="/kaptcha.jpg?v=0.234724239578059" οnclick=「verCode(this)」>
可知獲取到驗證碼的src地址就能動態的獲得驗證碼
因為驗證碼是動態的!動態的!動態的!
用動態爬取網頁的方法:
要用到selenium庫
其實獲得了驗證碼的src地址,我還是沒能成功登陸
因為即使是相同的鏈接點進去,每一次刷新都會有不同的驗證碼
通過動態網頁打開是一張
解析src地址出來是另一張
5. python抓取網頁時是如何處理驗證碼的
python抓取網頁時是如何處理驗證碼的?下面給大家介紹幾種方法:
1、輸入式驗證碼
這種驗證碼主要是通過用戶輸入圖片中的字母、數字、漢字等進行驗證。如下圖:
解決思路:這種是最簡單的一種,只要識別出裡面的內容,然後填入到輸入框中即可。這種識別技術叫OCR,這里我們推薦使用Python的第三方庫,tesserocr。對於沒有什麼背影影響的驗證碼如圖2,直接通過這個庫來識別就可以。但是對於有嘈雜的背景的驗證碼這種,直接識別識別率會很低,遇到這種我們就得需要先處理一下圖片,先對圖片進行灰度化,然後再進行二值化,再去識別,這樣識別率會大大提高。
相關推薦:《Python入門教程》
2、滑動式驗證碼
這種是將備選碎片直線滑動到正確的位置,如下圖:
解決思路:對於這種驗證碼就比較復雜一點,但也是有相應的辦法。我們直接想到的就是模擬人去拖動驗證碼的行為,點擊按鈕,然後看到了缺口的位置,最後把拼圖拖到缺口位置處完成驗證。
第一步:點擊按鈕。然後我們發現,在你沒有點擊按鈕的時候那個缺口和拼圖是沒有出現的,點擊後才出現,這為我們找到缺口的位置提供了靈感。
第二步:拖到缺口位置。
我們知道拼圖應該拖到缺口處,但是這個距離如果用數值來表示?
通過我們第一步觀察到的現象,我們可以找到缺口的位置。這里我們可以比較兩張圖的像素,設置一個基準值,如果某個位置的差值超過了基準值,那我們就找到了這兩張圖片不一樣的位置,當然我們是從那塊拼圖的右側開始並且從左到右,找到第一個不一樣的位置時就結束,這是的位置應該是缺口的left,所以我們使用selenium拖到這個位置即可。
這里還有個疑問就是如何能自動的保存這兩張圖?
這里我們可以先找到這個標簽,然後獲取它的location和size,然後 top,bottom,left,right = location['y'] ,location['y']+size['height']+ location['x'] + size['width'] ,然後截圖,最後摳圖填入這四個位置就行。
具體的使用可以查看selenium文檔,點擊按鈕前摳張圖,點擊後再摳張圖。最後拖動的時候要需要模擬人的行為,先加速然後減速。因為這種驗證碼有行為特徵檢測,人是不可能做到一直勻速的,否則它就判定為是機器在拖動,這樣就無法通過驗證了。
3、點擊式的圖文驗證和圖標選擇
圖文驗證:通過文字提醒用戶點擊圖中相同字的位置進行驗證。
圖標選擇: 給出一組圖片,按要求點擊其中一張或者多張。借用萬物識別的難度阻擋機器。
這兩種原理相似,只不過是一個是給出文字,點擊圖片中的文字,一個是給出圖片,點出內容相同的圖片。
這兩種沒有特別好的方法,只能藉助第三方識別介面來識別出相同的內容,推薦一個超級鷹,把驗證碼發過去,會返回相應的點擊坐標。
然後再使用selenium模擬點擊即可。具體怎麼獲取圖片和上面方法一樣。
4、宮格驗證碼
這種就很棘手,每一次出現的都不一樣,但是也會出現一樣的。而且拖動順序都不一樣。
但是我們發現不一樣的驗證碼個數是有限的,這里採用模版匹配的方法。我覺得就好像暴力枚舉,把所有出現的驗證碼保存下來,然後挑出不一樣的驗證碼,按照拖動順序命名,我們從左到右上下到下,設為1,2,3,4。上圖的滑動順序為4,3,2,1,所以我們命名4_3_2_1.png,這里得手動搞。當驗證碼出現的時候,用我們保存的圖片一一枚舉,與出現這種比較像素,方法見上面。如果匹配上了,拖動順序就為4,3,2,1。然後使用selenium模擬即可。
6. 如何利用Python 做驗證碼識別
用python加「驗證碼」為關鍵詞在里搜一下,可以找到很多關於驗證碼識別的文章。我大體看了一下,主要方法有幾類:一類是通過對圖片進行處理,然後利用字型檔特徵匹配的方法,一類是圖片處理後建立字元對應字典,還有一類是直接利用ocr模塊進行識別。不管是用什麼方法,都需要首先對圖片進行處理,於是試著對下面的驗證碼進行分析。
一、圖片處理
這個驗證碼中主要的影響因素是中間的曲線,首先考慮去掉圖片中的曲線。考慮了兩種演算法:
第一種是首先取到曲線頭的位置,即x=0時,黑點的位置。然後向後移動x的取值,觀察每個x下黑點的位置,判斷前後兩個相鄰黑點之間的距離,如果距離在一定范圍內,可以基本判斷該點是曲線上的點,最後將曲線上的點全部繪成白色。試了一下這種方法,結果得到的圖片效果很一般,曲線不能完全去除,而且容量將字元的線條去除。
