c語言中指針的定義
⑴ c語言指針變數定義
根據你的定義,使用LinkList定義的變數是指針變數,而加上*即LinkList *C表示的是指向指針的指針,表示二級指針變數。
你的合並函數是一個沒有返回值的函數,所以你在函數體內更改C要達到更改實參的效果,你必須傳入實參的地址。
如果是一級指針,C接收實參指向的對象地址,如果此時在函數體內對C進行賦值,只是改變了函數體內C的指向,實參還是指向原來的地址。函數內是改變不了實參C本身的指向,只有傳入實參C變數本身的地址,那麼形參就要定義指向指針的變數來接收實參。
以上是一種方法,另外一種方法就是通過函數返回值,返回新合並的鏈表的頭。那函數類型就可以改為:
LinkList MergeList(LinkList a, LinkList b)。
這可以多練習好好理解一下。
⑵ c語言指針定義,有什麼用,作用有
指針是C語言中廣泛使用的一種數據類型。 運用指針編程是C語言最主要的風格之一。利用指針變數可以表示各種數據結構; 能很方便地使用數組和字元串; 並能象匯編語言一樣處理內存地址,從而編出精練而高效的程序。指針極大地豐富了C語言的功能。 學習指針是學習C語言中最重要的一環, 能否正確理解和使用指針是是否掌握C語言的一個標志。同時, 指針也是C語言中最為困難的一部分,在學習中除了要正確理解基本概念,還必須要多編程,上機調試。只要作到這些,指針也是不難掌握的。
指針的基本概念在計算機中,所有的數據都是存放在存儲器中的。 一般把存儲器中的一個位元組稱為一個內存單元, 不同的數據類型所佔用的內存單元數不等,如整型量佔2個單元,字元量佔1個單元等。為了正確地訪問這些內存單元, 必須為每個內存單元編上號。 根據一個內存單元的編號即可准確地找到該內存單元。內存單元的編號也叫做地址。 既然根據內存單元的編號或地址就可以找到所需的內存單元,所以通常也把這個地址稱為指針
⑶ C語言指針概念~
首先指針本身也是一個變數,也是有內容的,這個內存肯定一個整數,對應你電腦的內存,內存在C語言的系統中是編號的
比如如果一個指針的值是1024,那就說明他指向了內存中這個第1024位元組的地方,指向這個詞語只是抽象意義的,作為一個變數,它的內容(值)就是1024,但是你就要理解為指向
變數是存在內存裡面的,如果一個變數存在第1024位元組的地方,前面那個指針的值是1024,這樣那個指針就「指向」這個變數了。
變數是實體存在在某一個位置,指針就是這個位置的編號。這樣就能理解了吧
至於前面那個指針是存在哪裡的?
答案肯定也是在內存中,但反正不是1024
⑷ 論述C語言中指針的概念和作用,並舉例說明
1、指針概念:變數的地址(計算機內存位元組的編號)叫做指針,存放變數地址的變數叫指針變
量,
簡言之,指針是用來存放地址的。
2、作用:指向這個變數或數組的首地址,是變數的間接引用方式。其值如果改變,變數的值或數組元素的值也會跟著改變。程序對變數的操作實際上是對變數所在的存儲空間讀取和寫入數據。方便對變數的操作。
舉例說明:
int
a=3;/*定義一個整型變數a,並賦初值3*/
int
*p;/*定義一個指針變數P*/
p=&a;/*讓p指向a的首地址,也就是a的地址*/
程序為a分配一個2個位元組的存儲單元,假如2個位元組的地址分別為(ABCD1和ABCD2,唯一),那麼p裡面放的值就是ABCD1,不是3。這時可通過p直接引用a,實際上*p=3。以後不管a存放在內存中的哪個地方,只用通過調用p就可以引用a。這時如果令*p=4,則最後的a值也為4。對於數組,指針是指向數組的首地址。
⑸ 在C語言中什麼是指針
指針是C語言裡面的一個重要概念,也是C語言的難點之一.指針可以表示許多復雜的數據結構,如隊列,棧,鏈表,樹,圖等.
要學習指針,應該先了解以下幾個概念:變數的地址,變數的內容,直接定址,間接定址.
變數的地址:變數在內存中所佔存儲空間的首地址.
變數的內容:變數在內存的存儲單元中存放的數據.
如:
int a=10;//兩個位元組
假設a占的內存單元的地址為:2020和2021
則內存單元的地址為2020的是存放數據a(即10)的低位元組,內存單元的地址為2021的是存放數據a即10)的高位元組.
