python數據分析pandas
① python(pandas模塊)
Pandas是Python的一個數據分析包,最初由AQR Capital
Management於2008年4月開發,並於2009年底開源出來,目前由專注於Python數據包開發的Pydata開發team繼續開發和維護,屬於PyData項目的一部分,pandas最初被作為金融數據分析工具而開發出來,因此pandas為時間序列分析提供了很好的支持。
Pandas的名稱來自於面板數據和python數據分析。panel
data是經濟學中關於多維數據集的一個術語,在Pandas中也提供了panel的數據類型。
Pandas數據結構:
Series:一維數組,與numpy中的一維array類似。二者與Python基本的數據結構list相近,Series如今能保存不同種數據類型,字元串、boolean值、數字等都能保存在series中。
Time-series:以時間為索引的series。
DataFrame:二維的表格型數據結構,很多功能與R中的data.frame類似,可以將DataFrame理解為Series的容器。
Panel :三維的數組,可以理解為DataFrame的容器。
Panel4D:是像Panel一樣的4維數據容器。
PanelND:擁有factory集合,可以創建像Panel4D一樣N維命名容器的模塊。
② 如何用python進行數據分析
1、Python數據分析流程及學習路徑
數據分析的流程概括起來主要是:讀寫、處理計算、分析建模和可視化四個部分。在不同的步驟中會用到不同的Python工具。每一步的主題也包含眾多內容。
根據每個部分需要用到的工具,Python數據分析的學習路徑如下:
相關推薦:《Python入門教程》
2、利用Python讀寫數據
Python讀寫數據,主要包括以下內容:
我們以一小段代碼來看:
可見,僅需簡短的兩三行代碼即可實現Python讀入EXCEL文件。
3、利用Python處理和計算數據
在第一步和第二步,我們主要使用的是Python的工具庫NumPy和pandas。其中,NumPy主要用於矢量化的科學計算,pandas主要用於表型數據處理。
4、利用Python分析建模
在分析和建模方面,主要包括Statsmdels和Scikit-learn兩個庫。
Statsmodels允許用戶瀏覽數據,估計統計模型和執行統計測試。可以為不同類型的數據和每個估算器提供廣泛的描述性統計,統計測試,繪圖函數和結果統計列表。
Scikit-leran則是著名的機器學習庫,可以迅速使用各類機器學習演算法。
5、利用Python數據可視化
數據可視化是數據工作中的一項重要內容,它可以輔助分析也可以展示結果。
③ 如何利用python進行數據分析
利用python進行數據分析
鏈接: https://pan..com/s/15VdW4dcuPuIUEPrY3RehtQ
本書也可以作為利用Python實現數據密集型應用的科學計算實踐指南。本書適合剛剛接觸Python的分析人員以及剛剛接觸科學計算的Python程序員。
④ 用python數據分析是不是用的pandas
pandas包最基本的功能
1、讀取數據:
data = pd.read_csv('my_file.csv')
data=pd.read_csv('my_file.csv',sep=';',encoding='latin-1',nrows=1000, kiprows=[2,5])
sep變數代表分隔符。因為Excel中的csv分隔符是「;」,因此需要顯示它。編碼設置為「latin-1」以讀取法語字元。nrows=1000表示讀取前1000行。skiprows=[2,5]表示在讀取文件時將刪除第2行和第5行
最常用的函數:read_csv, read_excel
還有一些很不錯的函數:read_clipboard、read_sql
2、寫入數據
data.to_csv('my_new_file.csv', index=None)
index=None將簡單地按原樣寫入數據。如果你不寫index=None,會得到額外的行。
我通常不使用其他函數,比如to_excel,to_json,to_pickle,to_csv,雖然它們也做得很好,但是csv是保存表最常用的方法。
3、檢查數據:
data.shape
data.describe()
data.head(3)
.head(3)列印數據的前3行,.tail()函數將查看數據的最後一行。
data.loc[8]
列印第8行。
data.loc[8, 'column_1']
將第8行值列印在「column_1」上。
data.loc[range(4,6)]
列印第4行到第6行。
⑤ python數據分析需要哪些庫
1.Numpy庫