第二種考慮用單位面積內點的密度來進行計算。於是首先計算單位面積內點的個數,將單位面積內點個數少於某一指定數的面積去除,剩餘的部分基本上就是驗證碼字元的部分。本例中,為了便於操作,取了5*5做為單位范圍,並調整單位面積內點的標准密度為11。處理後的效果:
二、字元驗證
這里我使用的方法是利用pytesser進行ocr識別,但由於這類驗證碼字元的不規則性,使得驗證結果的准確性並不是很高。具體哪位大牛,有什麼好的辦法,希望能給指點一下。
三、准備工作與代碼實例
1、PIL、pytesser、tesseract
(1)安裝PIL:下載地址:http:// www. pythonware. com/procts/pil/(2)pytesser:下載地址:http :/ /code. google. com/p/pytesser/,下載解壓後直接放在代碼相同的文件夾下,即可使用。
(3)Tesseract OCR engine下載:http: / / code.google. com/p/tesseract-ocr/,下載後解壓,找到tessdata文件夾,用其替換掉pytesser解壓後的tessdata文件夾即可。
2、具體代碼
復制代碼
#encoding=utf-8
###利用點的密度計算
import Image,ImageEnhance,ImageFilter,ImageDrawimport sys
from pytesser import *
#計算范圍內點的個數
def numpoint(im):
w,h = im.size
data = list( im.getdata() )
mumpoint=0
for x in range(w):
for y in range(h):
if data[ y*w + x ] !=255:#255是白色
mumpoint+=1
return mumpoint
#計算5*5范圍內點的密度
def pointmi(im):
w,h = im.size
p=[]
for y in range(0,h,5):
for x in range(0,w,5):
box = (x,y, x+5,y+5)
im1=im.crop(box)
a=numpoint(im1)
if a<11:##如果5*5范圍內小於11個點,那麼將該部分全部換為白色。
for i in range(x,x+5):
for j in range(y,y+5):
im.putpixel((i,j), 255)
im.save(r'img.jpg')
def ocrend():##識別
image_name = "img.jpg"
im = Image.open(image_name)
im = im.filter(ImageFilter.MedianFilter())enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
im.save("1.tif")
print image_file_to_string('1.tif')
if __name__=='__main__':
image_name = "1.png"
im = Image.open(image_name)
im = im.filter(ImageFilter.DETAIL)
im = im.filter(ImageFilter.MedianFilter())enhancer = ImageEnhance.Contrast(im)
im = enhancer.enhance(2)
im = im.convert('1')
##a=remove_point(im)
pointmi(im)
ocrend()
7. 請教生成如圖驗證碼的python演算法
def gene_text():
source = list(string.letters)
for index in range(0,10):
source.append(str(index))
return ''.join(random.sample(source,number))#number是生成驗證碼的位數
然後我們要創建一個圖片,寫入字元串,需要說明的這裡面的字體是不同系統而定,如果沒有找到系統字體路徑的話,也可以不設置
def gene_code():
width,height = size #寬和高
image = Image.new('RGBA',(width,height),bgcolor) #創建圖片
font = ImageFont.truetype(font_path,25) #驗證碼的字體和字體大小
draw = ImageDraw.Draw(image) #創建畫筆
text = gene_text() #生成字元串
font_width, font_height = font.getsize(text)
draw.text(((width - font_width) / number, (height - font_height) / number),text,