如果將變數a的首地址2020保存到另一個變數p中,那麼為了訪問變數a,我們可以通過變數p得到a的的地址2020,再到該地址中訪問變數a.
直接定址:直接按變數名來存取變數的內容的訪問方式.
專門用於存放地址型數據的變數是指針變數,如上面所說的p.
間接定址:通過指針變數(如P)間接存取它所指向的變數(如a)的訪問方式稱為間接定址.
在上例中,a的地址用&a表示.由於p是保存地址型數據的,所以p=a的地址=&a
在此p就叫做指針(或指針變數)
其定義如下:
int *p;
指針有好多好處:
1.為函數提供修改變數值的手段.
2.為C的動態內存分配提供支持.
3.為動態數據結構提供支持.
4.可以改善程序的效率.
⑹ c語言中的指針應該怎麼理解
這是我收錄的指針講義
第一章。指針的概念
指針是一個特殊的變數,它裡面存儲的數值被解釋成為內存里的一個地址。
要搞清一個指針需要搞清指針的四方面的內容:指針的類型,指針所指向的 類型,指針的值或者叫指針所指向的內存區,還有指針本身所佔據的內存區。讓 我們分別說明。
先聲明幾個指針放著做例子:
例一:
(1)int *ptr;
(2)char *ptr;
(3)int **ptr;
(4)int (*ptr)[3];
(5)int *(*ptr)[4];
1。 指針的類型。
從語法的角度看,你只要把指針聲明語句里的指針名字去掉,剩下的部分就是這個指針的類型。這是指針本身所具有的類型。讓我們看看例一中各個指針的 類型:
(1)int *ptr; //指針的類型是int *
(2)char *ptr; //指針的類型是char *
(3)int **ptr; //指針的類型是 int **
(4)int (*ptr)[3]; //指針的類型是 int(*)[3]
(5)int *(*ptr)[4]; //指針的類型是 int *(*)[4]
怎麼樣?找出指針的類型的方法是不是很簡單?
2。指針所指向的類型。
當你通過指針來訪問指針所指向的內存區時,指針所指向的類型決定了編譯 器將把那片內存區里的內容當做什麼來看待。
從語法上看,你只須把指針聲明語句中的指針名字和名字左邊的指針聲明符 *去掉,剩下的就是指針所指向的類型。例如:
(1)int *ptr; //指針所指向的類型是int
(2)char *ptr; //指針所指向的的類型是char
(3)int **ptr; //指針所指向的的類型是 int *
(4)int (*ptr)[3]; //指針所指向的的類型是 int()[3]
(5)int *(*ptr)[4]; //指針所指向的的類型是 int *()[4]
在指針的算術運算中,指針所指向的類型有很大的作用。
指針的類型(即指針本身的類型)和指針所指向的類型是兩個概念。當你對C越 來越熟悉時,你會發現,把與指針攪和在一起的"類型"這個概念分成"指針的 類型"和"指針所指向的類型"兩個概念,是精通指針的關鍵點之一。我看了不 少書,發現有些寫得差的書中,就把指針的這兩個概念攪在一起了,所以看起書來前後矛盾,越看越糊塗。
3。 指針的值,或者叫指針所指向的內存區或地址。
指針的值是指針本身存儲的數值,這個值將被編譯器當作一個地址,而不是一個一般的數值。在32位程序里,所有類型的指針的值都是一個32位整數,因為32位程序里內存地址全都是32位長。
指針所指向的內存區就是從指針的值所代表的那個內存地址開始,長度為sizeof(指針所指向的類型)的一片內存區。以後,我們說一個指針的值是XX,就相當於說該指針指向了以XX為首地址的一片內存區域;我們說一個指針指向了某塊
內存區域,就相當於說該指針的值是這塊內存區域的首地址。
指針所指向的內存區和指針所指向的類型是兩個完全不同的概念。在例一中,指針所指向的類型已經有了,但由於指針還未初始化,所以它所指向的內存區是不存在的,或者說是無意義的。
以後,每遇到一個指針,都應該問問:這個指針的類型是什麼?指針指向的類型是什麼?該指針指向了哪裡?
4。 指針本身所佔據的內存區。
指針本身佔了多大的內存?你只要用函數sizeof(指針的類型)測一下就知道了。在32位平台里,指針本身占據了4個位元組的長度。
指針本身占據的內存這個概念在判斷一個指針表達式是否是左值時很有用。
第二章。指針的算術運算
指針可以加上或減去一個整數。指針的這種運算的意義和通常的數值的加減運算的意義是不一樣的。例如:
例二:
1。 char a[20];
2。 int *ptr=a;
...