是Python開源的數值計算擴展工具,提供了Python對多維數組的支持,能夠支持高級的維度數組與矩陣運算。此外,針對數組運算也提供了大量的數學函數庫,Numpy是大部分Python科學計算的基礎,具有很多功能。
2.Pandas庫
是一個基於Numpy的數據分析包,為了解決數據分析任務而創建的。Pandas中納入了大量庫和標準的數據模型,提供了高效地操作大型數據集所需要的函數和方法,使用戶能快速便捷地處理數據。
3.Matplotlib庫
是一個用在Python中繪制數組的2D圖形庫,雖然它起源於模仿MATLAB圖形命令,但它獨立於MATLAB,可以通過Pythonic和面向對象的方式使用,是Python中Z出色的繪圖庫。主要用純Python語言編寫的,它大量使用Numpy和其他擴展代碼,即使對大型數組也能提供良好的性能。
4.Seaborn庫
是Python中基於Matplotlib的數據可視化工具,提供了很多高層封裝的函數,幫助數據分析人員快速繪制美觀的數據圖形,從而避免了許多額外的參數配置問題。
5.NLTK庫
被稱為使用Python進行教學和計算語言學工作的Z佳工具,以及用自然語言進行游戲的神奇圖書館。NLTK是一個領先的平台,用於構建使用人類語言數據的Python程序,它為超過50個語料庫和詞彙資源提供了易於使用的介面,還提供了一套文本處理庫,用於分類、標記化、詞干化、解析和語義推理、NLP庫的包裝器和一個活躍的討論社區。
⑥ 怎麼利用pandas做數據分析
基本使用:創建DataFrame. DataFrame是一張二維的表,大家可以把它想像成一張Excel表單或者Sql表。Excel 2007及其以後的版本的最大行數是1048576,最大列數是16384,超過這個規模的數據Excel就會彈出個框框「此文本包含多行文本,無法放置在一個工作表中」。Pandas處理上千萬的數據是易如反掌的sh事情,同時隨後我們也將看到它比SQL有更強的表達能力,可以做很多復雜的操作,要寫的code也更少。
⑦ 怎麼利用pandas做數據分析
Pandas是Python下一個開源數據分析的庫,它提供的數據結構DataFrame極大的簡化了數據分析過程中一些繁瑣操作。
1. 基本使用:創建DataFrame. DataFrame是一張二維的表,大家可以把它想像成一張Excel表單或者Sql表。Excel 2007及其以後的版本的最大行數是1048576,最大列數是16384,超過這個規模的數據Excel就會彈出個框框「此文本包含多行文本,無法放置在一個工作表中」。Pandas處理上千萬的數據是易如反掌的sh事情,同時隨後我們也將看到它比SQL有更強的表達能力,可以做很多復雜的操作,要寫的code也更少。
說了一大堆它的好處,要實際感觸還得動手碼代碼。首要的任務就是創建一個DataFrame,它有幾種創建方式:
(1)列表,序列(pandas.Series), numpy.ndarray的字典
二維numpy.ndarray
別的DataFrame
結構化的記錄(structured arrays)
(2)其中,二維ndarray創建DataFrame,代碼敲得最少:
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(10, 4))
df
0 1 2 3
0 0.927474 0.127571 1.655908 0.570818
1 -0.425084 -0.382933 0.468073 -0.862898
2 -1.602712 -0.225793 -0.688641 1.167477
3 -1.771992 -0.692575 -0.693494 -1.063697
4 -0.456724 0.371165 1.883742 -0.344189
5 1.024734 0.647224 1.134449 0.266797
6 1.247507 0.114464 2.271932 -0.682767
7 -0.190627 -0.096997 -0.204778 -0.440155
8 -0.471289 -1.025644 -0.741181 -1.707240
9 -0.172242 0.702187 -1.138795 -0.112005
(3)通過describe方法,可以對df中的數據有個大概的了解:
df.describe()
0 1 2 3
count 10.000000 10.000000 10.000000 10.000000
mean -0.189096 -0.046133 0.394722 -0.320786
std 1.027134 0.557420 1.258019 0.837497
min -1.771992 -1.025644 -1.138795 -1.707240