font= font,fill=fontcolor) #填充字元串
接下來,我們要在圖片上畫幾條干擾線
#用來繪制干擾線
def gene_line(draw,width,height):
begin = (random.randint(0, width), random.randint(0, height))
end = (random.randint(0, width), random.randint(0, height))
draw.line([begin, end], fill = linecolor)
最後創建扭曲,加上濾鏡,用來增強驗證碼的效果。
image = image.transform((width+20,height+10), Image.AFFINE, (1,-0.3,0,-0.1,1,0),Image.BILINEAR) #創建扭曲
image = image.filter(ImageFilter.EDGE_ENHANCE_MORE) #濾鏡,邊界加強
image.save('idencode.png') #保存驗證碼圖片
8. 用python如何直接獲取jsp生成的驗證碼圖片
你只需要正常請求圖片就行了,分析一下image的src,把它拼接成一個完整的URL去請求就好了,得到的有可能是BASE64編碼串,或者是文件,把它保存下來就可以了。
9. python 如果抓取驗證碼圖片 類似12306的登錄驗證碼圖片
這個以前做過多次。最大的麻煩是驗證碼的識別演算法的識別率太低。比如12306那種網站你登陸錯3次就限制你20分鍾。所以除非你有33%以上的識別率否則不要嘗試了。
通常做法是另存驗證碼圖片,通常收集幾十個,然後訓練自己的識別演算法。我曾經用PIL庫自己做過識別演算法,最高只有10%的識別率。效率還可以,一秒可以識別10次左右。主要是圖片很小,所以處理起來也快。
驗證碼識別還有多少公開的演算法,只能用來參考。不過真正識別都需要自己根據實際情況去訓練改進演算法。
10. python如何識別驗證碼
我們首先識別最簡單的一種驗證碼,即圖形驗證碼。這種驗證碼最早出現,現在也很常見,一般由4位字母或者數字組成。例如,中國知網的注冊頁面有類似的驗證碼,頁面如下所示:
表單中最後一項就是圖形驗證碼,我們必須完全正確輸入圖中的字元才可以完成注冊。
更多有關驗證碼的知識,可以參考這些文章:
Python3爬蟲進階:識別圖形驗證碼
Python3爬蟲進階:識別極驗滑動驗證碼
Python3爬蟲進階:識別點觸點選驗證碼
Python3爬蟲進階:識別微博宮格驗證碼
·本節目標以知網的驗證碼為例,講解利用OCR技術識別圖形驗證碼的方法。
·准備工作識別圖形驗證碼需要庫tesserocr,以mac安裝為例:在mac下,我們首先使用Homebrew安裝ImageMagick和tesseract庫: brew install imagemagickbrew install tesseract 接下來再安裝tesserocr即可:pip3 install tesserocr pillow這樣我們就完成了 tesserocr的安裝。
·獲取驗證碼為了便於實驗,我們先將驗證碼的圖片保存到本地。打開開發者工具,找到驗證碼元素。驗證碼元素是一張圖片,它的ser屬 性是CheckCode.aspk。所以我們直接打開如下鏈接就可以看到一個驗證碼,右鍵保存即可,將其命名為code.jpg:
這樣我們就得到一張驗證碼圖片,以供測試識別使用。
相關推薦:《Python教程》
識別測試
接下來新建一個項目,將驗證碼圖片放到項目根目錄下,用tesserocr庫識別該驗證碼,代碼如下所示:
這里我們新建了一個Image對戲那個,調用了tesserocr的image_to_text( )方法。傳入該Image對象即可完成識別,實現過程非常簡單,結果如下:
我們可以看到,識別的結果和實際結果有偏差,這是因為驗證碼內的多餘線條干擾了圖片的識別。
另外,tesserocr還有一個更加簡單的方法,這個方法可以直接將圖片文件轉為字元串,代碼如下:
不過這種方法的識別效果不如上一種的好。
驗證碼處理
對於上面的圖片,我們可以看到其實並沒有完全識別正確,所以我們需要對圖像作進一步的處理,如灰度轉換、二值化等操作。
我們可以利用Image對象的convert( )方法參數傳入L,即可將圖片轉化為灰度圖像,代碼如下:
傳入1即可將圖片進行二值化處理,如下所示:
我們還可以指定二值化的閾值。上面的方法採用的是默認閾值127。不過我們不能直接轉化原圖,要將原圖先轉化為灰度圖像,然後再指定二值化閾值,代碼如下:
在這里,變數threshold代表二值化閾值,閾值設置為160,之後我們來看看我們的結果:
我們可以看到現在的二維碼就比較方便我們進行識別了;那麼對於一些有干擾的圖片,我們做一些灰度和二值化處理,這會提高圖片識別的正確率。