...
3。 ptr++;
在上例中,指針ptr的類型是int*,它指向的類型是int,它被初始化為指向整 形變數a。接下來的第3句中,指針ptr被加了1,編譯器是這樣處理的:它把指針ptr的值加上了sizeof(int),在32位程序中,是被加上了4。由於地址是用位元組做單位的,故ptr所指向的地址由原來的變數a的地址向高地址方向增加了4個位元組。
由於char類型的長度是一個位元組,所以,原來ptr是指向數組a的第0號單元開始的四個位元組,此時指向了數組a中從第4號單元開始的四個位元組。
我們可以用一個指針和一個循環來遍歷一個數組,看例子:
例三:
int array[20];
int *ptr=array;
...
//此處略去為整型數組賦值的代碼。
...
for(i=0;i<20;i++)
{
(*ptr)++;
ptr++;
}
這個例子將整型數組中各個單元的值加1。由於每次循環都將指針ptr加1,所
以每次循環都能訪問數組的下一個單元。
再看例子:
例四:
1。 char a[20];
2。 int *ptr=a;
...
...
3。 ptr+=5;
在這個例子中,ptr被加上了5,編譯器是這樣處理的:將指針ptr的值加上5 乘sizeof(int),在32位程序中就是加上了5乘4=20。由於地址的單位是位元組,故現在的ptr所指向的地址比起加5後的ptr所指向的地址來說,向高地址方向移動了20個位元組。在這個例子中,沒加5前的ptr指向數組a的第0號單元開始的四個位元組,加5後,ptr已經指向了數組a的合法范圍之外了。雖然這種情況在應用上會出問題,但在語法上卻是可以的。這也體現出了指針的靈活性。
如果上例中,ptr是被減去5,那麼處理過程大同小異,只不過ptr的值是被減去5乘sizeof(int),新的ptr指向的地址將比原來的ptr所指向的地址向低地址方向移動了20個位元組。
總結一下,一個指針ptrold加上一個整數n後,結果是一個新的指針ptrnew,ptrnew的類型和ptrold的類型相同,ptrnew所指向的類型和ptrold所指向的類型也相同。ptrnew的值將比ptrold的值增加了n乘sizeof(ptrold所指向的類型)個位元組。就是說,ptrnew所指向的內存區將比ptrold所指向的內存區向高地址方向移動了n乘sizeof(ptrold所指向的類型)個位元組。
一個指針ptrold減去一個整數n後,結果是一個新的指針ptrnew,ptrnew的類型和ptrold的類型相同,ptrnew所指向的類型和ptrold所指向的類型也相同。ptrnew的值將比ptrold的值減少了n乘sizeof(ptrold所指向的類型)個位元組,就是說,ptrnew所指向的內存區將比ptrold所指向的內存區向低地址方向移動了n乘sizeof(ptrold所指向的類型)個位元組。
第三章。運算?amp;和*
這里&是取地址運算符,*是...書上叫做"間接運算符"。
&a的運算結果是一個指針,指針的類型是a的類型加個*,指針所指向的類型是a的類型,指針所指向的地址嘛,那就是a的地址。
*p的運算結果就五花八門了。總之*p的結果是p所指向的東西,這個東西有這些特點:它的類型是p指向的類型,它所佔用的地址是p所指向的地址。
例五:
int a=12;
int b;
int *p;
int **ptr;
p=&a;//&a的結果是一個指針,類型是int*,指向的類型是int,指向的地址 是a的地址。
*p=24;//*p的結果,在這里它的類型是int,它所佔用的地址是p所指向的地 址,顯然,*p就是變數a。
ptr=&p;//&p的結果是個指針,該指針的類型是p的類型加個*,在這里是int
**。該指針所指向的類型是p的類型,這里是int*。該指針所指向的地址就是指針p自己的地址。
*ptr=&b;//*ptr是個指針,&b的結果也是個指針,且這兩個指針的類型和所 指向的類型是一樣的,所以用&b來給*ptr賦值就是毫無問題的了。
**ptr=34;//*ptr的結果是ptr所指向的東西,在這里是一個指針,對這個指
針再做一次*運算,結果就是一個int類型的變數。
第四章。指針表達式。
一個表達式的最後結果如果是一個指針,那麼這個表達式就叫指針表達式。
下面是一些指針表達式的例子:
例六:
int a,b;
int array[10];
int *pa;
pa=&a;//&a是一個指針表達式。
int **ptr=&pa;//&pa也是一個指針表達式。
*ptr=&b;//*ptr和&b都是指針表達式。
pa=array;
pa++;//這也是指針表達式。
例七:
char *arr[20];
char **parr=arr;//如果把arr看作指針的話,arr也是指針表達式
char *str;
str=*parr;//*parr是指針表達式
str=*(parr+1);//*(parr+1)是指針表達式
str=*(parr+2);//*(parr+2)是指針表達式
由於指針表達式的結果是一個指針,所以指針表達式也具有指針所具有的四個要素:指針的類型,指針所指向的類型,指針指向的內存區,指針自身占據的內存。