25% -0.467648 -0.343648 -0.692281 -0.817865
50% -0.307856 0.008734 0.131648 -0.392172
75% 0.652545 0.310266 1.525543 0.172096
max 1.247507 0.702187 2.271932 1.167477
2. 改變cell。
3. group by。
4. 讀寫文件。
⑧ 新手Python數據分析如何入門
1、數據獲取Python具有靈活易用,便利讀寫的特點,其能夠非常便利地調用資料庫和本地的數據,同時,Python也是當下網路爬蟲的首選東西。Scrapy爬蟲,Python開發的一個快速、高層次的屏幕抓取和web抓取框架,用於抓取web站點並從頁面中提取結構化的數據。Scrapy用途廣泛,能夠用於數據挖掘、監測和自動化測驗。
2、數據整理NumPy供給了許多高檔的數值編程東西,如:矩陣數據類型、矢量處理,以及精密的運算庫。專為進行嚴格的數字處理而產生。多為很多大型金融公司運用,以及核心的科學核算組織如:Lawrence
Livermore,NASA用其處理一些原本運用C++,Fortran或Matlab等所做的使命。PandasPandas是根據NumPy的一種東西,該東西是為了處理數據剖析使命而創立的。Pandas納入了大量庫和一些標準的數據模型,供給了高效地操作大型數據集所需的東西。pandas供給了大量能使咱們快速便捷地處理數據的函數和方法。你很快就會發現,它是使Python成為強壯而高效的數據剖析環境的重要因素之一。
3、建模剖析Scikit-learn從事數據剖析建模必學的包,供給及匯總了當時數據剖析范疇常見的演算法及處理問題,如分類問題、回歸問題、聚類問題、降維、模型挑選、特徵工程。
4、數據可視化如果在Python中看可視化,你可能會想到Matplotlib。除此之外,Seaborn是一個類似的包,這是用於統計可視化的包。關於自學python入門,Python數據剖析怎麼入門,以上就是一個根本的學習路線規劃了。
⑨ python可以做數據分析嗎
Python已成為數據分析和數據科學事實上的標准語言和標准平台之一。
下面是Python生態系統為數據分析師和數據科學家提供的常用程序庫。
NumPy:這是一個通用程序庫,不僅支持常用的數值數組,同時提供了用於高效處理這些數組的函數。
SciPy:這是Python的科學計算庫,對NumPy的功能進行了大量擴充,同時也有部分功能是重合的。Numpy和SciPy曾經共享基礎代碼,後來分道揚鑣了。
Pandas:這是一個用於數據處理的程序庫,不僅提供了豐富的數據結構,同時為處理數據表和時間序列提供了相應的函數。
Matplotlib:這是一個2D繪圖庫,在繪制圖形和圖像方面提供了良好的支持。當前,Matplotlib已經並入SciPy中並支持NumPy。
IPython:這個庫為Python提供了強大的互動式Shell,也為Jupyter提供了內核,同時還支持互動式數據可視化功能。
Jupyter Notebook:它提供了一個基於Web的互動式shell,可以創建和共享支持可實時代碼和可視化的文檔。Jupyter Notebook通過IPython提供的內核支持多個版本的Python。
python可以說是數據分析一大利器。
⑩ python數據分析需要哪些庫
1.Numpy庫
是Python開源的數值計算擴展工具,提供了Python對多維數組的支持,能夠支持高級的維度數組與矩陣運算。此外,針對數組運算也提供了大量的數學函數庫,Numpy是大部分Python科學計算的基礎,具有很多功能。
2.Pandas庫
是一個基於Numpy的數據分析包,為了解決數據分析任務而創建的。Pandas中納入了大量庫和標準的數據模型,提供了高效地操作大型數據集所需要的函數和方法,使用戶能快速便捷地處理數據。
3.Matplotlib庫
是一個用在Python中繪制數組的2D圖形庫,雖然它起源於模仿MATLAB圖形命令,但它獨立於MATLAB,可以通過Pythonic和面向對象的方式使用,是Python中最出色的繪圖庫。主要用純Python語言編寫的,它大量使用Numpy和其他擴展代碼,即使對大型數組也能提供良好的性能。
4.Seaborn庫
是Python中基於Matplotlib的數據可視化工具,提供了很多高層封裝的函數,幫助數據分析人員快速繪制美觀的數據圖形,從而避免了許多額外的參數配置問題。
5.NLTK庫
被稱為使用Python進行教學和計算語言學工作的最佳工具,以及用自然語言進行游戲的神奇圖書館。NLTK是一個領先的平台,用於構建使用人類語言數據的Python程序,它為超過50個語料庫和詞彙資源提供了易於使用的介面,還提供了一套文本處理庫,用於分類、標記化、詞干化、解析和語義推理、NLP庫的包裝器和一個活躍的討論社區。