好了,當一個指針表達式的結果指針已經明確地具有了指針自身占據的內存的話,這個指針表達式就是一個左值,否則就不是一個左值。
在例七中,&a不是一個左值,因為它還沒有占據明確的內存。*ptr是一個左值,因為*ptr這個指針已經占據了內存,其實*ptr就是指針pa,既然pa已經在內存中有了自己的位置,那麼*ptr當然也有了自己的位置。
第五章。數組和指針的關系
如果對聲明數組的語句不太明白的話,請參閱我前段時間貼出的文?lt;>。
數組的數組名其實可以看作一個指針。看下例:
例八:
int array[10]={0,1,2,3,4,5,6,7,8,9},value;
...
...
value=array[0];//也可寫成:value=*array;
value=array[3];//也可寫成:value=*(array+3);
value=array[4];//也可寫成:value=*(array+4);
上例中,一般而言數組名array代表數組本身,類型是int [10],但如果把a
rray看做指針的話,它指向數組的第0個單元,類型是int *,所指向的類型是數組單元的類型即int。因此*array等於0就一點也不奇怪了。同理,array+3是一個指向數組第3個單元的指針,所以*(array+3)等於3。其它依此類推。
例九:
char *str[3]={
"Hello,this is a sample!",
"Hi,good morning.",
"Hello world"
};
char s[80];
strcpy(s,str[0]);//也可寫成strcpy(s,*str);
strcpy(s,str[1]);//也可寫成strcpy(s,*(str+1));
strcpy(s,str[2]);//也可寫成strcpy(s,*(str+2));
上例中,str是一個三單元的數組,該數組的每個單元都是一個指針,這些指針各指向一個字元串。把指針數組名str當作一個指針的話,它指向數組的第0號單元,它的類型是char**,它指向的類型是char *。
*str也是一個指針,它的類型是char*,它所指向的類型是char,它指向的地址是字元串"Hello,this is a sample!"的第一個字元的地址,即』H』的地址。
str+1也是一個指針,它指向數組的第1號單元,它的類型是char**,它指向的類型是char *。
*(str+1)也是一個指針,它的類型是char*,它所指向的類型是char,它指向"Hi,good morning."的第一個字元』H』,等等。
下面總結一下數組的數組名的問題。聲明了一個數組TYPE array[n],則數組名稱array就有了兩重含義:第一,它代表整個數組,它的類型是TYPE [n];第二,它是一個指針,該指針的類型是TYPE*,該指針指向的類型是TYPE,也就是數組單元的類型,該指針指向的內存區就是數組第0號單元,該指針自己佔有單獨的內存區,注意它和數組第0號單元占據的內存區是不同的。該指針的值是不能修改的,即類似array++的表達式是錯誤的。
在不同的表達式中數組名array可以扮演不同的角色。
在表達式sizeof(array)中,數組名array代表數組本身,故這時sizeof函數
測出的是整個數組的大小。
在表達式*array中,array扮演的是指針,因此這個表達式的結果就是數組第0號單元的值。sizeof(*array)測出的是數組單元的大小。
表達式array+n(其中n=0,1,2,....。)中,array扮演的是指針,故arr
ay+n的結果是一個指針,它的類型是TYPE*,它指向的類型是TYPE,它指向數組第n號單元。故sizeof(array+n)測出的是指針類型的大小。
例十:
int array[10];
int (*ptr)[10];
ptr=&array;
上例中ptr是一個指針,它的類型是int (*)[10],他指向的類型是int [10]
,我們用整個數組的首地址來初始化它。在語句ptr=&array中,array代表數組本身。
本節中提到了函數sizeof(),那麼我來問一問,sizeof(指針名稱)測出的究
竟是指針自身類型的大小呢還是指針所指向的類型的大小?答案是前者。例如:
int (*ptr)[10];
則在32位程序中,有:
sizeof(int(*)[10])==4
sizeof(int [10])==40
sizeof(ptr)==4
實際上,sizeof(對象)測出的都是對象自身的類型的大小,而不是別的什麼類型的大小。
第六章。指針和結構類型的關系
可以聲明一個指向結構類型對象的指針。
例十一:
struct MyStruct
{
int a;
int b;
int c;
}
MyStruct ss={20,30,40};//聲明了結構對象ss,並把ss的三個成員初始
化為20,30和40。
MyStruct *ptr=&ss;//聲明了一個指向結構對象ss的指針。它的類型是
MyStruct*,它指向的類型是MyStruct。
int *pstr=(int*)&ss;//聲明了一個指向結構對象ss的指針。但是它的
類型和它指向的類型和ptr是不同的。
請問怎樣通過指針ptr來訪問ss的三個成員變數?
答案:
ptr->a;
ptr->b;
ptr->c;
又請問怎樣通過指針pstr來訪問ss的三個成員變數?
答案:
*pstr;//訪問了ss的成員a。
*(pstr+1);//訪問了ss的成員b。
*(pstr+2)//訪問了ss的成員c。
呵呵,雖然我在我的MSVC++6.0上調式過上述代碼,但是要知道,這樣使用p
str來訪問結構成員是不正規的,為了說明為什麼不正規,讓我們看看怎樣通過指
針來訪問數組的各個單元:
例十二:
int array[3]={35,56,37};
int *pa=array;
通過指針pa訪問數組array的三個單元的方法是:
*pa;//訪問了第0號單元
*(pa+1);//訪問了第1號單元
*(pa+2);//訪問了第2號單元
從格式上看倒是與通過指針訪問結構成員的不正規方法的格式一樣。
所有的C/C++編譯器在排列數組的單元時,總是把各個數組單元存放在連續的存儲區里,單元和單元之間沒有空隙。但在存放結構對象的各個成員時,在某種編譯環境下,可能會需要字對齊或雙字對齊或者是別的什麼對齊,需要在相鄰兩個成員之間加若干?quot;填充位元組",這就導致各個成員之間可能會有若干個位元組的空隙。
所以,在例十二中,即使*pstr訪問到了結構對象ss的第一個成員變數a,也不能保證*(pstr+1)就一定能訪問到結構成員b。因為成員a和成員b之間可能會有若干填充位元組,說不定*(pstr+1)就正好訪問到了這些填充位元組呢。這也證明了指針的靈活性。要是你的目的就是想看看各個結構成員之間到底有沒有填充位元組,
嘿,這倒是個不錯的方法。
通過指針訪問結構成員的正確方法應該是象例十二中使用指針ptr的方法。
第七章。指針和函數的關系
可以把一個指針聲明成為一個指向函數的指針。
int fun1(char*,int);
int (*pfun1)(char*,int);
pfun1=fun1;
....
....
int a=(*pfun1)("abcdefg",7);//通過函數指針調用函數。
可以把指針作為函數的形參。在函數調用語句中,可以用指針表達式來作為
實參。
例十三:
int fun(char*);
int a;
char str[]="abcdefghijklmn";
a=fun(str);
...
...
int fun(char*s)
{
int num=0;
for(int i=0;i
{
num+=*s;s++;
}
return num;
)
這個例子中的函數fun統計一個字元串中各個字元的ASCII碼值之和。前面說了,數組的名字也是一個指針。在函數調用中,當把str作為實參傳遞給形參s後,實際是把str的值傳遞給了s,s所指向的地址就和str所指向的地址一致,但是str和s各自佔用各自的存儲空間。在函數體內對s進行自加1運算,並不意味著同時對str進行了自加1運算。
第八章。指針類型轉換
當我們初始化一個指針或給一個指針賦值時,賦值號的左邊是一個指針,賦值號的右邊是一個指針表達式。在我們前面所舉的例子中,絕大多數情況下,指針的類型和指針表達式的類型是一樣的,指針所指向的類型和指針表達式所指向的類型是一樣的。
例十四:
1。 float f=12.3;
2。 float *fptr=&f;
3。 int *p;
在上面的例子中,假如我們想讓指針p指向實數f,應該怎麼搞?是用下面的語句嗎?
p=&f;
不對。因為指針p的類型是int*,它指向的類型是int。表達式&f的結果是一
個指針,指針的類型是float*,它指向的類型是float。兩者不一致,直接賦值的方法是不行的。至少在我的MSVC++6.0上,對指針的賦值語句要求賦值號兩邊的類型一致,所指向的類型也一致,其它的編譯器上我沒試過,大家可以試試。為了實現我們的目的,需要進行"強制類型轉換":
p=(int*)&f; 如果有一個指針p,我們需要把它的類型和所指向的類型改為TYEP*和TYPE,
那麼語法格式是:
(TYPE*)p;
這樣強制類型轉換的結果是一個新指針,該新指針的類型是TYPE*,它指向的類型是TYPE,它指向的地址就是原指針指向的地址。而原來的指針p的一切屬性都沒有被修改。
一個函數如果使用了指針作為形參,那麼在函數調用語句的實參和形參的結合過程中,也會發生指針類型的轉換。
例十五:
void fun(char*);
int a=125,b;
fun((char*)&a);
...
...
void fun(char*s)
{
char c;
c=*(s+3);*(s+3)=*(s+0);*(s+0)=c;
c=*(s+2);*(s+2)=*(s+1);*(s+1)=c;
}
}
注意這是一個32位程序,故int類型佔了四個位元組,char類型佔一個位元組。函數fun的作用是把一個整數的四個位元組的順序來個顛倒。注意到了嗎?在函數調用語句中,實參&a的結果是一個指針,它的類型是int *,它指向的類型是int。形參這個指針的類型是char*,它指向的類型是char。這樣,在實參和形參的結合過程中,我們必須進行一次從int*類型到char*類型的轉換。結合這個例子,我們可以這樣來想像編譯器進行轉換的過程:編譯器先構造一個臨時指針 char*temp,然後執行temp=(char*)&a,最後再把temp的值傳遞給s。所以最後的結果是:s的類型是char*,它指向的類型是char,它指向的地址就是a的首地址。
我們已經知道,指針的值就是指針指向的地址,在32位程序中,指針的值其實是一個32位整數。那可不可以把一個整數當作指針的值直接賦給指針呢?就象下面的語句:
unsigned int a;
TYPE *ptr;//TYPE是int,char或結構類型等等類型。
...
...
a=20345686;
ptr=20345686;//我們的目的是要使指針ptr指向地址20345686(十進制
)
ptr=a;//我們的目的是要使指針ptr指向地址20345686(十進制)
編譯一下吧。結果發現後面兩條語句全是錯的。那麼我們的目的就不能達到了嗎?不,還有辦法:
unsigned int a;
TYPE *ptr;//TYPE是int,char或結構類型等等類型。
...
...
a=某個數,這個數必須代表一個合法的地址;
ptr=(TYPE*)a;//呵呵,這就可以了。
嚴格說來這里的(TYPE*)和指針類型轉換中的(TYPE*)還不一樣。這里的(TYPE*)的意思是把無符號整數a的值當作一個地址來看待。
上面強調了a的值必須代表一個合法的地址,否則的話,在你使用ptr的時候,就會出現非法操作錯誤。
想想能不能反過來,把指針指向的地址即指針的值當作一個整數取出來。完全可以。下面的例子演示了把一個指針的值當作一個整數取出來,然後再把這個整數當作一個地址賦給一個指針:
例十六:
int a=123,b;
int *ptr=&a;
char *str;
b=(int)ptr;//把指針ptr的值當作一個整數取出來。
str=(char*)b;//把這個整數的值當作一個地址賦給指針str。
好了,現在我們已經知道了,可以把指針的值當作一個整數取出來,也可以把一個整數值當作地址賦給一個指針。
第九章。指針的安全問題
看下面的例子:
例十七:
char s=』a』;
int *ptr;
ptr=(int*)&s;
*ptr=1298;
指針ptr是一個int*類型的指針,它指向的類型是int。它指向的地址就是s的首地址。在32位程序中,s佔一個位元組,int類型佔四個位元組。最後一條語句不但改變了s所佔的一個位元組,還把和s相臨的高地址方向的三個位元組也改變了。這三個位元組是干什麼的?只有編譯程序知道,而寫程序的人是不太可能知道的。也許這三個位元組里存儲了非常重要的數據,也許這三個位元組里正好是程序的一條代碼,而由於你對指針的馬虎應用,這三個位元組的值被改變了!這會造成崩潰性的錯誤。
讓我們再來看一例:
例十八:
1。 char a;
2。 int *ptr=&a;
...
...
3。 ptr++;
4。 *ptr=115;
該例子完全可以通過編譯,並能執行。但是看到沒有?第3句對指針ptr進行自加1運算後,ptr指向了和整形變數a相鄰的高地址方向的一塊存儲區。這塊存儲區里是什麼?我們不知道。有可能它是一個非常重要的數據,甚至可能是一條代碼。而第4句竟然往這片存儲區里寫入一個數據!這是嚴重的錯誤。所以在使用指針時,程序員心裡必須非常清楚:我的指針究竟指向了哪裡。
在用指針訪問數組的時候,也要注意不要超出數組的低端和高端界限,否則也會造成類似的錯誤。
在指針的強制類型轉換:ptr1=(TYPE*)ptr2中,如果sizeof(ptr2的類型)大
於sizeof(ptr1的類型),那麼在使用指針ptr1來訪問ptr2所指向的存儲區時是安全的。如果sizeof(ptr2的類型)小於sizeof(ptr1的類型),那麼在使用指針ptr1來訪問ptr2所指向的存儲區時是不安全的。至於為什麼,讀者結合例十七來想一想,應該會明白的。
如果對你有所幫助,請記得採納最佳答案,謝謝
⑺ C語言指針基本概念及其指針變數的定義是什麼
指針是常見間接訪問方式.指針就像一個快捷方式,它指向內存的一個地址,可以通過指針就可以間接的訪問到數據。對於計算機,訪問內存的方式有兩種,直接訪問和間接訪問。直接訪問通過就是通過變數名稱去訪問。指針概念是構成C/C++的重要元素之一,是變數的一種類型,存放的是指定類型數據的地址,而同類型變數存放的是數據。
指針變數:就是一個變數,其值是可變的,與整形變數、浮點變數等等的命名規則完全相同。 「指針」是概念,「指針變數」是具體實現。指針類型說明,即定義變數為一個指針變數; 指針變數名; 變數值(指針)所指向的變數的數據類型。
(7)c語言中指針的定義擴展閱讀:
與其他高級編程語言相比,C 語言可以更高效地對計算機硬體進行操作,而計算機硬體的操作指令,在很大程度上依賴於地址。指針提供了對地址操作的一種方法,因此,使用指針可使得 C 語言能夠更高效地實現對計算機底層硬體的操作。另外,通過指針可以更便捷地操作數組。在一定意義上可以說,指針是 C 語言的精髓。
⑻ c語言指針的概念
指針是C語言中廣泛使用的一種數據類型。 運用指針編程是C語言最主要的風格之一。利用指針變數可以表示各種數據結構; 能很方便地使用數組和字元串; 並能象匯編語言一樣處理內存地址,從而編出精練而高效的程序。指針極大地豐富了C語言的功能。 學習指針是學習C語言中最重要的一環, 能否正確理解和使用指針是我們是否掌握C語言的一個標志。同時, 指針也是C語言中最為困難的一部分,在學習中除了要正確理解基本概念,還必須要多編程,上機調試。只要作到這些,指針也是不難掌握的。
指針的基本概念 在計算機中,所有的數據都是存放在存儲器中的。 一般把存儲器中的一個位元組稱為一個內存單元, 不同的數據類型所佔用的內存單元數不等,如整型量佔2個單元,字元量佔1個單元等, 在第二章中已有詳細的介紹。為了正確地訪問這些內存單元, 必須為每個內存單元編上號。 根據一個內存單元的編號即可准確地找到該內存單元。內存單元的編號也叫做地址。 既然根據內存單元的編號或地址就可以找到所需的內存單元,所以通常也把這個地址稱為指針。 內存單元的指針和內存單元的內容是兩個不同的概念。 可以用一個通俗的例子來說明它們之間的關系。我們到銀行去存取款時, 銀行工作人員將根據我們的帳號去找我們的存款單, 找到之後在存單上寫入存款、取款的金額。在這里,帳號就是存單的指針, 存款數是存單的內容。對於一個內存單元來說,單元的地址即為指針, 其中存放的數據才是該單元的內容。在C語言中, 允許用一個變數來存放指針,這種變數稱為指針變數。因此, 一個指針變數的值就是某個內存單元的地址或稱為某內存單元的指針。圖中,設有字元變數C,其內容為「K」(ASCII碼為十進制數 75),C佔用了011A號單元(地址用十六進數表示)。設有指針變數P,內容為011A, 這種情況我們稱為P指向變數C,或說P是指向變數C的指針。 嚴格地說,一個指針是一個地址, 是一個常量。而一個指針變數卻可以被賦予不同的指針值,是變。 但在常把指針變數簡稱為指針。為了避免混淆,我們中約定:「指針」是指地址, 是常量,「指針變數」是指取值為地址的變數。 定義指針的目的是為了通過指針去訪問內存單元。
既然指針變數的值是一個地址, 那麼這個地址不僅可以是變數的地址, 也可以是其它數據結構的地址。在一個指針變數中存放一
個數組或一個函數的首地址有何意義呢? 因為數組或函數都是連續存放的。通過訪問指針變數取得了數組或函數的首地址, 也就找到了該數組或函數。這樣一來, 凡是出現數組,函數的地方都可以用一個指針變數來表示, 只要該指針變數中賦予數組或函數的首地址即可。這樣做, 將會使程序的概念十分清楚,程序本身也精練,高效。在C語言中, 一種數據類型或數據結構往往都佔有一組連續的內存單元。 用「地址」這個概念並不能很好地描述一種數據類型或數據結構, 而「指針」雖然實際上也是一個地址,但它卻是一個數據結構的首地址, 它是「指向」一個數據結構的,因而概念更為清楚,表示更為明確。 這也是引入「指針」概念的一個重要原因。
⑼ C語言指針的概念,它例子具體點
要明白指針的概念,首先得明白程序中的變數在內存地址空間中如何存放。
內存地址空間以位元組為單位,包括程序的代碼段、數據段、堆還有棧。
一個變數有兩個屬性:變數類型和變數名。通過變數名我們可以找到該變數的第一個位元組在地址空間內存放的位置(即內存地址);通過變數屬性(即變數類型)我們知道該變數總共佔用幾個位元組,這樣每次訪問它就知道取多少個位元組,例如int型變數一般32位,即佔用4個位元組。
一個變數在定義之後,程序會給它分配內存,這個內存地址是不會變的,直到這個變數過期。
這樣,除了通過變數名來訪問該變數之外,如果我們知道了該變數在內存中存放的位置,那應該就能直接對該變數進行讀寫。如果能這樣做,在某些情況下還是有很大便利性的。C語言如何實現該功能?指針。
用指針來指向變數,(即通過指針來訪問變數),其實就是直接訪問該變數的內存地址。為了安全起見,一個指針的類型必須與該指針指向的變數類型相對應,因為在用指針來取代變數名進行各種操作時,編譯器會首先判斷該操作是否合法。指針也必須能包含變數的這兩個屬性,不然怎麼訪問該變數。指針保存的值就是它指向的變數在內存中的起始位置;指針的類型表明該指針指向的是什麼類型的變數。
例如,int * pi = &a;
pi指向int型變數a,這樣pi的值就是a的起始內存地址,pi是int*型指針。
這樣通過解引用操作符*就可以通過*pi來訪問a的值(訪問a的內存地址來獲得a的值),在需要使用a的時候,我們可以用*p來取代,例如:
*p = 1 + 2; // a = 1 + 2;
m = *p * 3; m = a * 3;
一般,初學者對C指針的困惑有兩個地方:一個是多重指針,另外一個是強制類型轉換。
多重指針,即指向指針的指針,例如 int ** ppi。指針也是變數,指向指針的指針無非就是它指向的類型是指針,例如,這里ppi是一個指針,它指向的變數類型是int*型指針。對ppi解一次引用可以訪問該int*指針變數,對該int*變數再解一次飲用可以訪問該指針指向的int型變數,即**ppi。
強制類型轉換,例如,char * pc = (char *)pi;通過*pc訪問的是*pi的第一個位元組。
其實只要記住一點就行了,指針有兩個屬性,它保存的內存地址和它指向的變數類型。通過強制類型轉換,其實轉換的是編譯器對該指針所指向的變數類型的轉換。例如,本來pi指向的是一個4位元組內存,通過強制轉換,pc指向的就是一個1位元組內存,內存起始地址沒變,變的只是每次訪問該內存所訪問的位元組數。
例如,有一個常見的例子,如何判斷機器的內存模型是大端還是小端?(一個多位元組變數存放在內存中時低地址處存放的是高位元組還是低位元組,前者是大端,後者是小端)
int a = 0x01;//聲明一個4位元組int型變數,高位元組是0,低位元組是1
char* pc = &a;//聲明一個指向char的指針,這樣通過pc訪問的內存是一個位元組,即通過pc可以訪問到a佔用的第一個位元組(低地址處),通過*pc的值即可判斷是大端還是小端
if (*pc == 1) printf("小端");
else printf("大端");